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ABSTRACT: 

 

The objective of this research is to classify agricultural land use in a region of the Cerrado (Brazilian Savanna) biome using a time 

series of Enhanced Vegetation Index (EVI) from Landsat 8 OLI. Phenological metrics extracted from EVI time series, a Random 

Forest algorithm and data mining techniques are used in the process of classification. The area of study is a region in the Cerrado in a 

region of the municipality of Casa Branca, São Paulo state, Brazil. The results are encouraging and demonstrate the potential of 

phenological parameters obtained from time series of OLI vegetation indices for agricultural land use classification.  

 

 

1. INTRODUCTION 

1.1 Overview 

Agriculture has significant participation in the Brazilian 

economy; it is the main responsible for the positive trade 

balance of the country. Given the high availability of arable 

land, and taking into account the growing demand for food in 

the world, Brazil has been consolidate as a big player in the 

world agricultural scenario. On the other hand, sustainable 

agriculture expansion is a key concern in Brazilian Cerrado 

biome, which suffers a great land conversion pressure. In this 

way, crop mapping is strategic to estimate acreage and 

production, as well as to better understanding the distribution of 

croplands, and its impact on the environment. In this context, 

remote sensing is an important tool due to its ability to generate 

information on large scale in a cost-effective way. With 

advances in data processing and storage technologies, and the 

availability of long-term image series, remote sensing is 

undergoing a paradigm shift, in which time series techniques 

allow to consider seasonal variations of the analysed target. 

This approach is useful for vegetation studies, especially in 

agricultural areas, since vegetation cover is quite dynamic in 

time, and the ability to capture these variations is essential to 

discriminate different types of crops, through its phenological 

characteristics. For this purpose, most studies have explored 

time series of vegetation indices like NDVI or EVI from 

MODIS data (Jakubauskas et al., 2002; Sakamoto et al., 2005; 

Wardlow et al., 2007; Esquerdo et al., 2011; Arvor et al., 2011; 

Körting, 2012; Risso et al., 2012; Coutinho et al., 2013; Borges 

& Sano, 2014; Tomás et al., 2015; Neves et al., 2016). 

However, there is a demand to produce more detailed maps, 

which can be obtained from higher spatial resolution satellites 

such as Landsat-like (Zheng et al., 2015; Peña et al., 2015; Pan 

et al., 2015). Therefore, the objective of this study is to employ 

phenological metrics obtained from time series of Landsat 

8/OLI vegetation indices to classify agricultural land use in the 

municipality of Casa Branca, located in the Cerrado (Brazilian 

Savanna) biome in the state of São Paulo, Southeast region 

from Brazil. 

 

1.2 Study area 

We conducted our study in the south of Casa Branca 

municipality, in state of São Paulo, Brazil (Figure 1). Such 

region is located in an overlapping area of two adjacent Landsat 

Worldwide Reference System 2 (WRS – 2) scenes (path/row 

219/75 and 220/75), providing a temporal resolution of 8 days 

(Luiz et al., 2015). Casa Branca city has a tropical wet and dry 

climate (Aw, according to the Köppen Climate Classification 

System) with average annual temperature of 21.5º C and a 

seasonal rainfall pattern with most rainfall occurring from 

October to March. The average annual precipitation is 109.18 

mm (CEPAGRI/UNICAMP, 2016).  

 

 

Figure 1. False color (bands 5, 6 and 4 in red, green and blue 

respectively) OLI Landsat imagery of the study area 

 

In this region, farmers grow a variety of crops along all the year. 

Major field crops in this area are sugarcane, corn, bean, potato, 

soybean, peanuts, sorghum and cassava. There are also a 
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significant production of citrus, mango, coffee, rubber and 

eucalyptus (IBGE, 2016). Farmers grow crops in double 

cropping systems and even in triple cropping systems, mainly 

on the irrigated areas. The usual planting summer crop dates is 

from October to December and harvesting from February to 

April, but planting crops in late fall (May – July) and harvest in 

the next spring are also observed, especially in the irrigated 

areas. 

 

 

2. MATERIALS AND METHODS 

2.1 Remotely sensed data 

A total of 46 scenes of Landsat 8 OLI (Path 219 and 220/ Row 

75) between July 2014 (Day of year – DOY 206)  and July 2015 

(DOY 209) were obtained at the US Geological Survey 

platform (USGS) Earth Resources Observation and Science 

(EROS) Center Science Processing Architecture (ESPA). These 

data are provided with geometric correction level 1 (L1T) and 

converted to surface reflectance by the algorithm of atmospheric 

correction LEDAPS (Landsat Ecosystem Disturbance Adaptive 

Processing) (Masek et al., 2006). We then generate EVI layers 

for each image in according to this equation (Huete et al., 

2002):  

 

  1*5.7*6 




BRNIR

RNIR
EVI ,      (1) 

 

where  NIR = near-infrared reflectance band (OLI band 5) 

 R = red reflectance band (OLI band 4) 

 B = blue reflectance band (OLI band 2). 

 

EVI was chosen because its capacity for highlighting the 

spectral response related to green vegetation canopy, taking into 

account the background and atmospheric effects. 

 

2.2 Removal of outliers and null values and filtering 

No cloud free images were identified in November, February 

and March. Therefore, we applied the following simple linear 

interpolation to remove outliers and null values:  

 

 01.0
2

11



 txif

txtx

tx ,      (2) 

 

where xt = an observation of the time series at time t 

              xt-1 = an observation at time t-1 

 xt+1 = at time t+1. 

 

xt observation is replaced by the average of xt-1 and xt+1 if xt is 

less than 0.01. This method, however, is not capable of 

removing consecutive outliers. Afterwards, the time series were 

smoothed through the double logistic filter (Zhang et al., 2003; 

Jönsson; Eklundh, 2004). This function is recommended for 

smoothing image time series on cropland areas in the Brazilian 

Cerrado (Borges & Sano, 2014).  

 

2.3 Seasonal data extraction 

Phenological metrics extracted from EVI time series were 

obtained by the TIMESAT software (3.2 version) (Jönsson; 

Eklundh, 2004) (web.nateko.lu.se/timesat/), in which seasonal 

data were extracted for each of growing seasons of the central 

year (Figure 2). During a period of n years there may be n – 1 

full seasons together with two fractions of a season in the 

beginning and end of the time series. Then, to extract 

seasonality parameters from one year of data the time series was 

duplicated to span three years, as recommended by Jönsson and 

Eklundh (2015).  Figure 2 shows the schema of the seasonality 

parameters generated by TIMESAT. In this work we assume 

that the seasonality parameters are the same of phenological 

metrics. The time for the beginning of season (a), or start of the 

season (sos), and the end of season (eos) (b) is the time for 

which the left and right edge, respectively, has increased to a 

defined level (often a certain fraction of the seasonal amplitude) 

measured from the minimum level on the corresponding side. 

The length of the season (c) is the time from the start to the end 

of the season. Base value (d) is given as the average of the left 

and right minimum values. The middle of season (e) is 

computed as the mean value of the times for which, 

respectively, the left edge has increased to the 80 % level and 

the right edge has decreased to the 80 % level. 

 

 

Figure 2. Examples of seasonality parameters generated by 

TIMESAT: (a) beginning of season, (b) end of season, (c) 

length of season, (d) base value, (e) time of middle of season, 

(f) maximum value, (g) amplitude, (h) small integrated value, 

(h+i) large integrated value. The red line represents the filtered 

data, and blue the original data 

 

The maximum value (f), or the peak of phenological cycle, is 

the largest data value for the fitted function during the season. 

The seasonal amplitude (g) is the difference between the 

maximum value and the base level. The left derivative is 

calculated as the ratio of the difference between the left 20% 

and 80% levels and the corresponding time difference. The right 

derivative (i.e. the rate of decrease at the end of the season) is 

the absolute value of the ratio of the difference between the 

right 20% and 80% levels and the corresponding time 

difference. The rate of decrease is thus given as a positive 

quantity. Large seasonal integral (h+i) is integral of the function 

describing the season from the season start to the season end. 

And the small seasonal integral (h) is the integral of the 

difference between the function describing the season and the 

base level from season start to season end (Jönsson and 

Eklundh, 2015). For more details see Jönsson and Eklundh 

(2002; 2004). 

 

2.4 Training and validation data 

Field campaigns were carried out for collecting training 

samples, totalling 16,243 pixels. The classes considered were 

Annual Crop (potato and corn, on a double crop system), Semi-

Perennial Crop (sugarcane and cassava), Perennial Crop (citrus, 
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mango and rubber) and Planted Forestry (eucalyptus). The 

polygons that represent each class were directly digitized over 

Landsat 8 images.  

 

2.5 Random Forest classification 

The variables obtained by TIMESAT were subjected to data 

mining using the Random Forest classification (Breiman, 2001). 

In this classification, data set is randomly divided in several 

subsets of smaller size by applying bootstrap (Han et al., 2011), 

and for each subset a decision tree is built. All trees contribute 

to the classification of each object under study, by voting on 

which class the target attribute must belong. Random Forest 

algorithm has been widely used in remote sensing applications 

(Clark et al, 2010; Müller et al, 2015; Peña et al, 2015) due to  

its advantages in efficiently handle large databases, providing 

estimates on most relevant variables, and  allowing the 

identification of outliers (Rodriguez-Galiano et al., 2012). 

 

3. RESULTS AND DISCUSSION 

3.1 Crop phenological curves and TIMESAT features 

Initially, we evaluated the time series spectral profiles of 

different types of targets. The phenological features were 

characterized by median values observed in all samples for each 

class. Figures 3 to 8 shows the time series spectral profiles for 

all targets and the results based on two approaches for noise 

removal, in which dotted line represents the time series outliers 

and null values removed (Equation 2) and the thick line 

represents the double logistic filtered time series. The samples 

of annual crop were located in two different farms. However, 

both were on pivot-center irrigation systems. We observed 

during fieldwork that in one of them there was a triple crop 

system (potato, bean and corn), where potatoes were harvested 

between July and mid-August. This was followed by corn 

planting in September, which was harvested between January 

and February. We also observed a short-cycle bean between 

February and March, followed by corn planting from May. The 

majority of time series samples of this farm, only one season 

was modelled by TIMESAT, corresponding to corn planting in 

late September (DOY 265) and harvested in early February 

(DOY 41). The middle of season was observed in mid-

November (DOY 325) (Figure 3). 

 

 
Figure 3. Time series EVI spectral profile for an annual crop 

sample located into a triple cropping system of potato, bean and 

corn. Dotted line represents the time series outliers and null 

values removed and the thick line represents the double logistic 

filtered time series. 

 

It was not possible to identify potatoes seasons because it was 

not completely covered by the time series span. It was also not 

possible to capture the bean season, as well the late fall corn 

season. We hypothesize that this was due to the short cycle of 

bean and mainly for the high intensity of cloud contaminated 

pixels on this period. Although potatoes were harvested later in 

the other farm, it was not possible to detect their season. Only 

the corn season was detected, starting between late November 

and mid-December (DOY 347) and the end of season it was on 

mid-April (DOY 102). The middle of season was observed in 

late January (DOY 26). On the semi-perennial crop samples 

corresponding to cassava farms it was observed that in 77% of 

pixels were detected only one season. The start of season was in 

late September (DOY 270) and the middle of season was 

detected in mid-February (DOY 45). Based on field 

observations, we hypothesize that this season can be associated 

to the end of the cassava senescence, characterized by the start 

of a new greenness period. The end of season coincided with 

the end of harvest, when the area becomes completely covered 

by weeds. In the other 23% of pixels it was possible to detect 

two seasons, where the second season began between early 

December (DOY 347) and early April (DOY 60) ending on late 

June (DOY 179). This indicates a predominant phenological 

behavior of weed, which has a great biomass gain after a rainfall 

period (Figure 4).  
 

 
Figure 4. Time series EVI spectral profile for a semi-perennial 

crop sample of cassava.  

 

We observed that sugarcane (semi-perennial crop class) was 

planted in June. However, the complete ground cover occurred 

only in November, when it is very difficult to have cloud-free 

images. Therefore, the start of season was identified in early 

December (DOY 338) and the end of season in mid-May (DOY 

135), corresponding to the harvest (Figure 5).  

 
Figure 5. Time series EVI spectral profile for a semi-perennial 

crop sample of sugarcane. 

 

Figure 6 shows the time series spectral profile of a perennial 

crop sample, corresponding to a rubber tree farm. We can 

observe two season’s detection. In the first one, the start of 

season was in the middle of August (DOY 229) and the end in 

December (DOY 352). The second season began between 

December and February (DOY 29) and the end of season 

occurred in late July (DOY 190). This occurred in 61% of the 
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pixels inside this farm. This behavior was not expected for 

rubber trees, considered a perennial crop. However, this can be 

explained by the high frequency of cloud-contaminated images 

between November and February. This noise could not be 

corrected by the smoothing and noise removal techniques 

employed in this current study. Additionally, the rubber trees 

phenology in this region has a senescence period between July 

and August, followed by a greenness period after September. 

The 49% remaining pixels located in this farm produces time 

series with a single season between August (sos = DOY 231) 

and late July (eos = DOY 173).   

 
Figure 6. Time series EVI spectral profile for a perennial crop 

sample of rubber trees. 

 

Time series of pixels located in one of the two citrus farms that 

represent the perennial crops class presents a subtle difference 

on phenological features. TIMESAT detected one short season 

starting in early December (DOY 343) and ending in mid-

March (DOY 73). The other citrus farm, as well in the mango 

farm, the model detected a longer season, between December 

(DOY 338) and June (DOY 171). Among the other differences 

it was also observed bigger amplitudes in the first citrus farm 

(median = 0.073 EVI) than in the other perennial crops farms 

(median = 0.059 and 0.055 for citrus and mango, respectively). 

Furthermore, the middle of season in the first citrus farm 

occurred in January (DOY 18) and the EVI peak found 

corresponded to 0.22 EVI, while in the other areas the middle 

occurred in March (DOY 61 and 85, for citrus and mango), with 

a 0.18 EVI peak.  

 

  
Figure 7. Time series EVI spectral profile for perennial crop 

sample of one of the citrus farm (similar to mango). 

 

Finally, in the eucalyptus planted forests, around 60% of pixels 

presented time series in which it was not possible to detect any 

season, so the values of phenological features were zero. In the 

other 40% pixels time series TIMESAT detected one season 

that began on early February (DOY 41) and finished on July 

(DOY 185), as showed in Figure 8. 

Figure 8. Time series EVI spectral profile for a planted forest 

sample of eucalyptus. 

 

3.1 Classification performance 

A 10 fold cross-validation technique was applied in the training 

set and 15,499 of the 16,243 pixels were classified correctly, 

resulting in an accuracy of 95.42% and Kappa 0.9284. The 

confusion matrix with the errors of commission and omission is 

presented in Table 1. 

 

Table 1. Confusion matrix: (a) Perennial crop, (b) Annual crop, 

(c) Planted Forest and (d) Semi-perennial crop. EC = errors of 

commission; EO = errors of omission 

 

Most misclassification happened between perennial crop and 

annual crop, and between perennial crop and semi-perennial 

crop, due to the rubber trees spectral similarity with the two 

other classes. The majority of omission errors were observed on 

annual crop and semi-perennial crop classes. We noticed that 

5.03% of pixels in the annual crop class were omitted, being 

wrongly classified as perennial crop. As we discussed earlier, a 

significant number of samples of annual crop class presented 

time-series where only one season was detected (between 

December and March) with a 0.22 EVI peak. This is similar to 

some annual crop class pixels, what probably contributed to the 

omission of these samples. With respect to the semi-perennial 

crop class, major confusion was observed on the perennial crop, 

in which around 6.1% of pixels were wrongly classified. The 

majority of commission errors was founded for the perennial 

crop (5.1%) and planted forest (4.9%) classes. An inclusion of 

2.6% of pixels of the planted forest and 1.84% of semi-

perennial classes was also observed in the perennial crop class. 

Around 4% of pixels of perennial agriculture were included in 

the planted forest class. However, we considered that the 

explored features configured a good separability among the 

classes. Figure 9 shows the 3D-scatterplot with length of 

season, base value and left derivative features of the first 

season. The left derivative is the rate of increase at the 

beginning of the season. Higher values of left derivative 

indicate that there is a fast rise of the greenness. 

 

Reference 

C
la

ss
if

ic
a

ti
o

n
  

 a b c d Total EC% 

a 6563 40 184 127 6914 5.1 

b 3 717 7 10 737 2.7 

c 265 17 6303 40 6625 4.9 

d 26 21 4 1916 1967 2.6 

Total 6857 795 6498 2093 16243  

EO% 4.3 9.8 3.0 8.5 
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Figure 9. 3D-scatterplot of length of season, base value and left 

derivative features of the first seasons. The zero values was 

removed for best visualization  

 

We can see in Figure 9 that lower values of length of season and 

of base value were found for annual crop samples. High values 

of left derivative were also observed for this class (> 0.035 

EVI). The low rates of base value (< 0.08) indicate that the EVI 

values before and right after the season were also low. This is 

expected for cropland areas. Besides the omitted zero values of 

planted forest class samples, there are medium and high base 

values (0.13 – 0.17 EVI), medium values for length of season 

and left derivative (0.013 – 0.029 EVI). Pixels of the semi-

perennial class presented low rates of base value and left 

derivative, and medium values for length of season. In the 

perennial crop class it is possible to visualize two clusters on 

the 3D-scatterplot, determined by length of season values. Both 

left derivative and base values were medium. By investigating 

the errors spatial distribution, it also seems that it may be 

associated with heterogeneity of the monitored areas that results 

in spectral mixing. In addition, for the extraction of the 

phenological parameters using TIMESAT, a generic model was 

considered for all classes, and the small number of samples may 

also have contributed to errors. The definition of time series 

span is also a very important criteria that must be considered. 

 

3.1 Final considerations 

These preliminary results are encouraging and demonstrate the 

potential of phenological parameters obtained from time series 

of OLI vegetation indices for agricultural land use 

classification. We show the potential use of higher temporal 

resolution Landsat-like images for crop mapping, what will 

soon become reality, once Landsat, Sentinel-2A and CBERS 4 

data can be combined to generate consistent time series to 

produce land use maps. Further analysis are needed to apply 

this approach in large areas and to test different time span, 

different vegetation indices and the complete spectral resolution 

of Landsat-like image time series. 
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