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Abstract. Given a set S of elements in a number field k, we discuss
the existence of planar algebraic curves over k which possess rational points
whose x-coordinates are exactly the elements of S. If the size |S| of S is
either 4, 5, or 6, we exhibit infinite families of (twisted) Edwards curves
and (general) Huff curves for which the elements of S are realized as the
x-coordinates of rational points on these curves. This generalizes earlier
work on progressions of certain types on some algebraic curves.

1. Introduction

An algebraic (affine) plane curve C of degree d over some field k is defined
by an equation of the form

{(x, y) ∈ k2 : f(x, y) = 0}

where f is a polynomial of degree d. The algebraic affine plane curve C can
also be extended to the projective plane by homogenising the polynomial f .
If P = (x, y), then we write x = x(P ) and y = y(P ).

Studying the set of k-rational points on C, C(k), has been subject to
extensive research in arithmetic geometry and number theory, especially when
k is a number field. For example, if f is a polynomial of degree 2, then one
knows that C is of genus 0, and so if C possesses one rational point then it
contains infinitely many such points. If f is of degree 3, then C is a genus 1
curve if it is smooth. In this case, if C(k) contains one rational point, then it
is an elliptic curve, and according to Mordell-Weil Theorem, C(k) is a finitely
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generated abelian group. In particular, C(k) can be written as T ×Zr where
T is the subgroup of points of finite order, and r ≥ 0 is the rank of C over k.

In enumerative geometry, one may pose the following question. Given a
set of points S in k2, how many algebraic plane curves C of degree d satisfy
that S ⊆ C(k)? It turns out that sometimes the answer is straightforward.
For example, given 10 points in k2, in order for a cubic curve to pass through
these points, a system of 10 linear equations will be obtained by substituting
the points of S in

a1x
3 + a2x

2y + a3x
2 + a4xy

2 + a5xy + a6x+ a7y
3 + a8y

2 + a9y + a10 = 0

and solving for a1, · · · , a10. Therefore, there exists a nontrivial solution to the
system if the determinant of the corresponding matrix of coefficients is zero,
hence a cubic curve through the points of S. Thus, one needs linear algebra
to check the existence of algebraic curves of a certain degree through various
specified points in k2.

In this article, we address the following, relatively harder, question. Given
S ⊂ k, are there algebraic curves C of degree d such that for every x ∈ S,
x = x(P ) for some P ∈ C(k)? In other words, S constitutes the x-coordinates
of a subset of C(k). The latter question can be reformulated to involve y-
coordinates instead of x-coordinates. It is obvious that linear algebra cannot
be utilized to attack the problem as substituting with the x-values of S will
not yield linear equations.

Given a set S = {x1, x2, · · · , xn} ⊂ k, if (xi, yi), i = 1, · · · , n, are k-
rational points on an algebraic curve C, then these rational points are said
to be an S-sequence of length n. In what follows, we summarize the current
state of knowledge for different types of S.

We first describe the state-of-art when the elements of S ⊂ Q are chosen
to form an arithmetic progression, Lee and Vélez ([10]) found infinitely many
curves described by y2 = x3 + a containing S-sequences of length 4. Bremner
([2]) showed that there are infinitely many elliptic curves with S-sequences of
length 7 and 8. Campbell ([5]) gave a different method to produce infinite
families of elliptic curves with S-sequences of length 7 and 8. In addition,
he described a method for obtaining infinite families of quartic elliptic curves
with S-sequences of length 9, and gave an example of a quartic elliptic curve
with an S-sequence of length 12. Ulas ([17]) first described a construction
method for an infinite family of quartic elliptic curves on which there exists
an S-sequence of length 10. Secondly he showed that there is an infinite family
of quartics containing S-sequences of length 12. Macleod ([11]) showed that
simplifying Ulas’ approach may provide a few examples of quartics with S-
sequences of length 14. Ulas ([18]) found an infinite family of genus two curves
described by y2 = f(x) where deg(f(x)) = 5 possessing S-sequences of length
11. Alvarado ([1]) showed the existence of an infinite family of such curves
with S-sequences of length 12. Moody ([12]) found an infinite number of
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Edwards curves with an S-sequence of length 9. He also asked whether any
such curve will allow an extension to an S-sequence of length 11. Bremner
([3]) showed that such curves do not exist. Also, Moody ([14]) found an
infinite number of Huff curves with S-sequences of length 9, and Choudhry
([6]) extended Moody’s result to find several Huff curves with S-sequences of
length 11.

Now we consider the case when the elements of S form a geometric pro-
gression, Bremner and Ulas ([4]) obtained an infinite family of elliptic curves
with S-sequences of length 4, and they also pointed out infinitely many ellip-
tic curves with S-sequences of length 5. Ciss and Moody ([13]) found infinite
families of twisted Edwards curves with S-sequences of length 5 and Edwards
curves with S-sequences of length 4. When the elements of S ⊂ Q are con-
secutive squares, Kamel and Sadek ([9]) constructed infinitely many elliptic
curves given by the equation y2 = ax3 + bx + c with S-sequences of length
5. When the elements of S ⊂ Q are consecutive cubes, Çelik and Soydan
([7]) found infinitely many elliptic curves of the form y2 = ax3 + bx+ c with
S-sequences of length 5.

In the present work, we consider the following families of elliptic curves
due to the symmetry enjoyed by the equations defining them: (twisted) Ed-
wards curves and (general) Huff curves. Given an arbitrary subset S of a
number field k, we tackle the general question of the existence of infinitely
many such curves with an S-sequence when there is no restriction on the ele-
ments of S. We provide explicit examples when the length of the S-sequence
is 4, 5, or 6. This is achieved by studying the existence of rational points on
certain quadratic and elliptic surfaces.

2. Edwards curves with S-sequences of length 6

Throughout this work, k will be a number field unless otherwise stated.
An Edwards curve over k is defined by

(2.1) Ed : x2 + y2 = 1 + dx2y2,

where d is a non-zero element in k. It is clear that the points (x, y) =
(−1, 0), (0,±1), (1, 0) ∈ Ed(k). We show that given any set

S = {s−1 = −1, s0 = 0, s1 = 1, s2, s3, s4} ⊂ k,

si 6= sj if i 6= j, there are infinitely many Edwards curves Ed that possess
rational points whose x-coordinates are si, −1 ≤ i ≤ 4, i.e., the set S is
realized as x-coordinates in Ed(k). In other words, there are infinitely many
Edwards curves that possess an S-sequence.

We start with assuming that s2 is the x-coordinate of a point in Ed(k),

then one must have y2 =
s22 − 1

s22d− 1
, or s22d−1 = (s22−1)p2 for some p = 1/y ∈ k.
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Similarly, if s3 is the x-coordinate of a point in Ed(k), then y2 =
s23 − 1

s23d− 1
,

or s23d− 1 = (s23 − 1)q2. So

d =
(s22 − 1)p2 + 1

s22
=

(s23 − 1)q2 + 1

s23
.

Thus we have the following quadratic curve

s23
[

(s22 − 1)p2 + 1
]

− s22
[

(s23 − 1)q2 + 1
]

= 0

on which we have the rational point (p, q) = (1, 1). Parametrizing the rational
points on the latter quadratic curve yields

p =
2ts22 − t2s22 − s23 + s22s

2
3 − 2ts22s

2
3 + t2s22s

2
3

−t2s22 + s23 − s22s
2
3 + t2s22s

2
3

,

q = −
(−1 + s22)s

2
3 − 2t(−1 + s22)s

2
3 + t2s22(−1 + s23)

−(−1 + s22)s
2
3 + t2s22(−1 + s23)

.

Therefore, fixing s2 and s3 in k, one sees that p and q lie in k(t). Now we
obtain the following result.

Theorem 2.1. Let s−1 = −1, s0 = 0, s1 = 1, s2, s3 and s4, si 6= sj if
i 6= j, be a sequence in Z such that

h(s2, s3) = −3 + 4s23 + s42s
4
3 + s22(4 − 6s23) 6= 0

where either g1(s2, s3)/h(s2, s3)
2 or g2(s2, s3)/h(s2, s3)

3 are not integers, g1
and g2 are defined in (2.3). There are infinitely many Edwards curves de-
scribed by

Ed : x2 + y2 = 1 + dx2y2, d ∈ Q

on which si, −1 ≤ i ≤ 4, are the x-coordinates of rational points in Ed(Q).
In other words, there are infinitely many Edwards curves that possess an S-
sequence where S = {si : −1 ≤ i ≤ 4}.

Proof. Substituting the value for p in d =
(s22 − 1)p2 + 1

s22
yields that

(−t2s22 + s23 − s22s
2
3 + t2s22s

2
3)

2d

= (s43 − 2s22s
4
3 + s42s

4
3) + (4s23 − 8s22s

2
3 + 4s42s

2
3 − 4s43 + 8s22s

4
3 − 4s42s

4
3)t

+ (−4s22 + 4s42 − 4s23 + 14s22s
2
3 − 10s42s

2
3 + 4s43 − 10s22s

4
3 + 6s42s

4
3)t

2

+ (4s22 − 4s42 − 8s22s
2
3 + 8s42s

2
3 + 4s22s

4
3 − 4s42s

4
3)t

3 + (s42 − 2s42s
2
3 + s42s

4
3)t

4.

Thus, for fixed values of s2 and s3, we have d ∈ Q(t).
Now we show the existence of infinitely many values of t such that s4

is the x-coordinate of a rational point on Ed. In fact, we will show that t
can be chosen to be the x-coordinate of a rational point on an elliptic curve
with positive Mordell-Weil rank, hence the existence of infinitely many such
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possible values for t. Forcing (s4, r) to be a point in Ed(Q) for some rational
r yields that

(2.2) r2 =
s24 − 1

s24d− 1
= (A0 +A1t+A2t

2 +A3t
3 +A4t

4)/B(t)2,

where Ai ∈ Z and B(t) = −t2s22 + t2s22s
2
3 + s23 − s22s

2
3. This implies that

A0 + A1t + A2t
2 + A3t

3 + A4t
4 must be a rational square. This yields the

elliptic curve C defined by

z2 = A0 +A1t+A2t
2 +A3t

3 +A4t
4,

with the following rational point

(t, z) =
(

0, s23(s
2
2 − 1)

)

.

The latter elliptic curve is isomorphic to the elliptic curve described by the
Weierstrass equation EI,J : y2 = x3 − 27Ix− 27J where

I = 12A0A4 − 3A1A3 +A2
2

J = 72A0A2A4 + 9A1A2A3 − 27A2
1A4 − 27A0A

2
3 − 2A3

2,

see for example [16, §2]. The latter elliptic curve has the following rational
point

P =
(

−12(−1 + s22)(−1 + s23)(−3 + s22 + s23),−216(−1 + s22)
2(−1 + s23)

2
)

.

One notices that the coordinates of 3P are rational functions. Indeed,

3P =

(

g1(s2, s3)

h(s2, s3)2
,
g2(s2, s3)

h(s2, s3)3

)

, where g1, g2 ∈ Q[s2, s3](2.3)

and
h(s2, s3) = −3 + 4s23 + s42s

4
3 + s22(4− 6s23).

Hence, as long as h(s2, s3) 6= 0, and g1/h
2 6∈ Z or g2/h

3 6∈ Z, one sees that 3P
is a point of infinite order by virtue of Lutz-Nagell Theorem. Thus, P itself is
a point of infinite order. It follows that EI,J is of positive Mordell-Weil rank.
Since C is isomorphic to EI,J , it follows that C is also of positive Mordell-
Weil rank. Therefore, there are infinitely many rational points (t, z) ∈ C(Q),
each giving rise to a value for d, by substituting in (2.2), hence an Edwards
curve Ed possessing the aforementioned rational points. That infinitely many
of these curves are pairwise non-isomorphic over Q follows, for instance, from
[8, Proposition 6.1].

3. Twisted Edwards curves with S-sequences of length 4

A Twisted Edwards curve over k is given by

(3.1) Ea,d : ax2 + y2 = 1 + dx2y2,

where a and d are nonzero elements in k. Note that the point (x, y) = (0,±1) ∈
Ea,d(k). Given a set {u0 = 0, u1, u2, u3} ⊂ k, ui 6= uj if i 6= j, we prove that
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there are infinitely many twisted Edwards curves Ea,d for which S is realized
as the x-coordinates of rational points on Ea,d.

We begin by assuming that u1 is the x-coordinate of a point in Ea,d(k),

then one must get y2 =
au2

1 − 1

u2
1d− 1

, or u2
1d− 1 = (au2

1 − 1)i2 for some i ∈ k.

Now, if u2 is the x-coordinate of a point in Ea,d(k), then y2 =
au2

2 − 1

u2
2d− 1

or u2
2d− 1 = (au2

2 − 1)j2. So

d =
(au2

1 − 1)i2 + 1

u2
1

=
(au2

2 − 1)j2 + 1

u2
2

.

Hence we obtain the following quadratic surface

u2
2

[

(au2
1 − 1)i2 + 1

]

− u2
1

[

(au2
2 − 1)j2 + 1

]

= 0,

on which we have the rational point (i, j) = (1, 1). Solving the above quadratic
surface gives the following

i =
−au2

1u
2
2 + u2

2 + 2tau2
1u

2
2 − 2tu2

1 − at2u2
1u

2
2 + u2

1t
2

au2
1u

2
2 − u2

2 − at2u2
1u

2
2 + u2

1t
2

,

j =
−2atu2

1u
2
2 + 2tu2

2 + at2u2
1u

2
2 − u2

1t
2 + au2

1u
2
2 − u2

2

au2
1u

2
2 − u2

2 − at2u2
1u

2
2 + u2

1t
2

.

Now we get the following result.

Theorem 3.1. Let u0 = 0, u1, u2 and u3 , ui 6= uj if i 6= j, be
a sequence in Z such that h(u1, u2) 6= 0, and either g1(s2, s3)/h(s2, s3)

2

or g2(s2, s3)/h(s2, s3)
3 are not integers, where h, g1, g2 are defined in (3.3).

There are infinitely many twisted Edwards curves described by

Ea,d : ax2 + y2 = 1 + dx2y2, d ∈ Q, a ∈ Q× is arbitrary

on which ui, 0 ≤ i ≤ 3, are the x-coordinates of rational points in E(Q). In
other words, there are infinitely many twisted Edwards curves that possess an
S-sequence where S = {ui : 0 ≤ i ≤ 3}.

Proof. Substituting the expression for i in d =
(au2

1 − 1)i2 + 1

u2
1

gives

that

(au2
1u

2
2 − u2

2 − at2u2
1u

2
2 + u2

1t
2)2d

= (u4
1a

3u4
2 − 2u4

1a
2u2

2 + u4
1a)t

4 + (−8au2
1u

2
2 + 4u2

1 + 4u2
1a

2u4
2 − 4u4

1a

− 4u4
1a

3u4
2 + 8u4

1a
2u2

2)t
3 + (−4u2

1 − 10u2
1a

2u4
2 + 14au2

1u
2
2 + 6u4

1a
3u4

2

− 4u2
2 − 10u4

1a
2u2

2 + 4u4
1a+ 4au4

2)t
2 + (4u2

2 + 8u2
1a

2u4
2 − 8au2

1u
2
2

+ 4u4
1a

2u2
2 − 4au4

2 − 4u4
1a

3u4
2)t+ u4

1a
3u4

2 − 2u2
1a

2u4
2 + au4

2.
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Then, assuming (u3, ℓ) ∈ E(Q) yields

(3.2) ℓ2 =
au2

3 − 1

du2
3 − 1

= (C0 + C1t+ C2t
2 + C3t

3 + C4t
4)/D(t)2,

where Ci ∈ Q and D(t) = au2
1u

2
2 − u2

2 − at2u2
1u

2
2 + u2

1t
2.

For the latter equation to be satisfied, one needs to find rational points
on the elliptic curve C′ defined by

z2 = C0 + C1t+ C2t
2 + C3t

3 + C4t
4

that possesses the rational point

(t, z) =
(

0, u2
2(au

2
1 − 1)

)

.

The latter elliptic curve is isomorphic to the elliptic curve described by the
Weierstrass equation EI,J : y2 = x3 − 27Ix− 27J where

I = 12C0C4 − 3C1C3 + C2
2 ,

J = 72C0C2C4 + 9C1C2C3 − 27C2
1C4 − 27C0C

2
3 − 2C3

2 ,

see for example [16, §2]. The latter elliptic curve has the following rational
point

Q =
(

−12(−1 + au2
2)(−1 + au2

1)(−3 + au2
2 + u2

1),−216(−1 + au2
2)

2(−1 + au2
1)

2
)

.

One notices that the coordinates of 3Q are rational functions. In fact,

3Q =

(

g1(u1, u2)

h(u1, u2)2
,
g2(u1, u2)

h(u1, u2)3

)

, where g1, g2 ∈ Q[u1, u2]

and

(3.3)

h(u1, u2) = −27− 72u2
1 + 36u4

1 + 18u2
1u

2
2 − 12u4

1u
2
2 − 18u4

2 + 12u2
1u

4
2

+ u4
1u

4
2 − 2u2

1u
6
2 + u8

2 + a(36u2
1 − 12u4

1 − 24u2
1(−3 + u2

1)

+ 36u2
2 + 72u2

1u
2
2 − 24u4

1u
2
2 − 12u2

1u
4
2 + 4u4

1u
4
2

− 4(−3 + u2
1)u

6
2) + a2(−144u2

1u
2
2 + 36u4

1u
2
2 + 18u4

2

− 36u2
1u

4
2 + 4u4

1u
4
2 + 2u2

1u
6
2 − 2u8

2) + a3(36u2
1u

4
2

+ 4(−3 + u2
1)u

6
2) + a4u8

2.

Therefore, as long as h(u1, u2) 6= 0 and g1/h
2 6∈ Z or g2/h

3 6∈ Z, one
sees that EI,J is of positive Mordell-Weil rank where the point Q is of infinite
order. Since C′ is isomorphic to EI,J , it follows that C′ is also of positive
Mordell-Weil rank. Hence, there are infinitely many rational points (t, z) ∈
C′(Q), each giving rise to a value for d, by substituting in (3.2), therefore
a twisted Edwards curve Ea,d possessing the aforementioned rational points.
That infinitely many of these curves are pairwise non-isomorphic over Q again
follows from [8, Proposition 6.1].
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Remark 3.2. Since (0,−1), (0, 1) are rational points on any twisted Ed-
wards curve, one can show that if u−1 = −1, u1 = 1, u2, u3 and u4, ui 6= uj if
i 6= j, is a sequence in Z, there are infinitely many Edwards curves on which
ui, i ∈ {−1, 1, 2, 3, 4}, are the y-coordinates of rational points in Ea,d(Q).

4. Huff curves with S-sequences of length 5

A Huff curve over a number field k is defined by

(4.1) Ha,b : ax(y
2 − 1) = by(x2 − 1),

with a2 6= b2. Note that the points (x, y) = (−1,±1), (0, 0), (1,±1) are in
Ha,b(k). We prove that given s−1 = −1, s0 = 0, s1 = 1, s2, s3 ∈ k, si 6= sj
if i 6= j, there are infinitely many Huff curves on which these numbers are
realized as the x-coordinates of rational points.

Assuming (s2, p) and (s3, q) are two points on Ha,b yields

(4.2) as2(p
2 − 1) = bp(s22 − 1),

and

(4.3) as3(q
2 − 1) = bq(s23 − 1),

respectively. Using (4.2) and (4.3), one obtains

s2(p
2 − 1)

s3(q2 − 1)
=

p(s22 − 1)

q(s23 − 1)
,

therefore, one needs to consider the curve

C′ : Apq2 −Ap−Bqp2 +Bq = 0,

where A = s3s
2
2 − s2 and B = s2s

2
3 − s2. Dividing both sides of the above

equality by q3 gives

A
p

q
−A

p

q

1

q2
−B(

p

q
)2 +B

1

q2
= 0.

Substituting x = p

q
and y = 1

q2
in the above equation yields the following

quadratic curve

Ax−Axy −Bx2 +By = 0,

on which we have the rational point (x, y) = (1, 1). Parametrizing the rational
points on the latter quadratic curve gives

x =
Bt−B

At+B
,(4.4)

y =
At(1− t) +B(1− t)2

At+B
.(4.5)

Now we have the following result.
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Theorem 4.1. Let s−1 = −1, s0 = 0, s1 = 1, s2, s3, sm 6= sn if m 6= n, be
a sequence in Z such that

h = −4 +A2 − 3AB +B2 6= 0

where A and B are defined as above, and either g1/h
2 or g2/h

3 are not inte-
gers, where g1, g2 are defined in (4.6). There are infinitely many Huff curves
described by

Ha,b : ax(y
2 − 1) = by(x2 − 1), a, b ∈ Q, a2 6= b2

on which sm, −1 ≤ m ≤ 3, are the x-coordinates of rational points in
Ha,b(Q). In other words, there are infinitely many Huff curves that possess
an S-sequence where S = {si : −1 ≤ i ≤ 3}.

Proof. Using the equalities (4.4) and (4.5), we obtain the following

p2 =
x2

y
=

B2(−1 + t)

(B(−1 + t)−At)(B +At)
,

q2 =
1

y
=

(B +At)

(−1 + t)(B(−1 + t)−At)
.

In both cases we need (B + At)(−1 + t)(B(−1 + t) − At) to be a square or
in other words we need t to be the x-coordinate of a rational point on the
elliptic curve C′′ defined by

z2 = (At+B)(t − 1)(t(B −A)−B),

with the following k-rational point (t, z) = (0, B). The latter curve can be
described by the following equation

Y 2 = X3 + ((B −A)2 −AB)X2 − 2AB(B −A)2X +A2B2(B −A)2,

where A(B−A)t = X and A(B−A)z = Y . This curve has the rational point

R = (X,Y ) = (0, AB(B −A)) .

Observing that

3R =

(

g1(A,B)

h(A,B)2
,
g2(A,B)

h(A,B)3

)

(4.6)

where h(A,B) = −4 + A2 − 3AB + B2, one concludes as in the proof of
Theorem 2.1.

5. General Huff curves with S-sequences of length 4

A general Huff curve over a number field k is defined by

(5.1) Ga,b : x(ay
2 − 1) = y(bx2 − 1),

where a, b ∈ k and ab(a − b) 6= 0. It is clear that the point (x, y) = (0, 0) ∈
Ga,b(k). We show that given u0 = 0, u1, u2, u3 in k, ui 6= uj if i 6= j, there
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are infinitely many general Huff curves over which these points are realized
as the x-coordinates of rational points.

We start by assuming that if u1 is the x-coordinates of a point in Ga,b(k),

then one must have
ay2 − 1

y
=

bu2
1 − 1

u1

or
a− i2

i
=

bu2
1 − 1

u1

for some i ∈ k.

Similarly, if u2 is the x-coordinate of a point in Ga,b, then
ay2 − 1

y
=

bu2
2 − 1

u2

or
a− j2

j
=

bu2
2 − 1

u2

for some j ∈ k. Thus, one obtains

a =
(bu2

1 − 1)i+ u1i
2

u1

=
(bu2

2 − 1)j + u2j
2

u2

,

which gives the following quadratic curve

S : Ai2 +Bj2 + Ciz +Djz = 0,

where A = −u1u2, B = u1u2, C = −u2
1u2b + u2, D = bu1u

2
2 − u1. Then

consider the line
mP + nQ = (np : nq : m+ nr)

connecting the rational points P = (i : j : z) = (0 : 0 : 1) and Q = (p : q : r)
lying on S ⊂ P2. The intersection of S and mP + nQ yields the quadratic
equation

n2(Ap2 +Bq2 + Cpr +Dqr) +mn(Cp+Dq) = 0.

Using P and Q lying on S, one solves this quadratic equation and obtains
formulae for the solution (i : j : z) with the following parametrization:

i = np = Cp2 +Dpq,

j = nq = Cpq +Dq2,

z = m+ nr = −Ap2 −Bq2.

Now we obtain the following result.

Theorem 5.1. Let u0 = 0, u1, u2 and u3 , ui 6= uj if i 6= j, be a sequence
in k. There are infinitely many general Huff curves described by

Ga,b : x(ay
2 − 1) = y(bx2 − 1), a, b ∈ k, ab(a− b) 6= 0.

on which ui, 0 ≤ i ≤ 3, are the x-coordinates of rational points in Ga,b(k).
In other words, there are infinitely many general Huff curves that possess an
S-sequence where S = {ui : 0 ≤ i ≤ 3}.

Proof. Substituting the value for i in a =
(bu2

1 − 1)i+ u1i
2

u1

yields that

a =u2
2

(

bu1
2 − 1

)2
p4 − 2 u1u2

(

bu2
2 − 1

) (

bu1
2 − 1

)

p3q

+ u1
2
(

bu2
2 − 1

)2
p2q2 −

u2

(

bu1
2 − 1

)2

u1

p2 +
(

bu2
2 − 1

) (

bu1
2 − 1

)

pq.
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Now we assume that (u3, ℓ) ∈ Ga,b(k). This yields that

pu3

(

bp2u1
3u2 − bpqu1

2u2
2 − p2u1u2 + pqu1

2 − bu1
2 + 1

)

(

bpu1
2u2 − bqu1u2

2 − pu2 + qu1

)

ℓ2 − u1

(

bu3
2 − 1

)

ℓ− u1u3 = 0.

This can be rewritten as

Z2(b2p4u5
1u

2
2u3 − 2bp4u3

1u
2
2u3 − b2p2u4

1u2u3 + p4u1u
2
2u3 + 2bp2u2

1u2u3

− p2u2u3) + qZ(−2b2p3u4
1u

3
2u3 + 2bp3u4

1u2u3 + 2bp3u2
1u

3
2u3 + b2pu3

1u
2
2u3

− 2p3u2
1u2u3 − bpu3

1u3 − bpu1u
2
2u3 + pu1u3) + q2p2u3

1u3(bu
2
2 − 1)2

− TZu1

(

bu3
2 − 1

)

− T 2u1u3 = 0,

where T = 1/ℓ. One sees that the rational point P = (q : T : Z) = (1 : 0 :
u1(−1+bu2

2)/pu2(−1+bu2
1)) lies on the quadratic curve above, hence we may

parametrize the rational points on the quadratic curve above. This is obtained
by considering the intersection of the line dP + eQ where Q = (q1 : q2 : q3) is
a point on the quadratic curve. In fact, this yields that

d = pu2(bu1
2 − 1)(q3

2b2p4u1
5u2

2u3 − 2q3
2bp4u1

3u2
2u3

− q3
2b2p2u1

4u2u3 + q3
2p4u1u2

2u3 + 2q3
2bp2u1

2u2u3

− q3
2p2u2u3 − u1q2q3bu3

2 + u1q2q3 + p2u1
3u3q1

2b2u2
4

− 2p2u1
3u3q1

2bu2
2 + p2u1

3u3q1
2 − 2q1q3b

2p3u1
4u2

3u3

+ 2q1q3bp
3u1

4u2u3 + 2q1q3bp
3u1

2u2
3u3 + q1q3b

2pu1
3u2

2u3

− 2q1q3p
3u1

2u2u3 − q1q3bpu1
3u3 − q1q3bpu1u2

2u3 + q1q3pu1u3

− u1u3q2
2),

e = u1(bu2
2 − 1)(−pu1

3u3q1b
2u2

2 + p2u3q3u2b
2u1

4 + pu1u3q1bu2
2

− 2p2u3q3u2bu1
2 + pu1

3u3q1b+ u1q2bu3
2 + p2u3q3u2 − u1q2 − pu1u3q1).
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