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Near-infrared (NIR) diffuse reflectance spectroscopy was used in combination 

with multivariate analytical methods to discriminate between different fruit and 

vegetable products preserved in glass containers, which are commonly used as 

receptacles for the pasteurization of fruit and vegetable products. To investigate 

the samples in this way, i.e. inside the sealed glass containers, is important for 

this specific application in a food processing facility. In order to adapt 

digitalization technologies to the pasteurization process, it is necessary to 

investigate usually consumed products with suitable sensors and data analytics. 

NIR spectroscopy in combination with multivariate data analysis is a mighty 

tool to unravel various issues in food research and industry. Thus, this 

combination is in the focus of this investigation. It is shown for the first time 

that the discrimination between five types of preserved food in glass containers 

is possible by using NIR diffuse reflectance spectroscopy and multivariate data 

analysis (including discrimination methods). The performance parameters 

sensitivity, specificity, and efficiency, are determined for every product group 

and analyzed in a misclassification table. On average, the results show that 

95% of ca. 2100 observations are correctly classified with partial least squares 

discriminant analysis (PLS-DA). 
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Introduction 

 

Digitalization is propagating in all areas of industry 

and is becoming more and more important. 

Unsurprisingly, the already technologized food 

industry is strongly affected  by this development. The 

new industrial revolution is often titled with 

catchphrases like Industry 4.0 (I4.0), cyber-physical 

systems (CPS), internet of things (IoT), cloud 

computing, and so on (König and Thongpull, 2015; Li 

et al., 2018; Pang et al., 2015; Roblek et al., 2016; 

Trappey et al., 2016; Verdouw et al., 2016), leaving 

latitude for their meaning in the respective field of 

research or application. An important aspect in the 

food industry is traceability and interconnection of 

production steps, which needs sensors to generate and 

analysis tools to handle a great amount of data. Using 

the possibility of sensors and analysis tools, energy, 

time, and waste in food processes can be reduced 
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while the quality of the products can be increased and 

maintained on a high level. In order to integrate these 

new technologies, i.e. sensors, digitalization, 

automation, in a food processing facility, firstly they 

have to be tested and validated in laboratory studies.   

One important manufacturing process in the food 

industry is the preservation of foodstuff. This can be 

done in many ways, but pasteurization (Silva and 

Gibbs, 2004) is still one of the most common 

procedures and will be also applied in Industry 4.0 

food processing. The pasteurization of cabbage and 

fruit products is usually performed by tunnel 

pasteurization. The already sealed product is heated 

up, held for a certain time and cooled down together 

with packing and closures (Brody and Ryan, 1971). As 

there is a thermal load on the pasteurized product, 

degradation of nutrients and negative effects on the 

sensory quality, including appearance, shall be 

avoided by a gentle treatment. However, since the 
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microbiological safety may not be impaired, the 

quality of the product often suffers due to safety 

margins. The reason is that in the hitherto existing 

practice of pasteurization can only roughly adjust the 

process parameters time and temperature to the 

requirements of the actually treated product. In order 

to individually customize the two core process 

parameters, temperature and exposition time, detailed 

knowledge about the case specific microbiological 

inactivation kinetics is required. Today, a production 

line that is connected to cloud-based databases 

providing data of the thermal death kinetics of 

microorganism (D and z values) becomes possible. 

The LDz-Base is one example for such a free access to 

scientific data collection (Schwarzer et al., 2010). 

Those data integrated in the control system of the 

pasteurization plant, e g. with the help of the IoT, will 

be capable to determine the case-customized time-

temperature settings. However, for autonomous 

production system the identification of the kind of 

incoming foodstuff is necessary first, because the 

relevance of different microorganism species is 

strongly related to the kind of product. 

Therefore, for a fully automatized and autonomous 

pasteurization process it is required that the product is 

automatically identified and can be clearly 

discriminated from other products being processed in 

the same facility. To establish this step, investigating 

the possibilities of near infrared spectroscopy (NIRS) 

to become a key technology in Industry 4.0 is 

necessary. 

NIRS is a spectroscopic method in the spectral region 

from 2500 to 700 nm in which combination and 

overtone vibrations in molecules are excited. 

Molecules containing C-H, O-H, N-H and S-H 

functional groups are the ones being in the focus by 

NIR spectroscopists. Therefore, it is extraordinarily 

well suited for investigations on foodstuff and the 

application in food producing facilities (Büning-

Pfaue, 2003; Cozzolino, 2014; Delwiche et al., 1992; 

González-Caballero et al., 2010; Lee et al., 2015; 

Paradkar et al., 2002; Slaughter, 1995; Xie et al., 

2009). Another advantage of NIRS compared to other 

methods is its universal application on samples in all 

forms and even through packaging. 

In the food industry, a multitude of different materials 

are available for packaging food products, all bearing 

their individual pros and cons (Farmer, 2013; 

Robertson, 2006, 2010). Although packaging made 

from plastics are steadily improving, e.g. in shelf life, 

recyclability, and weight; glass containers are 

unsurpassable when aesthetic appeal and quality is 

important (Farmer, 2013).  Glass containers, with a 

market share of 11% in 2010 on global consumer 

packaging (Farmer, 2013), are a popular receptacle to 

pasteurize fruit and vegetable products, as glass is 

inert, does not alter the flavour of the product, can 

easily withstand high temperatures, can be reused or 

recycled, and, what is probably the most important for 

food retailers, the product can be seen by the 

customers. 

Measuring NIR spectra of samples in glass containers 

is more difficult than using an in-line probe, despite 

the high transmittance of glass in the NIR spectral 

range. For in-line measurements, transmission or 

transflection probes, that measure the absorption of 

NIR radiation by the sample, can be used directly. This 

is not possible for products in glass containers, 

especially if they are pasteurized and cannot be opened 

for measurement. Therefore, a diffuse reflectance 

(DR) NIR probe is used. DR NIRS is usually applied 

to products possessing a low amount of water, like 

powders, crystals, dried foodstuff, oils and molasses, 

because water reflects only a small amount of the NIR 

radiation (Catelani et al., 2017; Ferreira et al., 2014; 

Lü et al., 2013; Smeesters et al., 2016; Wedding et al., 

2013). However, it is shown here that also samples 

with a high amount of water can be investigated. A key 

requirement for the successful application of NIRS in 

this field is the analysis of NIR-data with multivariate 

data analysis (MVDA). As NIR spectra usually 

generate more than 100 variables to be used in MVDA 

and many samples can be measured in a short time, it 

is a popular and valuable source to obtain data. 

Publications dealing with multivariate classification 

methods in regard of food-authenticity and 

characterization can be found abundantly. Some focus 

on different methods and provide an overview of the 

field, some address very specific problems using only 

a few selected methods. Oliveri et al. 2012 is showing 

an overview of class modelling and discriminant 

methods for food-authenticity. Furthermore, 

performance parameters for these methods are 

defined; as these methods are qualitative, it is 

necessary to use different parameters as for 

quantitative methods. Performance parameters for 

class modelling and discriminant methods are, for 

example, sensitivity, specificity, efficiency, precision, 

Matthews correlation coefficient and accuracy. Others 

used class modelling and discriminant methods for 

specific issues like adulterants in raw milk (Botelho, 

2015), almond classification based on bitterness 

(Cortés, 2018), geographical discrimination of saffron 

(Liu, 2018), identification of ground meat species 

(Pieszczek, 2018), or adulteration of Norwegian 

salmon (Wu, 2018). Despite the great number of 

publications regarding class modelling and 

discriminant methods, the authors could not find a 

publication that is dealing with the discrimination of 

food preserved in glass containers. 
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In this study, various preserved food samples in glass 

containers are investigated using near-infrared diffuse 

reflectance spectroscopy in combination with 

multivariate data analysis. It is the aim of this study to 

investigate if these methods, applied to this type of 

samples, are suited to provide appropriate data to 

discriminate the individual samples. 

 

Materials and methods  
 

Samples 

 

Commercially available fruits and vegetables 

preserved in glass containers (tangerine slices, pickled 

red cabbage, pickled cornichons, kale and applesauce) 

were purchased at  the  local supermarket, three of 

each kind. Specific information regarding the different 

samples, as nutrition facts, ingredients and best before 

date are summarized in Table SI 1 in the supporting 

information. 

 

Spectroscopic measurements 

 

NIR diffuse reflectance measurements were 

performed using a contact scan head (PSS-H-B01, 

equipped with a 20 W tungsten-halogen lamp) 

coupled to a diode array NIR spectrometer (PSS-2120) 

(both Polytec GmbH, Waldbronn, Germany) equipped 

with a 256 Pixels InGaAs detector. The samples were 

placed on the top of a specifically designed and 3D-

printed sample holder, improving the reproducibility 

of the measurements (see Figure 1 for schematic 

depiction). Spectra were collected using PAS LABS 

version 1.2 (Polytec GmbH) in the wavelength range 

between 1100 and 2100 nm. Data were recorded in 

reflectance mode and are corrected by a dark spectrum 

and a reference spectrum, for which water was used. 

All spectra were recorded at room temperature. Each 

sample was measured 125 times (or 250 times) with 

64 scans for each spectrum using an integration time 

of 100 ms. Due to the inhomogeneity of the samples, 

particularly the pickled cornichons, and the mobility 

of the fruit or vegetable chunks in the glass containers, 

especially in the case of tangerine slices and pickled 

cornichons, this number of measurements was 

required to get an appropriate number of reproduced 

spectra. 

 

Data analysis and validation 

 

Data pre-treatment and multivariate analysis was 

performed using the SIMCA software, version 14.1 

(MKS Umetrics). Principal component analysis 

(PCA), projection to latent structures discriminant 

analysis (PLS-DA), and orthogonal projections to 

latent structures discriminant analysis (OPLS-DA) 

have been used for data analysis. 

PCA is a basic tool in multivariate data analysis that 

can extract dominant patterns in huge datasets and can 

show relations between variables and observations 

that are otherwise hidden in the broad and mostly 

uncharacteristically structured NIR spectra (Cozzolino 

and Murray, 2004; Hämäläinen and Albano, 1992; 

Shumilina et al., 2016; Wold et al., 1987). PLS-DA is 

used to discriminate qualitatively between classes that 

are defined as Y-data. Similar to the PCA approach, a 

data reduction is performed and the observations (X-

variables) are correlated with the classes, if a 

correlation exists (Barker and Rayens, 2003; Botelho 

et al., 2015; Höskuldsson, 1988; Kalivodová et al., 

2015; van Ruth et al., 2010; Wold et al., 2001; Wu et 

al., 2018). 

 
 

Fig. 1. Schematic view of the experimental setup including contact scan head, sample holder, and sample vessel
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OPLS-DA is an improvement to the PLS-DA model, 

leading to a better interpretation of results due to its 

ability to remove orthogonal (non-correlating) data 

from the X-variables using a build-in orthogonal 

signal correction (OSC) (Bylesjö et al., 2006; Bylesjö 

et al., 2007; Trygg, 2002; Trygg and Wold, 2002, 

2003; Worley and Powers, 2016). However, the 

outcome from an OPLS-DA is often too optimistic as 

the integrated OSC filter removes systematic spectral 

variation that does not approve the assigned group 

memberships, and therefore it needs proper validation 

(Worley and Powers, 2016). 

One way to test the resilience of a model is by 

performing a response permutation test. This is a 

procedure which fits the (O)PLS-DA model several 

times with unchanged X-values but with a randomly 

permutation of the Y-vector. By repeating these 

permutations, a statistical significance of the R²- and 

Q²-parameters is generated (Eriksson et al., 2008). The 

outcome of this test provides an indication whether the 

model is the product of pure chance or a systematic 

approach that has the ability to reliably predict new 

observations. To have a performance measure of 

qualitative discriminant models, and being able to 

compare different models, the following parameters 

are frequently used. (Oliveri and Downey, 2012) With 

these parameters it is also possible to define a 

threshold value above which a model is considered 

appropriate. To understand the meaning of the 

parameters sensitivity (sens), specificity (spec) and 

efficiency (eff), the terms true positive (TP), false 

negative (FN), false positive (FP), and true negative 

(TN) have to be introduced first. 

TP: samples that are correctly assigned to the class 

they belong to. Example: Observation belongs to class 

1 and is correctly assigned to class 1. 

FN: samples that are not assigned to the class they 

belong to. Example: Observation belongs to class 1, 

but is assigned to any other class or no class at all.  

FP: samples that are assigned to a class they do not 

belong to. Example: Observation belongs to any class 

except class 1, but is assigned to class 1. 

TN: samples that do not belong to the respective class 

and are correctly not assigned to this class. Example: 

Observation belongs to any class except class 1 and is 

correctly assigned to a class different than class 1. 

With these, the three parameters can be defined as: 

 

sens =
TP

TP + FN
 

(1) 

spec =
TN

TN + FP
 

(2) 

eff = √
TP ∗ TN

(TP + FN) ∗ (TN + FP)
 

(3) 

The sensitivity of a model can be understood as the 

fraction of samples that are correctly assigned by the 

model to the class they belong to. Whereas the 

specificity is the fraction of samples that are correctly 

rejected by the model as they do not belong to the class 

of interest. The efficiency is a parameter summarizing 

the other two parameters. 

 

Results and discussion 
 

In this study five groups of different fruit and 

vegetable products preserved in glass containers have 

been investigated. Each group  consisted of three 

(slightly) different products. NIR diffuse reflectance 

spectroscopy and multivariate data analysis are used in 

combination to record and analyze the data. It is the 

objective of these investigations to clearly 

discriminate each of the five groups by the afore-

mentioned method. For this purpose, models are 

created  and split into two classes (1 and 0). Class 1 

contains all the data for one specific product group. 

Class 0 contains the data of all the other product 

groups. To evaluate the model performance, the 

parameters sensitivity, specificity, and efficiency have 

been chosen. These parameters give information on 

the ability of a model to predict the affiliation of a 

product to one of the two classes.  

For discrimination of different product types it is 

useful to apply a combination of PCA and (O-)PLS-

DA as this leads to insights on general spectral trends 

and group-predictive spectral features (Worley and 

Powers, 2016). PCA is, unlike (O-)PLS-DA, an 

unsupervised method, which is positive as it is not 

biased by a response value assigned by the analyst, but 

also negative as it will only show differences if they 

have a major contribution in the variables (Worley and 

Powers, 2016). 

The measured spectral region from 1100 to 2100 nm, 

which covers the complete first and second overtone 

region, is sampled on the 256 Pixels of the detector, 

leading to 256 variables for the multivariate data 

analysis. 

In the NIR raw data (Figure 2a), it can be seen that the 

overall shape of the spectra of the different samples is 

very similar, with the strongest differences in the 

region around 1650 to 1750 nm. Considering the 

sample composition for the macronutrients: 

carbohydrates in the samples vary between 0.5% and 

13.2%, fat between 0% and 1.7%, and proteins 

between 0.1% and 3.5%. It could be concluded that the 

differences in carbohydrate concentration are  one of 

the possible factors for the differentiation of the 

samples. Furthermore, the large differences in 

carbohydrate content are  the reason for the differences 

in the NIR spectra between 1650 and 1750 nm, 
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because the first overtone of the C-H stretch vibration 

of carbohydrates is found in this region (Nielsen, 

2017). It also becomes more evident when we look at 

the normalized spectra (see Figure 2b). It is found that 

the absorption at around 1676 nm correlates with 

carbohydrate (and sugar) concentration. Plotting the 

carbohydrate (or sugar) concentration of the different 

samples against the normalized log(1/R) values at 

1676 nm leads to a linear relationship - if we dismiss 

the two samples with artificial sweeteners added, 

because it seems that they somehow behave differently 

(Figure SI 1). In Figure 2b it can also be observed that 

most of the samples have their peak absorption at 

around 1440 nm, which is most likely due to the first 

overtone of the free O-H vibration of water. 

Additionally to the differences in carbohydrates, the 

sample form, especially texture and particle size are 

also considered major factors for sample 

differentiation. This is due to two reasons. Firstly 

carbohydrate content also  differs within the product 

groups, e.g. between 0.5 and 7.0 % for kale, and 

secondly,  the sample forms are very similar within 

each sample group but differ to some extent strongly 

between groups, e.g. sliced tangerines and apple sauce. 

Sample characteristics like firmness of different fruits 

and beans (Lu, 2001; Mendoza et al., 2018; Munera et 

al., 2018; Wang et al., 2015), and particle size of 

cereals in flours, meal and plant milk (Ayvaz et al., 

2015; Gajdoš Kljusurić et al., 2015; Zhu et al., 2017) 

have been the issue for many NIR investigations, 

showing that it is possible to use these characteristics 

to discriminate different samples or to predict these 

parameters using PLS or similar models. 

Parameters that show the influence of the NIR 

wavelength on the scores, i.e. loadings, regression 

coefficients, and variable importance for the 

projection,  do not provide evidence for especially 

important or unimportant regions in the NIR spectra. 

As NIR data pre-treatment, which is usually 

performed previous to multivariate data analysis,  did 

not provide better results according to the chosen 

performance parameters, raw data are used for the PLS 

model development. 

 

As there are many more observations in class 0 than in 

class 1, the observations were chosen to be 

approximately the same number for class 1 and 0 in 

the calibration set. This was set to be half of the 

observations of class 1 (188 or 250 depending on the 

product group, respectively). Thus, there are more 

observations from class 0 in the prediction set than 

from class 1, but it turned out that this is handled well 

by the models. The models should be able to classify 

the data not used in the calibration set into the right 

class. Results obtained from the prediction tests have 

been analyzed and summarized in Table 1. For every 

model and performance parameter, values near 100% 

are achieved. The only exception is red cabbage (line 

C in Table 1), for which the false negative rate in class 

0 is higher than for the other models, leading to a 

sensitivity of class 0 of only 83% and an efficiency of 

91%. 

 

 

 

 
 
 

 

Fig. 2. a) NIR raw data of the 15 different samples, b) normalized spectra. 
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Table 1. Performance of the created models for each of the five product groups regarding the parameters sensitivity, specificity 

and efficiency. 

 
 members 

prediction 

set class 0/1 

members 

calibration 

set class 0/1 

sensitivity 

class 0/1 (%) 

specificity 

class 0/1 (%) 

efficiency 

class 0/1 (%) 

model 

type 

latent 

variables 

A 1374/250 250/250 98/98 100/100 99/99 OPLS-

DA 

1+13+0 

B 1375/249 232/250 95/100 100/100 98/100 OPLS-

DA 

1+14+0 

C 1566/187 183/188 83/97 100/99 91/98 OPLS-

DA 

1+16+0 

D 1561/187 188/188 98/100 100/99 99/100 OPLS-

DA 

1+11+0 

E 1561/188 188/187 100/100 100/100 100/100 OPLS-

DA 

1+10+0 

A: cornichons, B: tangerines, C: red cabbage, D: apple sauce, E: kale  

 
 

Fig. 3. Class 1 tangerines, Class 0 other samples; a OPLS-DA scores scatter plot, b CV scores scatter plot, c predicted scores 

scatter plot, d permutation test result (100 permutations, class 0). OPLS-DA 1+14+0 components. 

 

One of the five models shall be discussed here in more 

detail. For this, the one having sliced tangerines entitled 

class 1 and the other samples class 0 was chosen (line B 

in Table 1). Figure 3 and 4 are showing the most 

important plots explaining the performance and 

validation of the model in addition to Table 1. Figure 3 

shows the scatter plots created from the O-PLS-DA 

model, segmented in score plots (a), cross-validation 

score plots (b), and predicted score plots (c). 

Additionally, the result of the permutation test is shown 

in segment d. In the three O-PLS-DA scores plots (a, b, 

c) a clear separation between the two classes is evident, 

giving a descriptive representation for the very good 

model performance shown in Table 1. The permutation 

test results shown in segment d show that the model is 

resilient and is not over parametrized. Permutation tests 

have also been performed for all the other models. The 

results, i.e. bias and slope of the permutation tests are 

summarized in Table SI 2 in the supporting information. 

Additionally to the clear and descriptive OPLS-DA plots, 

also the PCA and PLS-DA scatter plots are shown (see 

Figure 4 a to d). In segments a and b the scores scatter 

plot for the PCA and PLS-DA models can be compared. 
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Fig. 4. Class 1 tangerines, Class 0 other samples; a PCA scores scatter plot, b PLS-DA scores scatter plot, c PLS-DA CV 

scores scatter plot, d PLS-DA predicted scores scatter plot. PCA 3 components, PLS-DA 15 components. t[1]: scores first 

principal component (PC) or latent variable (LV); t[2] scores second PC or LV; tcv: scores from cross validation; tPS: scores 

from prediction set 

 
It is found that they are very alike if one of them is 

turned by 180°. In both score plots the classes 1 and 0 

are mostly separated but they still overlap to a small 

degree. Nevertheless, when looking at the cross-

validated and predicted PLS-DA score scatter plots, it 

is found that the two classes can be predicted very 

accurately. The predictive power of the PLS-DA 

model is the same as for the OPLS-DA model 

considering the chosen performance parameters and 

choosing the same amount of latent variables for the 

two methods 

 

Conclusion 
 

Near-infrared (NIR) diffuse reflectance spectroscopy 

in combination with multivariate data analysis 

(MVDA) can be used to discriminate between five 

groups of fruits and vegetables (sliced tangerines, 

pickled red cabbage, kale, apple sauce, and pickled 

cornichons) preserved in glass containers with an high 

efficiency (near 99%). Due to complex and partly 

heterogeneous samples, hundreds of  thousands of 

measurements are required to obtain well working 

models. The results of this investigation are an 

important step towards a fully automated and 

autonomous pasteurization process which uses NIR  

 

 

and MVDA as its main data recording and processing 

unit. The OPLS-DA method provides the best results  

according to the score plots, compared to the PCA and 

PLS-DA method. Considering the performance 

parameters sensitivity, specificity and efficiency, 

OPLS-DA and PLS-DA both provide excellent 

results. We will carry on with similar investigations 

using NIRS and MVDA to distinguish between 

products in glass containers before and after they are 

pasteurized, using chemical properties that change 

during pasteurization. With this information it should 

be possible to determine an accurate thermal load that 

was applied to a product.  
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