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ABSTRACT. Given a set S of elements in a number field k, we discuss
the existence of planar algebraic curves over k which possess rational points
whose z-coordinates are exactly the elements of S. If the size |S| of S is
either 4,5, or 6, we exhibit infinite families of (twisted) Edwards curves
and (general) Huff curves for which the elements of S are realized as the
z-coordinates of rational points on these curves. This generalizes earlier
work on progressions of certain types on some algebraic curves.

1. INTRODUCTION

An algebraic (affine) plane curve C' of degree d over some field k is defined
by an equation of the form

{(x’y) €k*: f(xay) = O}

where f is a polynomial of degree d. The algebraic affine plane curve C' can
also be extended to the projective plane by homogenising the polynomial f.
If P = (z,y), then we write z = 2(P) and y = y(P).

Studying the set of k-rational points on C, C(k), has been subject to
extensive research in arithmetic geometry and number theory, especially when
k is a number field. For example, if f is a polynomial of degree 2, then one
knows that C' is of genus 0, and so if C' possesses one rational point then it
contains infinitely many such points. If f is of degree 3, then C is a genus 1
curve if it is smooth. In this case, if C'(k) contains one rational point, then it
is an elliptic curve, and according to Mordell-Weil Theorem, C'(k) is a finitely
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generated abelian group. In particular, C'(k) can be written as T' x Z" where
T is the subgroup of points of finite order, and r > 0 is the rank of C' over k.

In enumerative geometry, one may pose the following question. Given a
set of points S in k?, how many algebraic plane curves C of degree d satisfy
that S C C(k)? It turns out that sometimes the answer is straightforward.
For example, given 10 points in k2, in order for a cubic curve to pass through
these points, a system of 10 linear equations will be obtained by substituting
the points of S in

a12” + asx®y + asx® + agxy® + aswy + agw + ary® + asy® + agy + azo =0

and solving for aq,--- ,a19. Therefore, there exists a nontrivial solution to the
system if the determinant of the corresponding matrix of coefficients is zero,
hence a cubic curve through the points of S. Thus, one needs linear algebra
to check the existence of algebraic curves of a certain degree through various
specified points in k2.

In this article, we address the following, relatively harder, question. Given
S C k, are there algebraic curves C' of degree d such that for every z € S,
x = x(P) for some P € C(k)? In other words, S constitutes the x-coordinates
of a subset of C(k). The latter question can be reformulated to involve y-
coordinates instead of x-coordinates. It is obvious that linear algebra cannot
be utilized to attack the problem as substituting with the z-values of S will
not yield linear equations.

Given a set S = {x1,29, - ,xn}t C k, if (x;,y;), ¢ = 1,--- ,n, are k-
rational points on an algebraic curve C, then these rational points are said
to be an S-sequence of length n. In what follows, we summarize the current
state of knowledge for different types of S.

We first describe the state-of-art when the elements of S C Q are chosen
to form an arithmetic progression, Lee and Vélez ([10]) found infinitely many
curves described by y? = 23 4 a containing S-sequences of length 4. Bremner
([2]) showed that there are infinitely many elliptic curves with S-sequences of
length 7 and 8. Campbell ([5]) gave a different method to produce infinite
families of elliptic curves with S-sequences of length 7 and 8. In addition,
he described a method for obtaining infinite families of quartic elliptic curves
with S-sequences of length 9, and gave an example of a quartic elliptic curve
with an S-sequence of length 12. Ulas ([17]) first described a construction
method for an infinite family of quartic elliptic curves on which there exists
an S-sequence of length 10. Secondly he showed that there is an infinite family
of quartics containing S-sequences of length 12. Macleod ([11]) showed that
simplifying Ulas’ approach may provide a few examples of quartics with S-
sequences of length 14. Ulas ([18]) found an infinite family of genus two curves
described by y? = f(x) where deg(f(z)) = 5 possessing S-sequences of length
11. Alvarado ([1]) showed the existence of an infinite family of such curves
with S-sequences of length 12. Moody ([12]) found an infinite number of
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Edwards curves with an S-sequence of length 9. He also asked whether any
such curve will allow an extension to an S-sequence of length 11. Bremner
([3]) showed that such curves do not exist. Also, Moody ([14]) found an
infinite number of Huff curves with S-sequences of length 9, and Choudhry
([6]) extended Moody’s result to find several Huff curves with S-sequences of
length 11.

Now we consider the case when the elements of S form a geometric pro-
gression, Bremner and Ulas ([4]) obtained an infinite family of elliptic curves
with S-sequences of length 4, and they also pointed out infinitely many ellip-
tic curves with S-sequences of length 5. Ciss and Moody ([13]) found infinite
families of twisted Edwards curves with S-sequences of length 5 and Edwards
curves with S-sequences of length 4. When the elements of S C Q are con-
secutive squares, Kamel and Sadek ([9]) constructed infinitely many elliptic
curves given by the equation y? = az® + bx + ¢ with S-sequences of length
5. When the elements of S C Q are consecutive cubes, Celik and Soydan
([7]) found infinitely many elliptic curves of the form y? = az® + bz + ¢ with
S-sequences of length 5.

In the present work, we consider the following families of elliptic curves
due to the symmetry enjoyed by the equations defining them: (twisted) Ed-
wards curves and (general) Huff curves. Given an arbitrary subset S of a
number field k&, we tackle the general question of the existence of infinitely
many such curves with an S-sequence when there is no restriction on the ele-
ments of S. We provide explicit examples when the length of the S-sequence
is 4,5, or 6. This is achieved by studying the existence of rational points on
certain quadratic and elliptic surfaces.

2. EDWARDS CURVES WITH S-SEQUENCES OF LENGTH 6

Throughout this work, k& will be a number field unless otherwise stated.
An Edwards curve over k is defined by

(2.1) Eq:2®+y? =1+ da?y?,

where d is a non-zero element in k. It is clear that the points (x,y) =
(—=1,0),(0,£1),(1,0) € E4(k). We show that given any set

S={s_1=-1,5=0,51 =1,52,53,54} Ck,

s; # s; if i # j, there are infinitely many Edwards curves Fy that possess
rational points whose z-coordinates are s;, —1 < ¢ < 4, i.e., the set S is
realized as z-coordinates in E;(k). In other words, there are infinitely many
Edwards curves that possess an S-sequence.

We start with assuming that s is the z-coordinate of a point in Ey4(k),

2
-1
822 ,or s3d—1 = (s3—1)p? for some p = 1/y € k.
s5d—1

then one must have y? =
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Similarly, if s3 is the z-coordinate of a point in E,4(k), then y* = —————
s
or s3d — 1= (s3 —1)¢>. So
(s3—p*+1  (s3-1)¢>+1

2

d = =
2
52 53

Thus we have the following quadratic curve

52 [(s% —Dp* + 1] - 52 [(s§ —1)¢* + 1]=0
on which we have the rational point (p,¢) = (1, 1). Parametrizing the rational
points on the latter quadratic curve yields

2t32 — 282 — s+ 5253 — 2ts3s2 + 1252532

B —1252 + 53 — 5352 + 125253
(—1+s3)s5 — 2t(—1 +s3)s3 + t*s3(—1 + 53)
—(=1+s3)s5 +2s5(—1 4 3)

Therefore, fixing so and ss in k, one sees that p and ¢ lie in k(¢). Now we
obtain the following result.

)

THEOREM 2.1. Let s_1 = —1, 5o =0, s1 = 1, s2, s3 and s4, s; # 55 if
i #£ 7, be a sequence in Z such that

h(s2,s3) = —3 + 453 + s355 + s3(4 — 652) #0

where either g1(s2,53)/h(s2,83)% or ga(s2, s3)/h(s2,s3)% are not integers, g
and go are defined in (2.3). There are infinitely many Edwards curves de-
scribed by

Eg:2®2+y?>=1+d2?y?, deQ
on which s;, —1 < i < 4, are the x-coordinates of rational points in E4(Q).
In other words, there are infinitely many Edwards curves that possess an S-
sequence where S = {sl 1< < 4}.

(s3-1)p*+1
2
52

PROOF. Substituting the value for p in d = yields that

(—t2s3 4 52 — 5252 4+ t2s352)%d

= (53 — 25353 + s553) + (452 — 85352 + 45552 — 45y + 8s3s5 — 4syss)t

+ (453 + 455 — 453 + 145352 — 105553 + 455 — 105253 + 65553)t2

+ (483 — 455 — 85352 + 85552 + 4s2ss — dsasa)t® + (53 — 25555 + sas3)t™.
Thus, for fixed values of sy and s3, we have d € Q(¢).

Now we show the existence of infinitely many values of ¢ such that sy
is the z-coordinate of a rational point on FE,;. In fact, we will show that ¢

can be chosen to be the z-coordinate of a rational point on an elliptic curve
with positive Mordell-Weil rank, hence the existence of infinitely many such
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possible values for t. Forcing (s4,7) to be a point in F4(Q) for some rational
r yields that
2
1 .
2.2) 2= 5'24d o= (Ao + Aut + Aot + Ast? + Agt")/B(1)”,
s3d —
where A; € Z and B(t) = —t2s2 + t2s2s3 + s2 — s3s2. This implies that
Ag + Ait + Aot? + Ast® + Ast* must be a rational square. This yields the
elliptic curve C defined by

22 = Ag + Art + Aot? + At + Aytt,

with the following rational point
(ta Z) = (0a S%(S% - 1)) .

The latter elliptic curve is isomorphic to the elliptic curve described by the
Weierstrass equation Ey j : y2 =% — 271x — 27.J where

I =12A0A4 —3A1 A3 + A2
J =T2A0A2A4 +9A1 Ay Az — 2TAZ Ay — 2TAg A% — 2A3,

see for example [16, §2]. The latter elliptic curve has the following rational
point

P = (—12(-1+53)(—1+4 s3)(=3 + 55 + 53), —216(—1 4 s3)*(—1 + s3)°) .

One notices that the coordinates of 3P are rational functions. Indeed,

S2,8 S92,8
(23) 3P = <Zt(22233§l’ 22(222 833;;) J where g1, g2 € Q[s2, s3]

and
h(sa,83) = —3 + 452 + 5553 + s3(4 — 653).

Hence, as long as h(s2, s3) # 0, and g1 /h? € Z or go/h> & Z, one sees that 3P
is a point of infinite order by virtue of Lutz-Nagell Theorem. Thus, P itself is
a point of infinite order. It follows that Ey ; is of positive Mordell-Weil rank.
Since C' is isomorphic to Ef j, it follows that C is also of positive Mordell-
Weil rank. Therefore, there are infinitely many rational points (¢, z) € C(Q),
each giving rise to a value for d, by substituting in (2.2), hence an Edwards
curve E, possessing the aforementioned rational points. That infinitely many
of these curves are pairwise non-isomorphic over Q follows, for instance, from
[8, Proposition 6.1]. O

3. TWwWISTED EDWARDS CURVES WITH S-SEQUENCES OF LENGTH 4
A Twisted Edwards curve over k is given by
(3.1) Eoq:az® +y? =1+ do’y?,

where a and d are nonzero elements in k. Note that the point (z,y) = (0, £1) €
Eq.qa(k). Given a set {ug = 0,u1,us,us} C k, u; # uj if ¢ # j, we prove that
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there are infinitely many twisted Edwards curves E, 4 for which S is realized
as the z-coordinates of rational points on E, 4.

We begin by assuming that u; is the z-coordinate of a point in E, 4(k),
2

—1
then one must get y° = %, or u?d — 1 = (au? — 1)i? for some i € k.
w2d —
! 2
. . . . 5 auz—1
Now, if ug is the z-coordinate of a point in E, 4(k), then y* = o
udd —

or ud — 1 = (au3 — 1)j2. So
(auf —1)i?+1  (au3 —1)j2 41

2 2
uy U3

d:

Hence we obtain the following quadratic surface
u3 [(au? — 1)i® + 1] — uf [(auj — 1)j2 +1] =0,

on which we have the rational point (7, j) = (1,1). Solving the above quadratic
surface gives the following

 —audud + ud + 2tauiud — 2tud — at?uiud + uit?

1 =
audu3 — ud — at?u?ul + u3t? ’
_ —2atudud + 2tul + at?uiu2 — u3t? + audui — ul
= 1U2 2 1up — Uy 1Up — Uy
audu3 — ud — at?u?ul + u3t?

Now we get the following result.

THEOREM 3.1. Let up = 0, u1, us and us , u; # u; if © # j, be
a sequence in Z such that h(ui,uz) # 0, and either gi(s2,s3)/h(s2,53)>
or ga(sa,s3)/h(sa2,s3) are not integers, where h, g1, gs are defined in (3.3).
There are infinitely many twisted Edwards curves described by

Eoa:ar? +y? =1+da*y? deQ, acQ* is arbitrary

on which u;, 0 < i < 3, are the x-coordinates of rational points in E(Q). In
other words, there are infinitely many twisted Edwards curves that possess an
S-sequence where S = {u; : 0 < i< 3},
2 2
aui — 1)1 1
PROOF. Substituting the expression for i in d = % gives
uy

that

2.2 2 2,22 2,2\2
(aujus — uj — at*ujus + uit*)*“d

= (ufaPuy — 2ufa®u3 +uia)t* + (—8auiu3 + 4u? + 4u?auj — 4uta
— dufaPuy + 8ufa®ud)t® + (—4u? — 10uia’us + 14auius + 6ufaus
— 4u3 — 10uia’u3 + 4uia + daud)t* + (4ud + Suia’uj — Sauiu’

+ 4uta?us — daus — dufaPul)t + utadul — 2ula’ul + aus.
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Then, assuming (us, £) € E(Q) yields
_aui—1
S oduz—1

where C; € Q and D(t) = aufu3 — u3 — at?>uiu’ + uit?.
For the latter equation to be satisfied, one needs to find rational points
on the elliptic curve C’ defined by

= Cp + C1t + Oat? + Cst® + Cut*
that possesses the rational point
(t,2) = (0,u3(aui — 1)) .

The latter elliptic curve is isomorphic to the elliptic curve described by the
Weierstrass equation E; ; : y? = 2° — 271z — 27.J where

I =12C,Cy — 3C,C3 + C3,
J = T2CoCyCy + 9C1CoCs — 27C3Cy — 27C,C2 — 2C3,
see for example [16, §2]. The latter elliptic curve has the following rational
point
Q=
(—12(—1+ aud)(—1 + au?)(—3 + auj + u}), —216(—1 + au3)*(—1 + au)?) .
One notices that the coordinates of 3Q) are rational functions. In fact,

30 = (91(%7“2) 92(”1,u2)) 7

h(uy,uz)?’ h(uy,ug)?

(3.2) 7* = (Co + C1t + Cot?® + Cst® + Cyt*)/ D(t)?,

where g1, g2 € Q[Ula u2]

and
h(uy,u) = —27 — 72u? + 36u] + 18ulu3 — 12uful — 18uj + 12uiuj
+ujuy — 2uiud + ub + a(36u? — 12u] — 24uF(—3 + u})
(3.3) + 36u2 + 72u3u3 — 24utul — 12uus + dutus

4(=3 + ud)ul) + a*(—144utus + 36uius + 18u;
— 36ulug + dujuy + 2uiuS — 2ud) + a®(36udu;
+4(=3+ ui)ug) + a'us.

Therefore, as long as h(uy,uz) # 0 and g1/h* & Z or g2/h® &€ 7Z, one
sees that Er ; is of positive Mordell-Weil rank where the point @ is of infinite
order. Since C is isomorphic to Ey s, it follows that C’ is also of positive
Mordell-Weil rank. Hence, there are infinitely many rational points (¢, z) €
C'(Q), each giving rise to a value for d, by substituting in (3.2), therefore
a twisted Edwards curve E, 4 possessing the aforementioned rational points.
That infinitely many of these curves are pairwise non-isomorphic over QQ again
follows from [8, Proposition 6.1]. O
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REMARK 3.2. Since (0,—1), (0, 1) are rational points on any twisted Ed-
wards curve, one can show that if u_; = —1, u; = 1, u2, uz and u4, u; # u; if
i # j, is a sequence in Z, there are infinitely many Edwards curves on which
ug, 1 € {—1,1,2,3,4}, are the y-coordinates of rational points in Eq 4(Q).

4. HUFF CURVES WITH S-SEQUENCES OF LENGTH 5
A Huff curve over a number field % is defined by
(4.1) Hap:ar(y? — 1) = by(z? — 1),

with a? # b?. Note that the points (x,y) = (—1,%1),(0,0),(1,%1) are in
H, (k). We prove that given s_1 = —1, 50 =0, s1 =1, 52, s3 € k, 8; # §;
if i # j, there are infinitely many Huff curves on which these numbers are
realized as the z-coordinates of rational points.

Assuming (s2,p) and (s3,q) are two points on H,  yields

(4.2) asz(p® — 1) = bp(s3 — 1),
and
(4.3) ass(q” — 1) = bq(s3 — 1),

respectively. Using (4.2) and (4.3), one obtains
sa(p® —1) _ p(s3—1)

s3> —1)  q(s3-1)
therefore, one needs to consider the curve
C": Apg® — Ap — Bqp® + Bq = 0,

where A = 535% — sy and B = 3233 — s2. Dividing both sides of the above
equality by ¢ gives

1 1
AR AP &y o
q qq q q

Substituting x = % and y = % in the above equation yields the following

q2
quadratic curve
Az — Azy — Bx? + By = 0,
on which we have the rational point (x,y) = (1,1). Parametrizing the rational
points on the latter quadratic curve gives

Bt—B
(4.4) T = AT B

At(1—t)+ B(1—1t)?
4. = :
(45) 4 At+ B

Now we have the following result.
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THEOREM 4.1. Let s_1 = —1,50 = 0,81 = 1,592,853, S # Sy, if m # n, be
a sequence in 7 such that

h=-4+A%-3AB+ B> #0
where A and B are defined as above, and either g1/h? or ga/h® are not inte-

gers, where g1, gs are defined in (4.6). There are infinitely many Huff curves
described by

Hap:ar(y? — 1) = by(z? — 1), a,beQ, a#0b?

on which sp,, —1 < m < 3, are the x-coordinates of rational points in
H,p(Q). In other words, there are infinitely many Huff curves that possess
an S-sequence where S = {s; : —1 <1 < 3}.

PrROOF. Using the equalities (4.4) and (4.5), we obtain the following

Qiz_27 B%(—1+1)
P T B+t —AN(B + At
PR (B + At)

y  (—14+t)(B(=1+1t)— At)’

In both cases we need (B + At)(—1+ t)(B(—1+t) — At) to be a square or
in other words we need t to be the z-coordinate of a rational point on the
elliptic curve C” defined by

2?2 = (At + B)(t — 1)(t(B — A) — B),

with the following k-rational point (¢,z) = (0, B). The latter curve can be
described by the following equation

Y2=X34+((B—-A)?—-AB)X? —2AB(B — A)’X + A’B%(B — A)?,
where A(B— A)t = X and A(B— A)z =Y. This curve has the rational point
R=(X,Y)=(0,AB(B — A)).

Observing that

91(A, B) g2(4, B)
4. =
0 sr= (e sp ra s

where h(A, B) = —4 + A2 — 3AB + B2, one concludes as in the proof of
Theorem 2.1. O

5. GENERAL HUFF CURVES WITH S-SEQUENCES OF LENGTH 4
A general Huff curve over a number field k is defined by
(5.1) Gap: x(ay® — 1) = y(ba* — 1),

where a,b € k and ab(a — b) # 0. It is clear that the point (z,y) = (0,0) €
Gap(k). We show that given ug = 0,u1, ug,us in k, u; # u; if i # j, there
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are infinitely many general Huff curves over which these points are realized
as the xz-coordinates of rational points.
We start by assuming that if u; is the z-coordinates of a point in Gy (k),

2.1 bwP-1 —i2 b2 -1
2y =24 ora o2 for some 7 € k.

then one must have

Uy 7 U1
- . . . L ay® — 1
Similarly, if ug is the z-coordinate of a point in Gy, then =
Y

bu? — 1 -3 buZ-1

42 or a4 ,‘7 2 for some j € k. Thus, one obtains

U J us
(b — )i+ i (bud — 1)j + uss?

)

U Uz
which gives the following quadratic curve
S: A’ + Bj%+Ciz+ Djz =0,
where A = —ujus, B = uwjuy, C = fu%qu 4+ ug, D = bulug — u1. Then
consider the line
mP 4+ n@Q = (np : ng: m+ nr)
connecting the rational points P=(i:j:2)=(0:0:1)and Q = (p:q:7)
lying on S C P2, The intersection of S and mP + nQ yields the quadratic
equation
n?(Ap? + Bq® + Cpr + Dgr) + mn(Cp + Dq) = 0.

Using P and @ lying on S, one solves this quadratic equation and obtains
formulae for the solution (i : j : z) with the following parametrization:

i =np = Cp* + Dpq,

j =ng=Cpg+ D¢’

z=m+nr=—Ap® — B¢

Now we obtain the following result.
THEOREM 5.1. Let ug =0, uy, ug and us , u; # u; if i # j, be a sequence
in k. There are infinitely many general Huff curves described by
Gap:2lay® —1) = y(bz? — 1), a,bek, abla—0)#0.
on which u;, 0 < i < 3, are the x-coordinates of rational points in G p(k).
In other words, there are infinitely many general Huff curves that possess an
S-sequence where S = {u; : 0 < i < 3}.
(bu? — 1)i + uqi?
w1

PROOF. Substituting the value for ¢ in a = yields that

a :ug (bu12 — 1)2p4 — 2ujus (buQ2 — 1) (bu12 — 1) p3q

2 2 2 9 9 u2(b“12*1)2 2 2 2
+ Uy (buQ 71) p°q fu—lp Jr(buQ 71) (bu1 fl)pq.
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Now we assume that (us, f) € G, (k). This yields that
pus (bp*ur®us — bpqui*us® — p*uius + pqui® — bui® + 1)
(bpu12uQ — bqu1u22 — pus + qul) 02—y (bu32 — 1) { —uiug = 0.
This can be rewritten as
Z> (b2p4u?u§u3 — 2bp4ui’u§u3 — 62p2u‘11uQu3 + p4u1u§u3 + 2bp2u§u2u3
— p2ugus) + qZ(—2b*p3utuius + 2bpPutusus + 20puiudus + b2 pududus
— 2p*utugus — bpudus — bpuiuius + puius) + ¢>p?uiuz(bul — 1)?
—TZuq (bU32 — 1) — T?ujus = 0,
where T' = 1/¢. One sees that the rational point P = (¢ : T : Z) = (1:0:
w1 (—1+bu?)/puz(—1+bu?)) lies on the quadratic curve above, hence we may
parametrize the rational points on the quadratic curve above. This is obtained
by considering the intersection of the line dP + eQ where Q = (g1 : ¢2 : ¢3) is
a point on the quadratic curve. In fact, this yields that
d = puz(bui® — 1)(gs*b*p us*us®us — 23°bp us *us’us
— g3%b°p*ur Mugus + qs°p urugus + 2¢3*bp*us*ugus
— q3°p usus — u1gaqsbus” + u1gags + pPurPusqr *b us*
— 2p%ur usqr *bus® + pPurusqr® — 2q1gsb*pPus fugug
+ 2¢1g3bp*ur fugus + 2q1g3bpur *us’us + qrgzb?pur*us”us
— 2q1g3p”ur *ugus — qrgsbpur*us — qrgsbpurus®us + qgspurus
— uruzga?),
e = uy (bug® — 1)(—pur®usq1b*us® + pusgsugb®ur® + puruaqibug’
— 2p”usqsuzbur® + pur*usqib + u1gabus® + pPusqsus — u1gy — purusqr).

O
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