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with other mastrevirus isolates from around the world. 
Therefore, the new mastrevirus was tentatively named 
“maize striate mosaic virus”. Seventeen maize leaf sam-
ples were collected in the same field as the leafhoppers, and 
ten samples were found to be positive for this mastrevirus. 
Furthermore, the ten genomes recovered from the maize 
samples share >99% pairwise identity with the one from 
the leafhopper. This is the first report of a maize-infecting 
mastrevirus in the Americas, the first identified in a non-
vegetatively propagated mastrevirus host in South America, 
and the first mastrevirus to be identified in Brazil.

The use of viral metagenomics approaches and high-
throughput sequencing (HTS) has led to a rapid increase 
in the discovery of novel plant viruses [37]. The vector-
enabled metagenomics (VEM) approach is based on the 
isolation and sequencing of viral particles directly from the 
insect vectors. VEM coupled with HTS has become a pow-
erful tool to characterize the viral diversity in a variety of 
ecosystems. The VEM approach was first used to identify 
viruses in whiteflies [34] and subsequently has been used 
on other insect vectors to identify both novel and known 
plant viruses [20, 35, 39–42]. HTS of total nucleic acids 
from plants has also lead to the discovery of diverse gemi-
niviruses [2, 5, 26, 27]. Thus, these techniques are very 
attractive for viral surveillance and to identify viral com-
munities circulating in ecosystems.

As part of a program of surveillance of plant-infecting 
DNA viruses in Brazil, we used a vector-enable metagen-
omics approach and sampled leafhoppers (Dalbulus maidis, 
Hemiptera: Cicadellidae) feeding on maize in Itumbiara 
(State of Goiás). The leafhoppers (~20 individuals) were 
homogenized in 500 µl of SM buffer (50 mM Tris-HCl, 
10 mM  MgSO4, 0.1 M NaCl, pH 7.5). The homogenate was 
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centrifuged at 10000 × g, and the supernatant was filtered 
through a 0.22-µm syringe filter. The filtrate (200 µl) was 
used for extraction of viral nucleic acid using a ZR Viral 
DNA/RNA Kit™ (Zymo Research, USA). The viral DNA 
was amplified by rolling-circle amplification (RCA) using 
an Illustra TempliPhi™ Amplification Kit (GE Healthcare, 
USA). The RCA products were sequenced on an Illumina 
Nextseq500 sequencing platform (Illumina, USA) at the 
Genomics Core at the Biodesign Institute, Arizona State 
University (USA).

The Illumina sequencing paired-end reads were assem-
bled de novo using ABySS 1.9 [45] with k-mer = 64. 
BLASTx [3] was used to analyze the de novo-assembled 
contigs. One hundred thirty-seven contigs were identified 
with similarities to mastreviruses, with the largest being 
388 nt. Mastreviruses are plant-infecting circular single-
stranded DNA viruses that are encapsidated in geminate 
particles [19]. The genus Mastrevirus is part of the family 
Geminiviridae, and its members are transmitted by leaf-
hoppers (order Hemiptera, family Cicadellidae). Mastrevi-
ruses can infect either monocot or dicotyledonous plants, 
and their genomes encode at least four open reading frames 
(ORFs). Two of these, the movement protein (MP) and the 
capsid protein (CP), are encoded on the virion-sense strand, 
and the replication-associated protein (Rep) and the RepA 
are encoded on the complementary-sense strand.

A set of abutting primers were designed based on 
the largest mastrevirus-like (similarities to the CP gene 
sequences) contig (J455-F, 5’ – ACC CTT CTT AAC TTC 
CAC CAC GGC AGA A – 3’ and J455-R, 5’ – GGT AAT 
TGT CTG ATG GTT ACC TCC TAC A – 3’) to recover the 
full-length genome from the sample. The viral RCA prod-
uct (0.5 µl) was used as template for amplification with the 
abutting primers using Kapa Hifi Hotstart DNA polymer-
ase (KAPA Biosystems, USA) using the following thermal 
cycling conditions: 98 °C for 3 min, 25 cycles of 98 °C for 
15 s, 60 °C for 15 s, 72 °C for 3 min and a final extension 
of 72 °C for 3 min. An amplicon of ~2.7 kb was resolved in 
a 0.7% agarose gel, excised and gel purified. The purified 
amplicon was cloned into pJET 1.2 plasmid (ThermoFisher 
Scientific, USA), Sanger sequenced by primer walking at 
Macrogen Inc. (Korea), and assembled using Geneious 10 
[21].

The 2746-nt genome recovered from the leafhoppers 
contains the nonanucleotide motif (TAATATT↓AC) and 
has a typical mastrevirus genome organization [49]. The 
Rep amino acid sequence contains motifs I, II and II in 
its N-terminus, which are essential for rolling-circle repli-
cation [23, 38], and the GRS (geminivirus Rep sequence) 
domain [33]. In addition, closer to the C-terminal region, 
we identified the RBR interaction domain, which inter-
acts with retinoblastoma-related protein in the host [4], 
the RXL motif, and the Walker A, Walker B and motif C 

regions, which bind to dNTP and have helicase activity [9, 
15]. Comparison of the motifs found in the Brazilian mas-
trevirus with those of other mastreviruses revealed a vari-
ation in the GRS domain consisting of eight extra amino 
acids in the central portion of the motif. The GRS motif is 
known to be less conserved in mastreviruses than in other 
geminiviruses [33].

Since the leafhoppers were collected in the same field 
as the maize samples, the abutting primers J455-F/-R were 
used to screen and recover similar viruses from these plants 
by PCR using the same thermal cycling conditions as were 
used for recovery from the leafhoppers described above. 
Total DNA from the seventeen maize samples was indi-
vidually extracted using the CTAB protocol [10]. The cir-
cular DNA was enriched using RCA, and screened using 
abutting primers, and the 2.7-kb PCR-generated amplicons 
were cloned using the same protocol as that used for the 
mastrevirus from the leafhoppers. Of the seventeen maize 
samples collected, ten were found to be infected with the 
new mastrevirus identified in the leafhopper.

Analysis of genome-wide pairwise identities using SDT 
v1.2 [31] revealed that the genomes of the mastrevirus 
from the ten maize plants and the one from the leafhopper 
share >99% identity. An analysis of representative genome 
sequences from members of different mastrevirus species 
showed that the new mastrevirus isolates from Brazil share 
<63% pairwise identity (Supplementary Data 1). Based on 
the currently accepted threshold of species demarcation for 
mastreviruses [30], the new Brazilian mastrevirus belong 
to a new species, and we have tentatively named this virus 
“maize striate mosaic virus” (MSMV) based on the mild 
striation and mosaic symptoms observed on the maize 
leaves of the 10 positive samples.

Three datasets were created that comprised 1) genome 
sequences, 2) Rep amino acid sequences, and 3) CP 
amino acid sequences of the 11 MSVMs from this study 
together with 38 representative sequences of mastrevi-
ruses and two sequences as outgroups (Eragrostis curvula 
streak virus, ECSV, FJ665630; beet curly top Iran virus, 
BCTIV, EU273816). The datasets were aligned individu-
ally using MUSCLE [11]. The genome sequence align-
ment was used to infer a neighbor-joining (NJ) phyloge-
netic tree with the Jukes-Cantor nucleotide substitution 
model and 1000 bootstrap iterations in MEGA5 [47]. 
Branches with less than 60% branch support were col-
lapsed in TreeGraph2 [46]. The Rep and CP amino acid 
sequence alignments were used to infer maximum-like-
lihood (ML) phylogenetic trees using approximate like-
lihood ratio test (aLRT) with the model LG+I+G and 
LG+I+G+F for Rep and CP, respectively. All branches 
with <80% aLRT branch support were collapsed using 
TreeGraph2 [46]. The NJ phylogenetic tree of the 
genome sequences and the ML phylogenetic trees of the 
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Rep and CP sequences show that the MSMV sequences 
group with the monocot-infecting mastreviruses (Fig. 1). 
The Rep sequences of MSMVs share <54% and the CP 
sequences share <49% identity with those of other mas-
treviruses (Supplementary Data 1).

Here, we report the first monocot-infecting mastrevi-
rus to be identified South America (and the first mastrevi-
rus in Brazil), which was found infecting maize using a 
vector-enabled metagenomics approach. This finding is 
very important, since mastreviruses have been known 
to be involved in plant disease outbreaks throughout the 
world. Maize streak disease (MSD) associated with the 
mastrevirus maize streak virus A causes high yield losses 
in maize crops in Africa [29, 36, 44]. In addition, mas-
treviruses cause damage to other economically important 
cultivated plants such as wheat, chickpeas, lentils and 
oats [25, 32, 43, 48].

Monocot-infecting mastreviruses in the Americas have 
been identified in switchgrass in the USA [1] and in sug-
arcane germplasm in the USA (Florida) and the Carib-
bean (Barbados and Guadalupe) [6, 7]. Nonetheless, mas-
treviruses sequences in the New World (partial sequences) 
were first identified in South America using HTS of small 
RNAs extracted from Peruvian sweet potatoes [24]. More 
recently, a mastrevirus, named sweet potato symptomless 
virus (SpSV), has been identified in sweet potatoes from 
various countries, including Uruguay [8].

Maize is an economically important crop in Brazil and 
has already been associated with viral diseases caused by 
strains of potyvirus sugar cane mosaic virus [13], viruses 
from the family Luteoviridae, the luteovirus barley yellow 
dwarf virus-MAV [28], a new putative polerovirus, maize 
yellow mosaic virus [14], and a rhabdovirus, maize mosaic 
virus [22]. Moreover, a leafhopper-transmitted virus with 
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Fig. 1  (A) Neighbor-joining phylogenetic tree of the complete 
genome sequences of the MSMVs and representative mastreviruses 
rooted with ECSV (FJ665630) and BCTIV (EU273816) sequences. 
Branches with <60% bootstrap support have been collapsed. (B) 
Maximum-likelihood (ML) phylogenetic tree of the CP and Rep 
amino acid sequences of the MSMVs and representative mastrevi-

ruses using the models LG+I+G+F and LG+I+G for the CP and 
Rep, respectively, with the approximate-likelihood test (aLRT). The 
ML phylogenetic trees were rooted with the BCTIV (EU273816) 
sequence, and branches with <80% aLRT support have been col-
lapsed
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a positive ssRNA genome, marafivirus mayze rayado fino 
virus (family Tymoviridae) is a component of the corn stunt 
disease complex, which causes high yield losses to maize 
crops in Brazil [16–18].

The VEM approach has proven to be useful in viral dis-
covery; e.g., the first mastrevirus identified in the Carib-
bean was identified from VEM of dragonflies, which are 
known insect predators [39]. Moreover, HTS was used to 
identify other geminivirus that had never been previously 
reported in Brazil [12]. The discovery of the first mastrevi-
rus in Brazil through a VEM approach attests to the impor-
tance of this technique, not only for the discovery of novel 
viruses but also as a monitoring system to prevent as well 
as to discover new viruses that could potentially lead to 
plant disease outbreaks.
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