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Abstract
Despite its benefit in a wide range of applications, data mining techniques also have raised a number of ethical issues.

Some such issues include those of privacy, data security, intellectual property rights, and many others. In this paper,

we address the privacy problem against unauthorized secondary use of information. To do so, we introduce a family

of geometric data transformation methods (GDTMs) which ensure that the mining process will not violate privacy up to

a certain degree of security. We focus primarily on privacy preserving data clustering, notably on partition-based and

hierarchical methods. Our proposed methods distort only confidential numerical attributes to meet privacy requirements,

while preserving general features for clustering analysis. Our experiments demonstrate that our methods are effective and

provide acceptable values in practice for balancing privacy and accuracy. We report the main results of our performance

evaluation and discuss some open research issues.

1. Introduction

Huge volumes of detailed personal data are regularly collected and analyzed by applications us-
ing data mining. Such data include shopping habits, criminal records, medical history, credit records,
among others [4]. On the one hand, such data is an important asset to business organizations and gov-
ernments both to decision making processes and to provide social benefits, such as medical research,
crime reduction, national security, etc. [12]. On the other hand, analyzing such data opens new threats
to privacy and autonomy of the individual if not done properly.

The threat to privacy becomes real since data mining techniques are able to derive highly sensitive
knowledge from unclassified data that is not even known to database holders. Worse is the privacy
invasion occasioned by secondary usage of data when individuals are unaware of “behind the scenes”
use of data mining techniques [13]. As an example in point, Culnan [6] made a particular study of
secondary information use which she defined as “the use of personal information for other purposes
subsequent to the original transaction between an individual and an organization when the information
was collected.” The key finding of this study was that concern over secondary use was correlated with
the level of control the individual has over the secondary use. As a result, individuals are increasingly
feeling that they are losing control over their own personal information that may reside on thousands
of file servers largely beyond the control of existing privacy laws. This scenario has led to privacy
invasion on a scale never before possible.

The challenging problem that we address in this paper is: how can we protect against the abuse
of the knowledge discovered from secondary usage of data and meet the needs of organizations and
governments to support decision making or even to promote social benefits? We claim that a solution



for such a problem requires two vital techniques:anonymity[15, 17] to remove identifiers (e.g. names,
social insurance numbers, addresses, etc.) in the first phase of privacy protection, anddata transforma-
tion to protect some sensitive attributes (e.g. salary, age, etc.) since the released data, after removing
identifiers, may contain other information that can be linked with other datasets to re-identify individu-
als or entities [19]. In this paper, we focus on the latter technique. Specifically, we consider the case in
which confidential numerical attributes are distorted in order to meet privacy protection in clustering
analysis, notably on partition-based and hierarchical methods.

The intuition behind such methods is to partition a dataset into new classes (clusters) of similar ob-
jects. The goal is to group objects to achieve high similarity between objects within individual clusters
(interclass similarity) and low similarity between objects that belong to different clusters (intraclass
similarity) [11]. Clustering is widely used in many applications such as customer behaviour analysis,
targeted marketing, and many others.

A motivating example for the privacy problem in data clustering could be found in business col-
laboration. Two or more companies have a very large dataset of records of their customers’ buying
activities. These companies decide to cooperatively conduct data clustering on their datasets for their
mutual benefit since this collaboration brings them an advantage over other competitors. The goal is to
subdivide a market into distinct subsets of customers where any subset may be selected as a market to
be reached with a distinct marketing mix. However, these companies would like to transform their data
in such a way that the privacy of their customers cannot be violated. Is it possible for these companies
to benefit from such collaboration by sharing their data while preserving the private information of
their customers?

To address privacy concerns in clustering analysis, we need to design specific data transformation
methods that enforce privacy without loosing the benefit of mining. The proposed data perturbation
methods in the literature pertain to the context of statistical databases [1, 7, 5, 16]. They do not apply to
data clustering as they have limitations when the perturbed attributes are considered as a vector in the
Euclidean space. For instance, let us suppose that some confidential attributes (e.g. salary and age) are
represented by points in a 2D discrete space for clustering analysis. If we distort these attributes using
any perturbed methods proposed in the literature, the clusters obtained after perturbing the data would
be very different from those mined from the original database. The main problem is that many points
would move from one cluster to another jeopardizing the notion of similarity between data points
in the global space. Consequently, this introduces the problem of misclassification. Therefore, the
perturbation has to be uniformly applied to all attributes to guarantee safeguarding the global distances
between data points, or even to slightly modify the distance between some points.

In this paper, we introduce a family of geometric data transformation methods (GDTMs) that distort
confidential numerical attributes in order to meet privacy protection in clustering analysis. We benefit
from the work on image processing [10]. Of particular interest is work on geometric transformation
of digital images, notably the idea behind translation, scaling, and rotation. We also benefit from
the work on statistical databases, particularly the intuition behind data distortion. We show that our
transformation data methods are simple, independent of clustering algorithms, preserve the general
features of the clusters, and have a sound mathematical foundation. Although our approach does not
provide a comprehensive solution to the problem of privacy preservation in data mining, we argue
that our approach is a simple building block toward privacy preserving data clustering. To date, such
schemata have not been explored in detail.

This paper is organized as follows. Related work is reviewed in Section 2. In Section 3, we provide
the basic concepts that are necessary to understand the scope and the issues addressed in this paper. We



introduce our family of geometric data transformation methods in Section 4. In Section 5, we present
the experimental results and discussion. Finally, Section 6 presents our conclusions and a discussion
of future work.

2. Related Work

Some effort has been made to address the problem of privacy preservation in data mining. This
effort has been restricted basically to classification and association rules. The class of solutions for
this problem rely on data partition, data sanitization, randomization and data distortion. In this work,
we focus on the last two categories.

Estivill-Castro and Brankovic [8] introduced a method for ensuring partial disclosure while allow-
ing a miner to explore detailed data. In this approach, one first builds a local decision tree over true
data, and then swaps values amongst records in a leaf node of the tree to generate randomized training
data. The swapping is performed over the confidential attribute only, where the confidential attribute
is the class label. This approach deals with a trade-off: statistical precision against security level, i.e.,
the closer to the root, the higher the security but lower the precision.

Agrawal and Srikant [3] considered the case of building a decision-tree classifier from training data
in which the values of individual records have been perturbed, by adding random values from a prob-
ability distribution. The resulting data records look very different from the original records and the
distribution of data values is also very different from the original distribution. While it is not possible
to accurately estimate original values in individual data records, they proposed a novel reconstruction
procedure to accurately estimate the distribution of original data values. The distribution reconstruc-
tion process naturally leads to some loss of information, but the authors argue that this is acceptable in
many practical situations.

In [2], the authors proposed a new algorithm for distribution reconstruction which is more effective
than that proposed in [3], in terms of the level of information loss. This algorithm, based on Expec-
tation Maximization (EM) algorithm, converges to the maximum likelihood estimate of the original
distribution based on the perturbed data, even when a large amount of data is available. They also
pointed out that the EM algorithm was in fact identical to the Bayesian reconstruction proposed in [3],
except for the approximation partitioning values into intervals.

Evfimievski et al. [9] proposed a framework for mining association rules from transactions con-
sisting of categorical items in which the data has been randomized to preserve privacy of individual
transactions. The idea behind this approach is that some items in each transaction are replaced by new
items not originally present in this transaction. In doing so, some true information is taken away and
some false information is introduced, which seems to have obtained a reasonable privacy protection. In
general, this strategy is feasible to recover association rules, less frequent than originally, and preserve
privacy using a straightforward uniform randomization. Although privacy is preserved on average,
confidential information leaks through uniform randomization for some fraction of transactions.

More recently, the data distortion approach has been applied to boolean association rules [18].
Again, the idea is to modify data values such that reconstruction of the values for any individual
transaction is difficult, but the rules learned on the distorted data are still valid. One interesting feature
of this work is a flexibility definition of privacy. For instance, the ability to correctly guess a value of
‘1’ from the distorted data can be considered a greater threat to privacy than correctly learning a ‘0’.
This scheme is based on probabilistic distortion of user data, which is composed of a privacy metric
and an analytical formula. Although this framework provides a high degree of privacy to the user and



retains a high level of accuracy in the mining results, mining the distorted database can be, apart from
being error-prone, significantly more expensive in terms of both time and space as compared to mining
the original database.

The work presented here differs from the related work in some aspects, as follows: First, we
aim to address the problem of privacy preservation in clustering analysis. To our best knowledge,
this problem has not been considered so far. Our proposed solution and those ones in the related
work are complementary. Second, we study the impact of our data transformation schemes in the
original database by quantifying how much information is preserved after transforming a database.
So, our focus is not only on protecting individual data records, but also on providing accurate data for
clustering analysis.

3. Basic Concepts

In this section, we briefly review the basic concepts that are necessary to understand the issues
addressed in this paper. We start by giving the main idea behind data perturbation, followed by the
basics of geometric transformation of digital images.

3.1. The Basics of Data Perturbation

The methods based on the data perturbation approach fall into two main categories known as
probability-distribution category and fixed-data perturbation category [1, 5]. In the probability-distribution
category, the security-control method replaces the original database by another sample from the same
distribution or by the distribution itself. On the other hand, the fixed-data perturbation methods dis-
cussed in the literature have been developed exclusively for either numerical data or categorical data.
These methods usually require that a dedicated transformed database is created for secondary use,
and they have evolved from a simple method for a single attribute to multi-attribute methods. In all
cases, such methods involve the addition of noise term with the mean 0, and hence result in no bias in
estimating the mean. In this paper, we focus on fixed-data perturbation methods.

In its simplest form, fixed-data perturbation methods involve perturbing a confidential attributeX
by adding some noise terme to result in the perturbed attributeY . When this method is used for multi-
attribute databases, each attribute in the database is perturbed independently of the others. In general,
this method is described asY = X + e, wheree is drawn from some probability distribution (e.g.
Uniform, Normal) with mean 0 and a known variance to the data [1]. These methods are referred to as
Additive Data Perturbation (ADP). Apart from ADP methods, Multiplicative Data Perturbation (MDP)
can also be used to provide aggregate statistics, while protecting the privacy of individuals represented
in a database. In such a method, for a single confidential attributeX, the perturbed attributeY is
described asY = Xe, wheree has a mean of 1.0 and a specified variance [16]. Since the mean of
e = 1.0, there is no bias in estimating the mean. When the MDP method is used to distort multiple
confidential attributes, each attribute must be perturbed independently of other attributes.

Fixing the perturbation of an attribute, using either ADP or MDP methods, prevents users from
improving the estimates of the value of a field in a record by repeating queries. For this reason these
methods are suitable for released databases [5, 16].



3.2. The Basics of Imaging Geometry

For the sake of simplicity, we provide the basics of imaging geometry in a 2D discrete space.
However, the foundations are scalable to other dimensions. A digital imagea[m, n] described in a 2D
discrete space is derived from an analog imagea(x, y) in a 2D continuous space through a sampling
process that is frequently referred to as digitization. The 2D continuous imagea(x, y) is divided into
N rows andM columns. The intersection of a row and a column is termed a pixel. The value assigned
to the integer coordinates[m, n] with m = 0, 1, 2, ..., M − 1 andn = 0, 1, 2, ..., N − 1 is a[m, n] [10].

There are some transformations that can be applied to digital images to transform an input image
a[m, n] into an output imageb[m, n]. In this work, we consider the transformations translation, scaling,
and rotation. We are expressing such transformations in a two-dimensional Cartesian coordinate sys-
tem, in which a point has coordinates denoted(X, Y ). The same transformations can be extrapolated
to high dimensional data spaces.

Translation is the task to move a point with coordinates(X, Y ) to a new location by using dis-
placements(X0, Y0). The translation is easily accomplished by using a matrix representationv′ = Tv,
whereT is a 2× 3 transformation matrix depicted in Figure 1A,v is the vector column containing
the original coordinates, andv′ is a column vector whose coordinates are the transformed coordinates.
This matrix form is also applied to Scaling and Rotation.

Scaling by factorsSx andSy along theX andY axes is given by the transformation matrix seen in
Figure 1B.

Rotation is a more challenging transformation. In its simplest form, this transformation is for the
rotation of a point about the coordinate axes. Rotation of a point in a 2D discrete space by an angleθ
is achieved by using the transformation matrix depicted in Figure 1C. The rotation angleθ is measured
clockwise and this transformation affects the values ofX andY coordinates.

[
1 0 X0

0 1 Y0

] [
Sx 0
0 Sy

] [
cos θ sin θ
−sin θ cos θ

]

(A) (B) (C)

Figure 1: (A) Transformation matrix for Translation; (B) Transformation matrix for Scaling; (C) Trans-
formation matrix for Rotation.

4. The Family of Geometric Data Transformation Methods

In this section, we introduce the family of geometric data transformation methods (GDTM) that
we propose to meet privacy preservation in clustering analysis.

4.1. Basic Definitions

For this paper, the data is assumed to be a matrixDmn, where each of them rows is an observation,
Oi, and each observation contains values for each of then attributes,Ai. The matrixDmn may contain
categorical and numerical attributes. However, our GDTMs rely ond numerical attributes, such that
d ≤ n. Thus, them × d matrix, which is subject to transformation, can be thought of as a vector



subspaceV in the Euclidean space such that each vectorvi ∈ V is the formvi = (a1, ..., ad), 1 ≤ i ≤ d,
where∀i ai is one instance ofAi, ai ∈ <, and< is the set of real numbers.

The vector subspaceV must be transformed before releasing the data for clustering analysis in
order to preserve privacy of individual data records. To transformV into a distorted vector subspace
V ′, we need to add or even multiply a constant noise terme to each elementvi of V . To do so, we
define auniform noise vectoras follows:

Definition 1 (Uniform Noise Vector) Let N = (〈o1 : OP1, e1 : NT1〉, ..., 〈od : OPd, ed : NTd〉) be
a uniform noise vector, and for1 ≤ i ≤ d, let Di(OP ) be the set of operations associated with the
domain ofOPi, and letDi(E) be the set of noisy term associated with the domain ofNTi. An instance
of N that satisfies the domain constraints is a vector of the form:{[〈o1 : op1, e1 : nt1〉, ..., 〈od : opd, ed :
ntd〉] | ∀i opi ∈ Di(OP ), nti ∈ Di(E)}.

The set of operationsDi(OP ) takes the values{Mult, Add, Rotate}, whereMult andAddcorre-
spond to a multiplicative and additive noise applied to one confidential attribute respectively.Rotate,
denoted byAi � Aj, implies that all instances of the attributesAi andAj are rotated by a common
angle. In the next sections, we exemplify the use of the uniform noise vectorN .

Given the uniform noise vectorN , we can transform the vector subspaceV into the vector subspace
V ′ by using a geometric transformation function.

Definition 2 (Geometric Transformation Function) LetV be ad-dimensional vector subspace, where
each elementvi, 1 ≤ i ≤ d, is the formvi = (a1, ..., ad), and eachai in vi is one observation of a
confidential numerical attribute, and let N =(〈op1, e1〉, ..., 〈opd, ed〉) be a uniform noise vector. We
define a geometric transformation functionf as a bijection ofd-dimensional space into itself which
transformsV into V ′ by distorting all attributes ofvi in V according to its corresponding i-th element
in N. Each vectorv′ of V ′ is the formv′ = (〈a1 [op1] e1〉, ..., 〈ad [opd] ed〉), and∀i, 〈ai [opi] ei〉 ∈ <.

In this paper, we consider the following geometric transformation functions:Translation, Scal-
ing, andRotationwhose corresponding operations areAdd, Mult, andRotate. Based on the previous
definitions, we can define a geometric transformation method (GDTM) as follows:

Definition 3 (Geometric Data Transformation Method) A geometric data transformation method
of dimensiond is a ordered pair, defined asGDTM = (V, f) where:

• V ⊆ <d is a representative vector subspace of data points to be transformed;
• f is a geometric transformation function,f : <d → <d.

For our GDTMs, the inputs are the vectors ofV , composed of confidential numerical attributes
only, and the uniform noise vectorN , while the output is the transformed vector subspaceV ′. Our
GDTM algorithms require only one scan, in most cases. All transformation data algorithms have
essentially two major steps: (1) Identify the noise term and the operation that must be applied to each
confidential attribute. This step refers to the instantiation of the uniform noise vectorN ; (2) Based
on the uniform noise vectorN , defined in the previous step, transformV into V ′ using a geometric
transformation function.

4.2. The Translation Data Perturbation Method

In the Translation Data Perturbation Method, denoted by TDP, the observations of confidential
attributes in eachvi ∈ V are perturbed using an additive noise perturbation. The noise term applied
to each confidential attribute is constant and can be either positive or negative. The set of operations
Di(OP ) takes only the value{Add} corresponding to a additive noise applied to each confidential
attribute. The sketch of the TDP algorithm is given as follows:



TDP Algorithm
Input: V , N
Output: V ′

Step 1.For each confidential attributeAj in V , where1 ≤ j ≤ d do
1. Select the noise termej in N for the confidential attributeAj

2. Thej-th operationopj ← {Add}
Step 2.For eachvi ∈ V do

For eachaj in vi = (a1, ..., ad), whereaj is the observation of thej-th attributedo
1. a′

j ← Transform(aj, opj , ej)
End

To illustrate how the TDP method works, let us consider the sample relational database in Figure
2A. In this example, the columnO# represents observations. Note that we have removed the identi-
fiers. Suppose we are interested in grouping individuals based on the attributesAgeandSalary, but
the attributes are confidential. To do so, we apply our TDP method. The uniform noise vector for this
example isN = (〈Add,−3〉, 〈Add, 5000〉). Figure 2B shows the distorted database, and the points
before and after distortion can be seen in Figure 2C.

O#    Occupation     City            Age    Salary

5      Dentist           Victoria         42     60,000

4      Lawyer          Vancouver     43     65,000

3      Professor       Edmonton      34     51,000

2      Executive      Calgary          38     72,000

1      Student          Edmonton      29     48,000

6      Nurse             Toronto         48     53,000

O#    Occupation   Age   Salary

1      Student           26     53,000

2      Executive       35     77,000

3      Professor        31     56,000

4      Lawyer           40     70,000

5      Dentist            39     65,000

6      Nurse              45     58,000
25 30 35 40 45 50
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80
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Distorted

(A) (B) (C)

Figure 2: (A): A sample relational database; (B): A translation data perturbation corresponding to the
original sample; (C): The representation of the points before “+” and after “o” the perturbation.

4.3. The Scaling Data Perturbation Method

In the Scaling Data Perturbation Method, denoted by SDP, the observations of confidential at-
tributes in eachvi ∈ V are perturbed using a multiplicative noise perturbation. The noise term applied
to each confidential attribute is constant and can be either positive or negative. The set of operations
Di(OP ) takes only the value{Mult} corresponding to a multiplicative noise applied to each confiden-
tial attribute. The sketch of the SDP algorithm is given as follows:
SDP Algorithm
Input: V , N
Output: V ′

Step 1.For each confidential attributeAj in V , where1 ≤ j ≤ d do
1. Select the noise termej in N for the confidential attributeAj

2. Thej-th operationopj ← {Mult}
Step 2.For eachvi ∈ V do

For eachaj in vi = (a1, ..., ad), whereaj is the observation of thej-th attributedo
1. a′

j ← Transform(aj, opj , ej)
End

To illustrate how the SDP method works, let us consider the sample relational database in Figure



3A. Note that this sample database is identical to the one presented in Figure 2A, but it is repeated
for clarity. In this example, we are interested in grouping individuals based on the attributesAgeand
Salary. The uniform noise vector for this example isN = (〈Mult, 0.94〉, 〈Mult, 1.035〉). Figure 3B
shows the distorted database, and the points before and after distortion can be seen in Figure 3C. Note
that the values of the attribute age are rounded to be consistent with the values in the real world.

O#    Occupation     City            Age    Salary

5      Dentist           Victoria         42     60,000

4      Lawyer          Vancouver     43     65,000

3      Professor       Edmonton      34     51,000

2      Executive      Calgary          38     72,000

1      Student          Edmonton      29     48,000

6      Nurse             Toronto         48     53,000

O#    Occupation   Age   Salary

5      Dentist            39     62,100

4      Lawyer           40     67,275

3      Professor        32     52.785

2      Executive       35     74,520

1      Student           27     49,680

6      Nurse              45     54,855
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Figure 3: (A): A sample relational database; (B): A scaling data perturbation corresponding to the
original sample; (C): The representation of the points before “+” and after “o” the perturbation.

4.4. The Rotation Data Perturbation Method

The Rotation Data Perturbation Method, denoted by RDP, works differently from our previous
methods. In this case, the noise term is an angleθ. The rotation angleθ, measured clockwise, is the
transformation applied to the observations of the confidential attributes. The set of operationsDi(OP )
takes only the value{Rotate} that identifies a common rotation angle between the attributesAi andAj .
Unlike the previous methods, RDP may be applied more than once to some confidential attributes. For
instance, when a rotation transformation is applied this affects the values of two coordinates. In a 2D
discrete space, theX andY coordinates are affected. In a 3D discrete space or higher, two variables
are affected and the others remain without any alteration. This requires that one or more rotation
transformations are applied to guarantee that all the confidential attributes are distorted in order to
preserve privacy. The sketch of the RDP algorithm is given as follows:
RDP Algorithm
Input: V , N
Output: V ′

Step 1.For every two attributesAj , Ak in V , where1 ≤ j ≤ d and1 ≤ k ≤ d do
1. Select an angleθ for the confidential attributesAj , Ak

2. Thej-th operationopj ← {Rotate}
3. Thek-th operationopk ← {Rotate}

Step 2.For eachvi ∈ V do
For eachal in vi = (a1, ..., ad), whereal is the observation of thel-th attributedo

1. a′
l ← Transform(al, opl, el)

End

For the sake of simplicity, we illustrate how the RDP method works in a 2D discrete space. Let
us consider the sample relational database in Figure 4A Iidem to Figure 2A and Figure 3A). In this
example, we are interested in grouping individuals based on the attributesAgeandSalary. The uniform
noise vector for this example isN = (〈Age � Sal, 13.7〉). Figure 4B shows the distorted database,
and the points before and after distortion can be seen in Figure 4C. Note that the values of the attribute
age are rounded to be consistent with the values in the real world.



O#    Occupation     City            Age    Salary

5      Dentist           Victoria         42     60,000

4      Lawyer          Vancouver     43     65,000

3      Professor       Edmonton      34     51,000

2      Executive      Calgary          38     72,000

1      Student          Edmonton      29     48,000

6      Nurse             Toronto         48     53,000

O#    Occupation   Age   Salary

1      Student           40     39,766

2      Executive       54     60,951

3      Professor        45     41,496

4      Lawyer           57     52,966

6      Nurse              59     40,123

5      Dentist            55     48,354
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Figure 4: (A): A sample relational database; (B): A rotation data perturbation corresponding to the
original sample; (C): The representation of the points before “+” and after “o” the perturbation.

4.5. The Hybrid Data Perturbation Method

The Hybrid Data Perturbation Method, denoted by HDP, combines the strength of our previous
methods: TDP, SDP and RDP. In this scheme, we select randomly one operation for each confidential
attribute that can take the values{Add, Mult, Rotate} in the set of operationsDi(OP ). Thus, each
confidential attribute is perturbed using either an additive, a multiplicative noise term, or a rotation.
The sketch of the HDP algorithm is given as follows:
HDP Algorithm
Input: V , N
Output: V ′

Step 1.For each confidential attributeAj in V , where1 ≤ j ≤ d do
1. Select the noise termej in N for the confidential attributeAj

2. Thej-th operationopj ← {Add,Mult,Rotation}
Step 2.For eachvi ∈ V do

For eachaj in vi = (a1, ..., ad), whereaj is the observation of thej-th attributedo
1. a′

j ← Transform(aj, opj , ej)
End

Let us consider the sample relational database in Figure 5A to illustrate how the HDP method
works. In this example, we are interested in grouping individuals based on the attributesAgeand
Salary. The uniform noise vector for this example isN = (〈Add, 2〉, 〈Mult, 0.93〉). Rotation is not
used in this example. Figure 5B shows the distorted database, and the points before and after distortion
can be seen in Figure 5C.

5. Experimental Results

In this section, we present the results of our performance evaluation. We start by describing the
methodology that we used. Then we study the effectiveness of our GDTMs under partition-based and
hierarchical methods followed by an analysis of the privacy level.

5.1. Methodology

We compared our GDTMs against each other and with respect to the following benchmarks: (1)
the result of clustering analysis without transformation; (2) the results of Additive Data Perturbation
Method, ADP, that has been widely used for inference control in statistical databases [7, 5, 16].



O#    Occupation     City            Age    Salary

5      Dentist           Victoria         42     60,000

4      Lawyer          Vancouver     43     65,000

3      Professor       Edmonton      34     51,000

2      Executive      Calgary          38     72,000

1      Student          Edmonton      29     48,000

6      Nurse             Toronto         48     53,000

O#    Occupation   Age   Salary

1      Student           31     44,640

2      Executive       40     66,960

3      Professor        36     47,430

4      Lawyer           45     60,450

5      Dentist            44     55,800

6      Nurse              50     49,290
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Figure 5: (A): A sample relational database; (B): A hybrid data perturbation corresponding to the
original sample; (C): The representation of the points before “+” and after “o” the perturbation.

To measure the effectiveness of our methods, we performed two series of experiments. In the first
series, we compared the effectiveness of our methods with respect to partition-based clustering method.
To do so, we selected K-Means, the most well-known and commonly used partitioning method [11].
The second series of experiments focused on a hierarchical clustering method. For this case, we used
the Chameleon algorithm that explores dynamic modeling in hierarchical clustering [14].

All the experiments were conducted on a PC, AMD Athlon 1900/1600 (SPEC CFP2000 588), with
1.2 GB of RAM running a Linux operating system. We used five different synthetic datasets, each
with 6000 points in a 2D discrete space. For each dataset, we analyzed a specific number of clusters
ranging from 2 to 6 clusters. The effectiveness is measured in terms of the proportion of the points that
are grouped in the same clusters after we apply a transformation on the data. We refer to such points
as legitimate ones.

For the sake of simplicity, we considered the transformation of two confidential attributes:Age
and Salary. The noise terme for the ADP scheme has a Gaussian distribution with meanµ = 0
and varianceσ2 = 100. The uniform noisy vector for TDP, SDP, HDP, and RDP areN(TDP ) =
(〈Add,−3〉, 〈Add, 6, 235〉),N(SDP ) = (〈Mult, 0.93〉, 〈Mult, 0.89〉), N(RDP ) = (〈Age � Sal, 356.71〉)
andN(HDP ) combines the three previous ones.

5.2. Measuring Effectiveness

The effectiveness is measured in terms of the number of legitimate points grouped in the original
and the distorted databases. After transforming the data, the clusters in the original databases should
be equal to those ones in the distorted database. However, this is not always the case, and we have
some potential problems after data transformation: either a noise data point end-up clustered, a point
from a cluster becomes a noise point, or a point from a cluster migrates to a different cluster. Since the
clustering methods we used, K-Means and Chameleon, do not consider noise points, we concentrate
only on the third case. We call this problemMisclassification Error, and it is measured in terms of
the percentage of legitimate data points that are not well-classified in the distorted database. Ideally,
the misclassification error should be 0%. The misclassification error, denoted byME, is measured as
follows:

ME =
1

N
×

k∑
i=1

(|Clusteri(D)| − |Clusteri(D
′)|)



whereN represents the number of points in the original dataset,k is the number of clusters under
analysis, and|Clusteri(X)| represents the number of legitimate data points of theith cluster in the
databaseX.

We should point out that our formula for misclassification error does not simply consider the num-
ber of data points in each cluster. Rather, we take into account the actual cluster of each point. We
compare the cluster label of each point before and after distortion.

Method K-Means Chameleon
K = 2 K = 3 K = 4 K = 5 K = 6 K = 2 K = 3 K = 4 K = 5 K = 6

TDP 0.00 0.00 0.07 0.07 0.07 0.00 0.00 0.00 0.00 0.00
SDP 0.00 0.03 0.06 0.08 0.08 0.00 0.03 0.03 0.00 0.00
RDP 0.02 0.15 0.15 0.17 0.13 0.03 0.10 0.10 0.03 0.03
HDP 0.02 0.08 0.10 0.08 0.08 0.00 0.00 0.00 0.00 0.00
ADP 12.02 27.09 31.45 34.18 39.75 17.33 24.93 36.04 37.92 40.76

Table 1: Results of misclassification for K-Means and Chameleon

In Table 1, we have the results of misclassification for K-Means and Chameleon. We compared our
GDTMs with respect to the original dataset. We also compared our techniques against the ADP method
[1]. To accomplish that, we ran K-means and Chameleon 20 times and collected the average. Our
transformation methods resulted in between 0% and less than 0.2% while ADP reached between 12%
and 40% of misclassification with K-Means and between 17% and 41% with Chameleon. This clearly
shows that ADP is inadequate for transforming data before clustering since this method jeopardizes
the notion of similarity between data points. As a result, the data points are literally shuffled leading
to significant misclassification. Thus, hereafter we will present the results of our GDTMs only.

As can be seen in Table 1, our techniques TDP, SDP, RDP and HDP yielded very good results when
we compare the cluster analysis of the original and the distorted datasets. In the worst case, only 0.17%
of the points are misclassified. In general, TDP and SDP yielded the best values, in terms of accuracy,
in all different datasets when running K-Means. However, HDP and RDP presented very good results
as well. It is good to point out that these values represent the average of 20 trials. If we considered
the statistical mode (i.e. the value occurring most frequently in a series of the 20 observations), all our
schemes would yield 0%. These small differences are due to the fact that depending on the distribution
of the points, K-means is not completely deterministic. On the other hand, the results obtained from
Chameleon in a series of 20 observations were basically the same. Note that in the worst case, only
0.10% of the points are misclassified for RDP and 0.03% for SDP, while TDP and HDP yielded the
best values in all the cases. These results suggest that our techniques perform well for comprising the
infeasible goal of having both complete privacy and complete accuracy for clustering analysis.

5.3. Quantifying Privacy

While perturbation methods guarantee that complete disclosure will not occur, they may be suscep-
tible to partial disclosure [1]. However, fixed-data perturbation methods minimize this problem since
such methods prevent users from improving estimates of a particular attribute by repeating queries. It
is therefore necessary to measure the level of security provided by a specific perturbation technique
when quantifying privacy by such a method.

Traditionally, the privacy provided by a perturbation technique has been measured as the variance



between the actual and the perturbed values [1, 16]. This measure is given byV ar(X − Y ) where
X represents a single original attribute andY the distorted attribute. This measure can be made scale
invariant with respect to the variance ofX by expressing security asSec = V ar(X − Y )/V ar(X).

Clearly, the above measure to quantify privacy is based on how closely the original values of a
modified attribute can be estimated. Table 2 shows the privacy provided by our GDTMs, where for
each ordered pair [α1, α2], α1 represents the privacy level for the attribute age, andα2 represents the
privacy level for the attribute salary. These values are expressed in percentage.

Method Privacy Level (%)
K = 2 K = 3 K = 4 K = 5 K = 6

TDP [0.00; 0.00] [0.00; 0.00] [0.00; 0.00] [0.00; 0.00] [0.00; 0.00]
SDP [0.49; 1.21] [0.49; 1.21] [0.49; 1.21] [0.49; 1.21] [0.49; 1.21]
RDP [0.84; 0.12] [0.69; 0.79] [0.83; 0.13] [0.78; 0.13] [0.51; 0.21]
HDP [0.00; 0.64] [0.00; 0.64] [0.00; 0.64] [0.00; 0.64] [0.00; 0.64]

Table 2: Results of privacy provided by the GDTMs

Based on the results showed in Table 2, one may claim that our GDTMs could be restrictive in
terms of privacy. Indeed, TDP may be sometimes restrictive since the variance of a single attribute
always yields 0% of privacy level, even though the individual data records look very different from the
original ones. In addition, the results provided by SDP, HDP, and RDP are slightly better than those
ones provided by TDP. Apart from the problem of low privacy, a geometric transformation function
is invertible so that one may estimate the real values of the data under clustering. To cope with these
limitations, we introduce one special procedure to improve the privacy level of our GDTMs in the next
section.

5.4. Improving Privacy

The procedure to improve the privacy level of our GDTMs is applied to the transformed database
only. This procedure is composed of three steps as follows:Step 1: We select a probability distribution
(e.g. Normal, Uniform) for each confidential numerical attributeA′

i in V ′, where1 ≤ i ≤ d. Step 2:
We randomly selectρ% of the vectorsv′

i ∈ V ′ to reinforce privacy by adding some noise term to each
observation ofv′

i according to the corresponding probability distribution selected in the previous step.
We refer to the parameterρ as privacy enhance.Step 3: Based on the previous steps, we distort the
selected vectorsv′

i by using the idea behind the Additive Data Perturbation Method (ADP).
To illustrate how the procedure to improve privacy works, we set the privacy enhanceρ = 5%. The

distribution selected for the attributeAgewas Uniform with parameters [-12, 18] and the distribution
selected for the attributeSalarywas Normal with meanµ = 15,000 and varianceσ2 = 144,000. This
example yielded the results of misclassification showed in Table 3.

As can be seen in Table 3, the misclassification error was slightly affected when compared with
Table 1. However the privacy level of our GDTMs, presented in Table 4, was improved as expected.
These figures clearly show that privacy preserving data mining deals with a trade-off: privacy and
accuracy, which are typically contradictory, and improving one usually incurs a cost in the other.

The results of privacy and accuracy can vary depending on the parameterρ. For example, setting
ρ to 10% and keeping the probability distribution of the attributes the same, we slightly decreased the



Method K-Means Chameleon
K = 2 K = 3 K = 4 K = 5 K = 6 K = 2 K = 3 K = 4 K = 5 K = 6

TDP 1.05 1.18 1.67 1.65 2.13 1.15 1.12 1.43 1.33 2.10
SDP 1.28 1.18 1.87 1.45 2.42 1.27 1.20 1.83 1.50 2.25
RDP 1.12 1.23 1.65 1.43 2.08 1.17 1.18 1.68 1.33 2.10
HDP 1.17 1.17 1.52 1.48 2.25 1.20 1.15 1.48 1.43 2.12

Table 3: Results of misclassification for K-Means and Chameleon with privacy enhanceρ = 5%

Method Privacy Level (%)
K = 2 K = 3 K = 4 K = 5 K = 6

TDP [3.25; 6.80] [2.25; 4.71] [2.13; 4.38] [1.55; 3.40] [1.29; 4.43]
SDP [3.72; 8.04] [2.73; 5.95] [2.60; 5.60] [2.05; 4.59] [1.81; 5.64]
RDP [4.08; 6.93] [2.96; 5.54] [3.03; 4.52] [2.25; 3.53] [1.76; 4.64]
HDP [3.25; 7.46] [2.25; 5.37] [2.13; 5.03] [1.50; 4.03] [1.27; 5.07]

Table 4: Results of privacy provided by the GDTMs with privacy enhanceρ = 5%

accuracy of our GDTMs as shown in Table 5. On the other hand, we improved the privacy level as can
be seen in Table 6.

Method K-Means Chameleon
K = 2 K = 3 K = 4 K = 5 K = 6 K = 2 K = 3 K = 4 K = 5 K = 6

TDP 1.93 2.13 2.58 3.58 3.68 1.25 1.53 3.67 3.07 3.82
SDP 2.13 2.22 3.87 3.77 4.74 1.98 1.97 3.82 3.35 4.40
RDP 1.93 2.00 3.77 3.15 5.02 1.42 1.68 3.70 3.08 5.15
HDP 1.95 2.05 3.22 3.37 4.02 1.62 1.63 3.77 3.15 3.90

Table 5: Results of misclassification for K-Means and Chameleon with privacy enhanceρ = 10%

It seems that settingρ = 10%, in our experiments, we could achieve a good compromise between
privacy and accuracy. However, the value ofρ depends on the application since the level of privacy
can be interpreted in different contexts.

In general, using our procedure to improve privacy, the results revealed that our GDTMs provide
practically acceptable values for privacy preserving data clustering. Most importantly, increasing the
value ofρ, hardly can someone reverse the transformation applied to the data. In particular, SDP
achieved the best values for accuracy and privacy level in most of experiments. However, the other
methods also achieved reasonable results. It should be noticed that a security administrator is able to
improve the balance between clustering accuracy and privacy by tuning the parameters of the uniform
noise vectorN and privacy enhanceρ properly.

6. Conclusions

In this paper, we have introduced a family of geometric data transformation methods (GDTMs)
which ensure that the mining process will not violate privacy up to a certain degree of security. Our



Method Privacy Level (%)
K = 2 K = 3 K = 4 K = 5 K = 6

TDP [7.19; 11.78] [4.97; 8.17] [4.71; 7.60] [3.37; 5.87] [2.86; 7.67]
SDP [7.71; 13.15] [4.47; 9.36] [5.24; 8.90] [3.92; 7.21] [3.40; 8.93]
RDP [8.14; 11.85] [5.64; 8.92] [5.52; 7.69] [4.15; 5.98] [3.32; 7.83]
HDP [7.19; 12.54] [4.97; 8.80] [4.71; 8.31] [3.29; 6.61] [2.80; 8.35]

Table 6: Results of privacy provided by the GDTMs with privacy enhanceρ = 10%

methods were designed to address the privacy preservation in clustering analysis, notably on partition-
based and hierarchical methods. Our proposed methods distort only confidential numerical attributes
to meet privacy requirements, while preserving general features for clustering analysis. To our best
knowledge this is the first effort toward a building block solution for the problem of privacy preserving
data clustering. The other approaches in the literature have been restricted basically to address the
privacy problem in the context of classification and association rules.

Our contributions in this paper can be summarized as follows: First, we introduced and validated
our GDTMs. Our experiments demonstrated that our methods are effective and provide practically ac-
ceptable values for balancing privacy and accuracy. We also showed that the traditional ADP method
adopted to successfully provide security to databases against disclosure of confidential information
has limitations when the perturbed attributes are considered as a vector in the Euclidean space. The
main problem is that such a method strongly introduces changes in the distance of points in the Eu-
clidean space leading to the crucial problem of misclassification. Our second contribution refers to the
performance measure that quantifies the fraction of data points which are preserved in the correspond-
ing clusters in the distorted database. Misclassification Error measures the amount of legitimate data
points that are not well-classified in the distorted database. In addition, we introduced a procedure to
improve the privacy level of our GDTMs and validated such procedure in our experiments.

The work presented herein puts forward the need for new concepts and methods to address privacy
protection against data mining techniques, notably in data clustering. We address a scenario in which
some numerical confidential attributes of a database are distorted and made available for clustering
analysis. In this context, users are free to use their own tools so that the restriction for privacy has to be
applied before the mining phase on the data itself by data transformation. The transformed database is
available for secondary use and must hold the following restrictions: (1) the distorted database must
preserve the main features of the clusters mined from the original database; (2) an appropriate balance
between clustering accuracy and privacy must be guaranteed.

The results of our investigation clearly indicate that our methods achieved reasonable results and
are promising. Currently, we are extending our work in two directions: (a) we are investigating the
impact of our GDTMs on other clustering approaches, such as density-based; (b) we are also de-
signing new methods for privacy preserving clustering when considering the analysis of confidential
categorical attributes, which requires further exploration.
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