
 

Abstract—In last period many distribution system operators 
(DSO) invest significant amount of money in smart metering 
system. Those investments are in part due to regulatory 
obligations and in part due to needs of DSO (utilities) for 
knowledge about electric energy consumption. Term - electric 
energy consumption, refers not only on real consumption of 
electric energy but also on data about peak power, unbalance, 
voltage profiles, power losses etc. Data which DSO can obtain from 
smart meters depend on type of smart metering system. Further, 
smart meters as source of data can be implemented in transformer 
stations (TS) MV/LV and in LV grid at consumer level. Generally, 
smart meters can be placed in any node of distribution grid. As 
amount of smart meters is greater, the possibility of data analysis 
is greater. In this paper a smart metering system of J.P 
Elektroprivreda HZ HB d.d, Mostar, Bosnia and Herzegovina will 
be presented. One statistical approach for analyzing of advanced 
metering data of TS MV/LV will be presented. Statistical 
approach presented here is powerful tool for analyzing great 
amount of data from distribution grid in simple way. For example, 
transformer in TS MV/LV can be overloaded for 30%, but 
overload period can be for example single one-hour period in 
whole year. With smart meter data, false conclusions can be 
avoided. In concerned case, grid operation engineer will not make 
decision of transformer replacing. With knowledge of only max. 
power of transformer (without time series data), false conclusion 
can be adopted about transformer replacing. This can increase 
costs of grid operation for DSO. Smart metering can help in 
transformer monitoring. Voltage drop in LV buses of TS MV/LV 
can be 10% for example. It means that quick intervention in grid 
must be performed. But, period of increased voltage drop can be 
only single one-hour period in whole year (for example). On other 
side, TS MV/LV can have voltage drop of 7% for example in half-
year period. These data, obtained by smart meters, can help in 
issuing of priority grid investments. Main contribution of this 
paper is in performing of the statistical analysis of smart meter 
data in distribution grid and using the obtained results in 
maintenance/investment planning process. 
 

Index Terms—distribution grid, smart metering, statistical 

analysis. 

I. INTRODUCTION 

n this paper, benefits of using statistics in smart meter data 

analyzing will be analyzed (for power distribution grid). 

Rather, data of smart meters placed in MV/LV transformer 

stations (TS) will be analyzed. This paper is extended version  
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of paper originally presented at Conference SpliTech 2018 [1]. 

Utilization of smart metering data can be diverse. It is primary 

used in load profiling [2]. Using smart metering data loads can 

be divided in groups, subgroups etc. Different profile types can 

be specified: houses, agriculture, industry etc. Load profile can 

be introduced for specified day, week, season etc. These data 

obtained for one region can be projected on other similar region 

[2]. According to [3], smart meter data can be used for 

identification in grid operation. It is also usable for grid control. 

In [3], correlation and autocorrelation analysis among smart 

meter data is introduced. Distribution grid analysis accuracy 

can be improved using smart meter data [4]. Modeling of 

distribution feeder using smart metering data is presented in [5]. 

It is concluded that smart metering data improves distribution 

grid model accuracy. Smart utilization of smart meter data 

presents opportunity for utilities to enhance savings, customer 

service and energy efficiency improving [6]. Distribution grid 

can be more flexible, efficient and reliable using smart metering 

data. If smart metering data are not used properly, they can 

make congestion in communication network and waste data 

storage capability. Only properly used smart metering data can 

help DSO planers in making distribution grid economical and 

thus potential profitable. In [7] and [8] is explained 

benchmarking of smart meter data analytics. In [9] – [11] are 

presented clustering techniques for smart meter data analysis.  

Using clustering, customer loads with similar profiles can be 

identified. It is used in consumers monitoring and analyzing. 

[9]. In [11] is stated that is hard to identify individual clusters. 

Opposite this below, this paper presents one new statistical 

approach for smart meter data analysis. Advanced metering 

system in “Elektroprivreda HZ HB’’ is presented in Fig. 1.  

Smart meters are located in TS MV/LV and in some 

consumers. Every year number of consumers with smart meter 

increases. This paper focuses on advanced metering data in TS 

MV/LV. Location of those smart meters is shown in Fig. 2. 

Historically, smart meters were first placed in TS and after that 

they are placing continuously at consumers.  

First in line are great industry consumers and later houses.  

Generally, smart meters have improved following:    

 

 Remote reading system improved accuracy and 

reduced errors in reading compared to human. Reading 

costs are significant less (link to Billing). 

 Limiting peak power of consumers. Increasing income 

from increasing of consumer peak power.
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 Load profile characteristic. 

 Identification (reduction) of technical and non- 

technical losses. 

Fig. 1. Advanced metering system in “Elektroprivreda HZ HB’’, Mostar [1] 
 

    Smart meters located in TS MV/LV can give information 

about electric energy (consumed, generated), power P and Q, 

cos fi, frequency, voltage and current. Time period of collected 

data can be: 1 min., 5 min., 10 min., 15 min., 20 min., 30 min., 

60 min. As elected time period is shorter data listing lasts 

longer. When we talk about communication technologies, 

GSM/GPRS (UMTS today) is used for communication between 

meters and server (through provider of mobile communications 

services) – Fig. 1. GSM/GPRS technology is with good 

performances, fast, reliable and it has great traffic data 

potential. Communication protocol is TCP/IP. PLC S-FSK 

(Power Line Carrier Spread Frequency Shift Keying) 

communication technology is in use at communication level 

consumer-TS (Fig. 1). It is communication through LV grid. It 

is less reliable than GPS/GPRS communication but it is cheaper 

and it is proved as good choice in this case.   

Transformer

0,4 kV

Smart meter

10 kV

LV feeders
 

Fig. 2. Location of smart meters in MV/LV TS [1] 

 

   

Data provided by AMR Advance software for data analysis can 

easy be transferred in .xls extension for further analysis. 

  Smart meter data analyzing in literature is so far usually used 

in load profile clustering [9-11]. Besides that, smart metering is 

used in distribution feeder modeling and distribution grid 

analysis improving.      

Statistics in smart meter data analysis as powerful tool will be 

presented in this paper. Using statistics in smart meter data 

analysis, utilities can obtain relevant information about loads, 

losses, voltage profiles etc., what can be helpful in 

reconstruction/investment priorities planning. 

Statistical approach brings wider scope of smart meter data 

utilization.  The main objectives of smart meter data utilization, 

presented in this paper, are as follows:    

   

 Statistical approach authentication in smart meter data 

analyzing. 

 Utilization of statistics results in distribution grid 

management. 

 Practical case studies. 

 

For example, knowing load profiles and considering rated 

power of transformers, replacing and rotating of transformers 

can be planned. It can be helpful in order of reducing technical 

losses. On other side, knowing voltage profiles of TS and using 

statistics, priorities in improving voltage conditions in 

distribution grid can be determined. Priorities can be very 

important fact for utilities considering possible financial 

restrictions in investment/reconstructions of distribution grid 

planning.  

II. STATISTICAL ANALYZING  

A. Descriptive Statistics 

Data provided by AMR Advance software and transferred in 

.xls extension can have large amount. Those data can be hard to 

understand and thereby conclusions about those data can be 

unclear and incorrect. Advanced analyzing of those data can be 

implemented using statistical tools.  

Basic descriptive statistics calculations are presented below. 

Descriptive statistics gives primary and important information 

about data time series. 

Arithmetic mean is calculated by: 

 

                                                                 (1) 

 

where  fi  presents frequency of xi and k number of frequencies.  

 

Variance is calculated by:   

                                                               (2) 

Standard deviation is then square root of variance. 
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Skewness is defined with: 

                (3) 

where: 

                                                     (4) 

 

If skewness is zero, distribution of data is symmetric. If 

skewness is closer to +2, distribution of data has positive skew. 

If skewness is closer to -2, distribution of data has negative 

skew. 

The aim of statistical analysis was to analyze two sets of data 

from smart meters: 

 Transformer power (load values) in percentage of 

rated power for two TS (A, B) was analyzed. This 

analyze is in order to consider load values in time 

series characteristics. 

 Per-unit (p.u) voltage (ratio of actual voltage value and 

base value of voltage) for two TS (C, D) was analyzed. 

This analyze is in order to consider voltage drop in 

time series characteristics.  

 

TS A is rural TS with 100 kVA rated power of transformer, 

and fed with Al/Fe conductors.  

TS B is industrial TS with 1000 kVA rated power, fed with 

XHE cable. 

TS C and D are rural TS, both at the different end side of long 

radial overhead line in rural area (line with Al/Fe conductors).  

All TS are fed from MV grid, rated voltage 10 kV. 

Table I shows basic descriptive statistics parameters of load 

values in percentage (%) of transformer rated power. 

Table II shows basic descriptive statistics parameters of 

voltage values (p.u).  

Time series from advanced metering system were 60 minute 

intervals in all cases. 

TABLE I.  
BASIC DATA OF LOAD VALUES IN PERCENTAGE OF RATED TRANSFORMER 

POWER (%) [1] 

Transformer 

station 
A B 

mean 49.007 19.700 

median 47.500 18.250 

std. deviation 17.137 11.274 

skewness 0.718 0.759 

min. value 2.5 0.25 

max. value 132.5 64.25 

 

B. Statistical Modeling Approach 

Some statistical approach ideas in power system analysis can 

be found in [12] - [18]. In [12, 13], distribution system 

reliability analysis is presented probabilistic. In [14, 15], 

residential load values in distribution grid are presented with 

statistical approach. Beta distribution is introduced in reliability 

analysis in [16]. In [17], statistics is used in analyzing conductor 

clashing particles. A statistical analysis of energy losses 

determination is presented in [18].  Probability distributions can 

be viewed as a powerful tool for dealing with uncertainty. The 

goal was to select theoretical distributions to describe the 

frequency of transformer load values and p.u voltages for 

selected TS. Several distributions were fitted: Normal, Beta, 

Gamma and Log-Pearson 3 probability density functions 

(PDF). Their mathematical description is given in Table III.  

TABLE II. 
BASIC DATA OF P.U VOLTAGE VALUES (P.U) [1] 

Transformer 

station 
C D 

mean 0.932 0.942 

median 0.935 0.945 

std. deviation 0.011 0.010 

skewness -0.359 -0.276 

min. value 0.865 0.885 

max. value 0.965 0.975 

 

C. Statistical Modeling Approach 

Some statistical approach ideas in power system analysis can 

be found in [12] - [18]. In [12, 13], distribution system 

reliability analysis is presented probabilistic. In [14, 15], 

residential load values in distribution grid are presented with 

statistical approach. Beta distribution is introduced in reliability 

analysis in [16]. In [17], statistics is used in analyzing conductor 

clashing particles. A statistical analysis of energy losses 

determination is presented in [18].  Probability distributions can 

be viewed as a powerful tool for dealing with uncertainty. The 

goal was to select theoretical distributions to describe the 

frequency of transformer load values and p.u voltages for 

selected TS. Several distributions were fitted: Normal, Beta, 

Gamma and Log-Pearson 3 probability density functions 

(PDF). Their mathematical description is given in Table III.  

First three of them are two-parameter distributions and forth 

is three-parameter distributions. 

 Some statistical tests are usually used to decide if a sample 

comes from a hypothesized continuous distribution. Those tests 

are: Chi-squared test, Kolmogorov-Smirnov test and Anderson-

Darling test. 

It will be shown that all four distributions are good fitted. 

Kolmogorov-Smirnov test is based on difference between the 

theoretical and the empirical cumulative distribution function 

(CDF). Chi-squared test is based on differences between 

empirical and theoretical frequencies. Anderson-Darling test 

gives more weight to the tails than Kolmogorov-Smirnov test, 

what is less important in this case. Kolmogorov-Smirnov test is 

relevant test for this purpose since finally, CDF is used in 

calculations.  

Kolmogorov-Smirnov test is used to decide if a sample 

comes from a hypothesized continuous distribution. It is based 

on the empirical cumulative distribution function (ECDF). 

Assume that there is a random sample x1,..., xn from some 

distribution with cumulative distribution function CDF F(x). 

The empirical CDF is denoted by: 

                                         (5) 
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TABLE III. 
MATHEMATICAL DESCRIPTION OF DISTRIBUTIONS [1] 

Name PDF CDF Limits 

Normal 

 

, 

 

– Laplace 
Integral 

 

 

Beta 

 

- 
Beta Function 

 

– Incomplete Beta Function 
 

 

, 

 

 

– Regularized 
Incomplete 

Beta Function 
 

 

 

 

 
 

Gama 

 

 –  

Gama Function 

 –  

Incomplete Gama Function 
 

, 

 

 

 

 

 

Log 

Pearson 

3 
 

, 
 

  

 

 

 

 

The Kolmogorov-Smirnov statistic (D) is based on the largest 

vertical difference between the theoretical and the empirical 

cumulative distribution function: 

                                             (6) 

The null and the alternative hypotheses are:  

 H0: the data follow the specified distribution; 

 HA: the data do not follow the specified distribution. 

The hypothesis regarding the distributional form is rejected 

at the chosen significance level (α) if the test statistic, D, is 

greater than the critical value obtained from a table. The fixed 

values of (0.01, 0.05 etc.) are generally used to evaluate the null 

hypothesis (H0) at various significance levels. A value of 0.05 

is typically used for most applications, however, in some 

critical industries, a lower value may be applied. The standard 

tables of critical values used for this test are only valid when 

testing whether a data set is from a completely specified 

distribution. If one or more distribution parameters are 

estimated, the results will be conservative: the actual 

significance level will be smaller than that given by the standard 

tables, and the probability that the fit will be rejected in error 

will be lower.  

Goodness of Fit of chosen distributions is verified using 

EasyFit software [19]. EasyFit displays the P-values based on 

the Kolmogorov-Smirnov test statistics (D) calculated for each 

fitted distribution. The P-value, in contrast to fixed values, is 

calculated based on the test statistic, and denotes the threshold 

value of the significance level in the sense that the null 

hypothesis (H0) will be accepted for all values of less than the 

P-value. For example, if P=0.025, the null hypothesis will be 

accepted at all significance levels less than P (i.e. 0.01 and 

0.02), and rejected at higher levels, including 0.05 and 0.1).  

Fig. 3. presents general CDF for statistical analysis presented 

in this paper.  

 

Fig. 3. General CDF for statistical analysis [1] 

CDF is given by: 

  

 

where PDF is f(d). 

 

   CDF shows probability that for example, voltage will be 

lower (p.u) than rated voltage di:   
 

                                                                   (8) 

                          

                                                            (9) 

   According to (8), (9) and (10): 

                                                               (10) 

  If di is the minimum allowed voltage in p.u, it means that all 

voltage values with greater p.u values will be in permitted 

limits (vice versa also applies): 

 

                                                                       (11) 
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  Taking in account (8): 

,                      (12) 

III. RESULTS 

    Results of time series load values of TS A and B (in 

percentage values), and voltage drop of TS C and D (in p.u 

values) are given below. For load values of TS A and B, bins 

are 5% classes of load values from minimal to maximal 

percentage load values. For voltage drop of TS C and D bins are 

0.01 p.u classes of p.u voltage values from minimal to maximal 

p.u voltage values. In every case all selected distributions are 

satisfying fitted according to Kolmogorov-Smirnov test.   

Fig. 4. shows PDF of load values in percentage of rated 

transformer power for TS A. Fig. 5. shows PDF of load values 

in percentage of rated transformer power for TS B. Fig. 6. 

shows PDF of p.u values in percentage of rated voltage (voltage 

drop) for TS C. Fig. 7. shows PDF of p.u values in percentage 

of rated voltage (voltage drop) for TS D. 

 
Fig. 4. PDF of load values in percent of rated transformer power (TS A) [1] 

 

Fig. 5. PDF of load values in percen of rated transformer power (TS B) [1] 

 
Fig. 6. PDF of p.u values in percent of rated voltage (TS C) [1] 

 

 
Fig. 7. PDF of p.u values in percent of rated voltage (TS D) [1] 

 

 

Table IV. presents some analysis of CDF (based on Fig. 3.) 

of all selected TS (in % of hours/year). For TS A and B were 

investigated two cases: 

 P>Prated, presents case when transformer power is 

greater than it’s rated power. 

 P<50%Prated, presents case when transformer power is 

lower than 50% of rated power. 

 60% Prated≤P≤80%Prated, presents load for transformer 

optimal work.  

 

For TS C and D were investigated two cases: 

 p.u<0.92, presents case when voltage drop in p.u is 8% 

at LV bus. 

 p.u<0.95, presents case when voltage drop in p.u is 5% 

at LV bus. 

 

In all cases Beta distribution is selected for statistical analysis 

of transformer power and p.u voltage values. 

Beta distribution is chosen only for example – case study. 

Similar results are with using Normal, Gama and Log-Pearson 

3 distributions.  

)(1 idzi ddP  0id
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TABLE IV.            
SUMMARY OF RESULTS 

Parameter 
% of hours/year 

A B C D 

P>Prated 0.66 0 / / 
P<50% Prated 56.42 98.21 / / 
60%Prated≤P≤80

% Prated 
19.04 7.63 / / 

p.u<0.92 / / 14.87 2.44 

p.u<0.95 / / 93.92 75.40 

 

Table V. presents Goodness of Fit results (obtained using 

EasyFit Software) in terms of K-S values for TS A. It is an 

example case study (for Beta distribution). 

TABLE V.  
GOODNESS OF FIT – DETAILS, CASE STUDY EXAMPLE 

α P-Value 
Critical 
value 

Reject 

0.2 0.99688 0.2003 NO 

0.1 0.99688 0.2289 NO 
0.05 0.99688 0.2543 NO 
0.02 0.99688 0.2843 NO 
0.01 0.99688 0.3050 NO 

 

For all analyzed cases (TS A-D and for chosen distributions), 

there was no case of rejection. 

IV. DISCUSSION  

Selected TS are quite different in their properties but good 

fitted with selected distributions in each case. Results obtained 

by statistical analysis lead to following observations:  

 For TS A transformer, max. (peak) power is 32.5% 

over rated power (over-loaded state), although mean 

power of transformer is slight under 50% of rated 

power. Transformer overloaded duration time is (only) 

0.66% hours/year. Absence of time series data and 

existence of only max. power value data could lead 

owner of transformer on changing transformer with 

the one with greater rated power. It would not be good 

solution in this case because it would increase 

expenses due to new transformer investment and it 

would increase technical losses. Transformer is loaded 

in optimal percent around 20% of year.   

 For TS B, transformer is under-loaded (64.25%), with 

mean of around 20% of rated power. For over 98% of 

time period of year, transformer power is lower than 

50% of rated power. This transformer can be a good 

candidate for changing with the one with lower rated 

power. Transformer is loaded in optimal percent only 

7.63% of year.   

 For TS C mean value of voltage is 0.932 p.u. what is 

not considerable problem. Problem is min. voltage 

value of 0.865 p.u. what is significant voltage drop and 

those values deeper in LV grid can be very problematic 

for power consumers. Statistical analysis shows that 

almost 15% of time period of year voltage drop is 

greater than 8% (0.92 p.u.) and almost 94% of time 

period voltage drop is greater than 5%. This TS is at 

the end of long radial feeder (overhead line with Al/Fe 

conductors). Consumers from this TS can have 

potentially voltage drop problems. DSO must consider 

options for investment/reconstruction in MV grid for 

improving voltage conditions. These actions may 

contain changing of existing conductors with the one 

with greater cross-section. But, optimal tap-changer 

position can be set on transformer too.      

 For TS D mean value of voltage is 0.942 p.u. what is 

similar as for TS C. Min. voltage value is 0.885 p.u. 

what is too similar for TS C. But, for TS D “only” 

2.44% of time period of year voltage drop is greater 

than 8%, and around 15% of time period of year 

voltage drop is greater than 5% That is a great 

difference comparing with TS C, even mean and 

minimum value are not very different.    

 

  General improvements of using statistics in smart meter 

data analysis can be observed in following facts (in this 

case): 

 TS C must be priority for improvement of voltage 

conditions. TS C and D are both rural TS at the 

different end side of long radial overhead line. Using 

statistics and smart meter data, priority for investment 

can be adopted. This conclusion would be generally 

hard to make without using statistics in smart meter 

data analysis. This knowledge can help in making 

investment/reconstruction plans for utilities. 

 Transformer in TS B can be potentially changed or 

rotated with the one of decreased rated power. Some 

further analyses should be done for this adoption. But, 

if it would be possible, technical losses due to 

transformer can be decreased. For both TS, 

transformer is majority of year underload. 

 

V.  CONCLUSION 

The goal of this paper was to select statistical distributions to 

describe the frequency of transformer load values and p.u 

voltages for selected TS. Several distributions were fitted. 

Three of them are two-parameter distributions and one is three-

parameter distribution. It is shown that all four distributions are 

good fitted in each case of TS data analysis, regardless different 

features of TS and different classes of analyzed data (P, voltage 

p.u). Kolmogorov-Smirnov test based on CDF is selected as 

appropriate test because deal was with CDF. It can be concluded 

that statistical analysis approach proposed here is a very 

powerful tool for analyzing of great amount of data in 

distribution grid. This analysis gives very useful and easy 

read/understand information. It can be useful in area of 

distribution grid analysis, planning, maintenance, investment 

and operation. Also, statistical results can be compared for 

different areas (urban, rural). Statistical results can help in 

obtaining time patterns of grid and customers features. 

Proposed statistical tool is easy applicable for DSO engineers 
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and decision makers. Using statistics for smart meter data 

analyzing, schedule of investment/reconstruction can be 

adopted. It makes investment/reconstruction plans more 

meaningful and precisely. This conclusion would be general 

harder to make without using statistics in smart meter data 

analysis. This knowledge can help in improving of making 

investment/reconstruction plans for utilities. In practice, using 

of proposed statistical approach can decrease expenses for DSO 

in area of distribution grid reconstruction plans and 

investments.   Further work would consist of analyzing some 

other distributions and finding best fitting distribution for 

analyzing different classes of data such voltage, power, current, 

losses etc. Further, different time period for collecting data of 

smart meters would be analyzed and compared. This work can 

be extended for various areas analysis, such feeder, group of 

feeders, different consumer types, whole areas etc.   
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