Psychological Topics, 28 (2019), 1, 193-232 Original Scientific Paper UDC: 159.95

doi:https://doi.org/10.31820/pt.28.1.10

616.89-008

Estimations of Competence in Neurodevelopmental Conditions: A Review

Elizabeth A. Wanstall, Joshua Doidge, Jonathan Weiss, and Maggie E. Toplak

York University, LaMarsh Centre for Child and Youth Research, Department of Psychology, Toronto, Canada

Abstract

Estimations of competence paradigms offer methods to help us measure how well we track our performance. Bridging across the clinical research and metacognitive research traditions, we identified the Positive Illusory Bias (PIB), metamemory and meta-reasoning paradigms for assessing estimation of competence in neurodevelopmental conditions. Overall, studies from PIB paradigms suggest that individuals with Attention-Deficit Hyperactivity Disorder, Autism, Intellectual Disability and Learning Disability tend to display a positive bias in their performance relative to other informants. In metamemory paradigms, individuals with these neurodevelopmental conditions tend to show more discrepancy between their subjective judgments and their memory performance relative to comparison controls, but these findings have been less consistent than for PIB. Meta-reasoning has been less well-studied across neurodevelopmental conditions. In order to advance our understanding of whether estimation of competence is a significant domain for understanding neurodevelopmental conditions, consideration must be given to conceptual models for each neurodevelopmental condition, methodological issues (paradigm selection and interpretation of self-report and subjective judgment) and developmental considerations.

Keywords: estimating competence, metacognition, monitoring accuracy, Positive Illusory Bias, Attention Deficit/Hyperactivity Disorder, Autism, Intellectual Disability, Learning Disability, neurodevelopmental conditions

Introduction

The estimation of competence and monitoring accuracy have been most wellstudied in the field of metacognition (Dunlosky & Metcalfe, 2009). Models that have emerged from this field have generally focused on the cognitive processes required to monitor our ongoing thought processes and control the allocation of mental resources (Ackerman & Thompson, 2017). To conceptualize metacognitive abilities,

Maggie E. Toplak, 126 BSB, Department of Psychology, York University, 4700 Keele St., Toronto, Ontario, Canada M3J 1P3. E- mail: *mtoplak@yorku.ca*

it is helpful to think of two levels of cognitive processes. First, there are object-level processes that are needed to complete basic cognitive tasks, such as perceiving, remembering, and decision-making. Second, there are meta-level processes that help monitor the object-level processes to assess how they are functioning and determine the necessary allocation of mental resources to successfully complete these objectlevel processes (Nelson & Narens, 1990). The study of metacognition aims to better understand these meta-level processes, with metacognitive paradigms in the developmental literature suggesting that even typically developing (TD) children often overestimate their competence on tasks (Desoete & Roeyers, 2006; Schneider, Visé, Lockl, & Nelson, 2000). The estimation of competence and metacognitive paradigms have also been examined in clinical samples, including in neurodevelopmental conditions, such as Attention-Deficit/Hyperactivity Disorder (ADHD), autism, Intellectual Disability (ID), and Learning Disabilities (LD). It is of interest to determine whether estimates of competence in neurodevelopmental conditions differ from peers without neurodevelopmental challenges. The purpose of this review was to provide a summary of the paradigms and findings that assess estimations of competence in neurodevelopmental conditions, linking the clinical and cognitive literatures.

Neurodevelopmental Conditions and Estimating Competence

The idea of examining the estimation of competence and metacognition in clinical conditions has been an emerging field of interest, especially in adult samples (Dimaggio & Lysaker, 2010). The impetus for consideration of metacognitive related difficulties in clinical samples is based on the idea that metacognitive paradigms may help explain some of the more persistent problems that are typically associated with clinical conditions. For example, if metacognitive awareness is related to difficulties in differentiating mental states, as has been suggested in autism and in schizophrenia, then paradigms that elucidate such awareness can help us to better understand these difficulties further. In the present paper, we chose to focus on neurodevelopmental disorders, which refer to a set of conditions that emerge early in the developmental period and have negative implications for cognitive, emotional, academic and social functioning [American Psychiatric Association (APA), 2013]. This broad umbrella term includes a number of diagnoses in the DSM-V, including ID, communication disorders, autism, ADHD, specific LD, and motor disorders (APA, 2013). Approximately 5% of the population is affected by neurodevelopmental conditions (Mitchell, 2015), but some estimates based on prevalence studies in the US have been reported to be as high as one in six children (Boyle et al., 2011). While at a broad level, there are compelling reasons to think that tracking or estimating performance may be problematic in clinical samples, our focus was based on a narrower view, that is, reviewing the studies that have provided measurable constructs for assessing these difficulties in neurodevelopmental conditions. While the terms metacognition and monitoring accuracy are well used in the cognitive literature, we chose to use the more generic term of "competence estimation" to reflect the breadth of paradigms that have been examined in the clinical literature to examine these types of constructs.

According to self-perception theory, it is proposed that children who tend to succeed in various domains are able to develop and maintain healthy and appropriate beliefs about their own competence. Conversely, children who tend to experience repeated failures in various domains are more likely to develop low beliefs regarding their own competence (Harter, 1981). As such, this model would suggest that individuals with neurodevelopmental conditions may develop low beliefs about their own competence in areas in which they may experience particular challenges (Owens & Hoza, 2003). However, this has not always been found to be the case in these populations. For example, studies have suggested that individuals with ADHD may actually overestimate their competence in various areas of functioning, including those in which they may experience particular challenges (Owens, Goldfine, Evangelista, Hoza, & Kaiser, 2007). It is in fact possible that there may be some unique and distinct characteristics related to competence estimation that specifically emerge in individuals with neurodevelopmental conditions. As such, garnering a more fulsome understanding of competence estimation across the cognitive and clinical literatures in these populations may shed light on some of their challenges, which could in turn provide important empirical and clinical information.

Attention-deficit/hyperactivity disorder (ADHD) is characterized by persistent symptoms of inattention and/or hyperactivity-impulsivity that impair functioning. Individuals with ADHD are described as experiencing deficits in self-regulation, which includes monitoring and adjusting one's behavior accordingly (Shiels & Hawk Jr., 2010). In terms of developmental functioning, self-perceptions have been identified as a critical domain of impairment in ADHD (Weyandt & Gudmundsdottir, 2015). The paradigm that has been most commonly used in the clinical research literature is the Positive Illusory Bias (PIB) to demonstrate that children with ADHD tend to display inflated self-esteem with respect to their own competence, which suggests key deficits related monitoring accuracy of behaviour and performance. However, in addition to the PIB paradigm, there has also been some research to examine metamemory and meta-reasoning paradigms in ADHD.

Autism is characterized by a persistent impairment in social communication and social interaction as well as restricted, repetitive patterns of behavior, interests and activities. Many individuals with autism have additional intellectual and/or language impairments. Individuals with autism have been reported to display deficits in theory of mind (i.e. the knowledge and understanding of others' mental states) and language development (Baron-Cohen, 2000; Boucher, 2003), which have been suggested to be correlated with metacognitive abilities from a young age (Fritz, Howie, & Kleitman, 2010). Difficulties in monitoring accuracy are not central to conceptualizations of autism deficits, however, there has been research to examine PIB and metamemory.

Intellectual Disability (ID) is characterized by significant deficits in general intellectual functioning resulting in impairment in adaptive behaviour compared to their peers. Generally, IQ scores below 70-75 qualify as significantly below age expectations, though test interpretation and other factors must be considered (APA, 2013). While monitoring accuracy difficulties do not seem to be central to conceptualizations of ID, there has been research to examine PIB and metamemory paradigms.

Learning disabilities (LD) are characterized by persistent difficulties in learning key academic skills, in domains such as reading accuracy/fluency, reading comprehension, writing, spelling, arithmetic, and mathematical reasoning. Specifically, the impairment in academic skills cannot be simply due to lack of opportunity, but a clear deficit in learning those academic skills (APA, 2013). Some studies have identified deficits in self-efficacy (i.e. one's belief in one's ability to succeed) in youth with specific LDs (Baird, Scott, Dearing, & Hamill, 2009), which may mediate the relationship between metacognition and performance (Coutinho, 2008). Monitoring accuracy, however, has not been central to defining the impairments observed in LD, but there have been studies examining PIB and metamemory in this special population.

Overall, difficulties in estimating competence have been implicated in ADHD, autism, ID and LDs. In order to survey the literature on studies that have assessed paradigms related to the estimation of competence, we purposely chose the use the term "estimation of competence" to reflect the diverse types of paradigms that have been used across these literatures in an effort to begin to compile these studies in one place, but also to begin to consider conceptual underpinnings that may underlie all of these paradigms, and to provide a reference point for further studies examining such paradigms. Based on our review of the literature, we identified PIB and metamemory paradigms as the most commonly studied paradigms to assess estimation of competence, with PIB most commonly studied in the clinical literature and metamemory paradigms rooted in cognitive and experimental literatures. To our knowledge, estimations in competence have not been examined in motor and communication neurodevelopmental disorders based on our review of the literature. To undertake this review, we broadly surveyed the literature across various search engines (e.g. PsycInfo, PubMed, Google Scholar). Our search terms included the neurodevelopmental conditions identified (i.e. ADHD, autism, ID, and LD) as well as relevant terms related to estimation of competence (i.e. competence estimation, performance calibration, positive illusory bias, metamemory, metareasoning, metacognition). Based on these searches, we selected articles that concretely tested paradigms related to estimation of competence, specifically in terms of positive illusory bias, metamemory and metareasoning. Throughout this process, we screened 435 articles and included 65 articles in our final literature review.

Paradigms for Estimating Competence in Neurodevelopmental Disorders

From a broad perspective, the estimation of competence has been implicated as an important domain across neurodevelopmental conditions. Table 1 provides a summary of the empirical studies that provide measurable paradigms to assess the estimation of competence and that were included in this review. The PIB paradigm has been well-studied in the clinical literature, addressing competence estimation across all domains of functioning, including cognitive performance, academic performance and social functioning. In contrast, studies of metacognition are by definition more specifically focused on cognitive performance, referring specifically to individuals' knowledge, monitoring and control of cognitive activities (Dunlosky & Metcalfe, 2009). Within the field of metacognition, an emphasis has been placed on the study of metamemory (i.e. meta-level processes for learning and remembering), and in recent years a growing interest in meta-reasoning (i.e. metalevel processes for reasoning and problem-solving; Ackerman & Thompson, 2017).

Positive Illusory Bias Paradigms

Many estimation of competence paradigms assess the extent to which individuals' estimates of their capabilities (i.e. metacognitive judgment) align with their actual performance (i.e. criterion task; Pieschl, 2009). However, estimations of competence can also be measured by comparing an individual's estimate of their capabilities with that of other raters. In children, this external rater is often a parent or a teacher (Bourchtein, Langberg, Owens, Evans, & Perera, 2017). When comparing self-evaluations to an external rater's evaluations on a given task or skill, individuals in the general population tend to overestimate their skills. This is often referred to as the "better-than-average" effect (Alicke & Govorum, 2005) or the optimism bias (Weinstein, 1980, 1982). In fact, having some positive bias about one's abilities is considered to be adaptive, as it is linked to sociability, happiness, and contentment among other positive outcomes (Taylor & Brown, 1988). The lack of positive self-perceptions has been associated with low self-esteem and depression (Hoza et al., 2004).

Many studies have examined the PIB in these special populations. PIB is defined as a phenomenon where individuals rate themselves as significantly more competent in a certain area compared to external raters (e.g. a parent or teacher rating) or more objective measures (e.g. test performance). Though some PIB studies do compare one's self-perceptions to an objective measure of their performance in a given domain, it is much more common in these studies to rely on an external rater. Generally, PIB is calculated using the discrepancy method, where the external rating (often a parent or teacher) or the objective measure selected is subtracted from the individual's self-rating of their own competency (Owens et al., 2007).

4)		
Study	Participants	Measures	Findings
Positive Illusory Bias	- ADHD Child and A	<u>dolescent Samples</u>	
Bourchtein,	N = 326 adolescents	Self-report rating scale: Self-Perception Profile	18.4% of the ADHD group revealed a global
Langberg, Owens,	with ADHD, age	for Children (SPPC)	PIB, across the behavioral, scholastic, and social
Evans, & Perera	range 10.47-14.40	Parent rating: Parent version of SPPC	domains relative to parents. An additional 29%
(2017)	years	<u>Academic Task</u> : Grade Point Average (GPA)	of the ADHD group displayed a PIB in the
			scholastic domain only.
Bourchtein et al.	N = 233 children	Self-report rating scale: Self-Perception Profile	The ADHD group did not display more of a PIB
(2018)	with and without	for Children (SPPC)	than the TD group.
	ADHD, age range 8-	Parent rating: Parent version of SPPC	
	10 years	Social Skills Ratings: Peer and staff rating of	
		Social Skills on children's group activity	
Chan & Martinussen	N = 109 adolescents	Self-report rating scale: Conners Third Edition-	ADHD group showed a larger PIB in their
(2016)	with and without	Adolescent (Conners 3)	academic self-ratings than a TD group, but only
	ADHD, age range	Parent rating: Conners Third Edition-Parent	when these ratings were compared with parent
	14-17 years	(Conners 3)	ratings.
		Academic Tasks: The Test of Memory and	
		Learning (2 nd ed) and The Woodcock-Johnson	
		III Tests of Achievement Calculations subtest	
Eisenberg &	N = 9062 children	Self-report rating scale: Math and reading skills	ADHD girls had more negative parents' and
Schneider (2007)	with and without	(adapted from the Self-Description	teachers' perceptions compared to TD samples.
	ADHD, age range 8-	Questionnaire I)	ADHD boys also had negative perceptions, but
	9 years	Parent rating: math and reading skills.	less pronounced than the TD boys. Self-
		Teacher rating: reading, language, and math	perceptions are not significantly different by
		skills	ADHD status, except boys had more negative
		Academic Task:	self-perceptions related to math.
		Woodcock-McGrew-Werder	
		Mini-Battery of Achievement	

Estimation of Competence Paradigms and Findings in Neurodevelopmental Disorders

PSYCHOLOGICAL TOPICS, 28 (2019), 1, 193-232

Table 1

Study	Participants	Measures	Findings
Emeh, Mikami, & Teachman (2015)	N = 78 children with and without ADHD.	Self-report rating scale: Self-Perception Profile for Children (SPPC)	ADHD group had inflated PIB relative to parent and teacher ratinos of their commetence. This
	age range 6.8-9.8	Parent: Parent version of SPPC Teacher rating: Teacher version of SPPC	was not the case for the TD group.
Evangelista, Owens, Golden. & Pelhman	N = 107 children with and without	Self-report rating scale: Self-Perception Profile for Children (SPPC)	Compared to the TD group, the ADHD group significantly overestimated their own
(2008)	ADHD in grades 3,	Teacher Rating: Teacher version of SPPC	competence relative to teachers' estimates in all
	4,5	Academic Task: Wechsler Individual	domains.
		Achievement Test (Second Edition) – Abbreviated (WIAT-II-A)	
Fefer et al. (2018)	N = 24 children with	Self-report rating scale: Self-Perception Profile	ADHD group had more limited self-awareness,
	ADHD, age range	for Children (SPPC)	with mothers reporting overestimation of
	9.75-13.75 years)	Parent Rating: Parent version of SPPC	competence.
Fliers et al. (2010)	N = 103 children	Self-report rating scale: Self-Perception Profile	Motor performance was significantly
	with and without	for Children (SPPC)	poorer in children with ADHD compared to
	ADHD, Mean age =	Experimental Tasks: Movement Assessment	their unaffected sibling group and TD group, but
	10 years $(SD = 1.9$	Battery for Children (MABC)	self-perceived motor performance did not differ
	years)	Competentiebelevingsschaal' for Children	between groups.
		(CBSK)	
Gerdes, Hoza, &	N = 197 children	Self-report rating scale: Parent-Child	ADHD boys did not differ from TD boys in
Pelham (2003)	with and without	Relationship	their perceptions of their relationships with their
	ADHD (all boys),	Questionnaire (PCRQ)	parents. When the boys with ADHD were
	age range 7.33-12.75	Parent Rating: Parent-Child Relationship	compared directly to those of their parents,
	years	Questionnaire (PCRQ)	ADHD boys' reported PIB relative to TD
			parent-child dyads.
Helseth, Bruce, &	N = 39 children with	Experimental Tasks:	The ADHD group were significantly more
Waschbunsch (2016)	and without ADHD	Boys completed four experimental tasks that	likely than TD group to overestimate their
	(all boys), age range	measure physical abilities and then asked how	physical ability at difficult levels of the task.
	10-12 years	successfully they performed the task.	

Wanstall, E. A., Doidge, J., Weiss, J., & Toplak, M. E.: Competence Estimation in Neurodevelopmental Disorders

Chuchi	Darticipants	seanser	Findings
(nnic	an incipation		cSumn I
Hoza et al. (2010)	N = 797 children	Self-report rating scale: Self-Perception Profile	Over 6-year time span, TD group exhibited less
	with and without	for Children (SPPC) (for timepoint 1 and 2)	PIB than the ADHD group.
	ADHD, age range 8-	Self-Perception Profile for Adolescents (SPPA)	
	13 years at timepoint	(for timepoint 3 and 4), and for some	
	1.	participants	
	Four timepoints over	Teacher Rating:	
	a 6-year span in this	Teacher version of SPPC (for timepoint 1 and 2)	
	study.	Teacher version of SPPA (for timepoint 3 and 4)	
Hoza, Vaughn,	N = 264 children	Self-report rating scale: Self-Perception Profile	Across conditions of the task, PIB by children
Waschbusch,	with and without	(SPPC) (completed at 3 time points)	with ADHD was never normalized in relation to
Murray-Close, &	ADHD age range 7-	Teacher ratings: Teacher version of SPPC	TD children's self-perception rating.
McCabe (2012)	12 years	Experimental Task: Matching game of teachers'	
		ratings of competence of the child with and	
		without a monetary incentive	
Hoza, Waschbusch,	N = 185 children	Self-report rating scale:	ADHD males rated their own performance more
Pelham, Molina, &	with and without	Questions on expectancy results about task	favorably than TD boys.
Milich (2000)	ADHD (all boys)	based on different conditions, with confederate	
	age range 7.4-12.7	children.	
	years	Self-evaluation and attribution rating of	
		performance.	
		Experimental Tasks: Social interaction task	
		Social Skills Ratings:	
		Observer coding of boy's social interactions.	
		Talk time in social interaction.	
Jia, Jiang, & Mikami	N = 146 children	Self-report rating scale: Self-Perception Profile	For the ADHD group, self-perceptions of
(2016)	with and without	(SPPC) for those who completed grade 2,	competence in both social and behavioral
	ADHD, age range	Perceived Competence and Social Acceptance	domains were significantly more positive than
	6.8-9.8 years	for Young Children (PCS) for those in who have	that reported by their parents and teachers. In
		yet to complete grade 2	contrast, for the TD group, self-perceptions of
		Teacher Ratings: Teacher version of SPPC	competence in both domains were significantly

Study	Participants	Measures	Findings
		Social Skills: Peer Sociometric interviews with children	more negative than that reported by their parents and teachers.
Jiang & Johnston (2017)	N = 81 children with and without ADHD (all boys), age range	Self-report rating scale: Self-Perception Profile (SPPC) Post-Task Self-Evaluations of Performance	Compared to the TD boys, the ADHD boys did not show PIB in their ratings of actual performance on the social tasks. But when
	8-12 years	(PSP) Parent rating: Parent version of SPPC	difference scores were used that compared child and parent ratings, the ADHD boys showed a
		Experimental Task: Computerized social interaction tasks	significant PIB compared to 1D boys.
Langberg et al. (2011)	N = 57 children and adolescents, age	Parent rating: Homework Problems Checklist (HPC)	Parents and teachers rated ADHD children and adolescents as demonstrating clinically
×	range 10-14 years	Teacher rating: Children's Organization Skills Scales (COSS) A codemic Measure: School andes	significant problems in all areas, whereas the ADHD students rated themselves in the normal
I innea Hoza Tomh	<i>M</i> =125 <i>children</i>	Calf-renort rating coale: Calf-Derrention Drofile	Only the ADHD children with DIB disculared
& Kaiser (2012)	with and without	(SPPC)	less prosocial behavior and less effortful
	ADHD, age range 7-	Teacher rating: teacher version of SPPC	behavior.
	11 years	Experimental Task: Social interactions between	
		the participant and a child confederate	
		Social Skills Ratings: Observer coding of social interactions	
McQuade, Mendoza	N = 120 children	Self-report rating scale: Self-Perception Profile	Differences among children with and without
Larsen, & Breaux	with and without	(SPPC)	PIB did not depend on ADHD symptoms.
(2017)	ADHD, age range 8-	The self-esteem Implicit Association Test (IAT)	
	12 years	Teacher rating: Teacher version of SPPC	
Mikami, Calhoun, &	N = 43 children with	Self-report rating scale: Self-Perception Profile	PIB at the beginning of the summer predicted
Abikoff (2010)	ADHD, age range	(SPPC)	poorer response to intervention. Despite
	0.9-11.9 years	Camp Counselor ratings: Adult version of SPPC	participating in an intensive intervention, there
		Ubserved conduct problems at summer	was mign stability of ADHD children's plased -16
		treatment program benavioral intervention	seu-percepuons regarding meir periornance.
		(116)	

Findings		ADHD children were more likely than their TD peers to have PIB in both the social and behavioral domains.		Relative to scores from mothers, teachers, and the lab-task, girls with ADHD over-estimated their competence significantly more than TD girls.
Measures	<u>Social Skills Ratings</u> : Peer preference nominations and friendship nominations	<u>Self-report rating scale</u> : Self-Perception Profile for Children (SPPC) <u>Parent Ratings</u> : Diagnostic and Statistical Manual of Mental Disorders Fourth Edition (DSM-IV) Conduct Disorder Checklist	Teacher Rating: Teacher version of SPPC (for timepoint 1 and 2), Teacher version of SPPA (for timepoint 3 and 4), Social Skills Rating System (SSRS) and Dishion Social Acceptance Scale (DSAS)	Self-reporting rating scale: Matson Evaluation of Social Skills for Youngsters (MESSY) Parent Ratings: Children's Impairment Rating Scale (CIRS) Matson Evaluation of Social Skills for Youngsters (MESSY) Children's Social Behavior Scale-Parent Form (CSBS-P) Teacher Rating: Children's Impairment Rating Scale (CIRS) Matson Evaluation of Social Skills for Youngsters (MESSY) Experimental Social Skills for Youngsters (MESSY)
Participants		<i>N</i> = 820 children with and without ADHD, age range 8- 13 years		<i>N</i> = 82 children with and without ADHD (all girls), age range 9-12 years
Study		Murray-Close et al. (2010)		Ohan & Johnston (2011)

Study	Participants	Measures	Findings
Owens & Hoza (2003)	<i>N</i> = 180, children with and without ADHD, age range 9- 12 years	Self-report rating scale: Self-Perception Profile (SPPC) <u>Teacher ratings</u> : Teacher version of SPPC <u>Academic Task</u> : The Woodcock-Johnson III Tests of Achievement reading, and math subtests	ADHD Combined and Hyperactive/Impulsive subtypes had a PIB regarding scholastic competence more than ADHD Inattentive subtype when reading and math achievement scores were used. ADHD Combined and Hyperactive/Impulsive subtypes had higher PIB than TD group when math achievement and teacher ratings children's competence were used as criteria. ADHD children with predominantly inattentive symptoms generally did not differ from TD children with regard to PIB.
Rizzo, Steinhausen, & Drechsler (2010)	N = 54 children with and without ADHD, age range 8-10 years	<u>Self-report rating scale</u> : SelfReg questionnaire <u>Parent ratings</u> : Behavior Rating Inventory of Executive Function (BRIEF) <u>Teacher ratings</u> : Conners Teacher Rating Scale Revised (CTRS-R) Behavior Rating Inventory of Executive Function (BRIEF)	Moderate tendency of ADHD children toward a PIB relative to TD group.
Steward, Tan, Delgaty, Gonzales, & Bunner (2017)	<i>N</i> = 57 children and adolescents with and without ADHD (all girls), age range 11-16 years	Self-report rating scale: Behavior Rating Inventory of Executive Functioning (BRIEF) <u>Parent rating scale</u> : Behavior Rating Inventory of Executive Functioning (BRIEF)	The ADHD group had significantly higher PIB compared to TD children within the Inhibit, Shift, Monitor, Emotional Control, Working Memory, and Plan/Organization domains of the BRIEF.
Swanson, Owens, & Hinshaw (2012)	N = 228 children with and without ADHD (all girls), age range 6-12 years	Self-report ratings: Self-Perception Profile for Children (SPPC) <u>Academic Measure</u> : Wechsler Individual Achievement Test (WIAT) <u>Teacher ratings</u> : Teacher Report Form (TRF) Teacher Ratings of Peer Relations and Social Skill (TRPSK)	PIB among girls with ADHD in scholastic competence, social acceptance, and behavioral conduct, domains regardless of the external rater.

Study	Participants	Measures	Findings
		Social Skills Ratings: peer preference nominations.	
		<u>Parent rating</u> : Columbia Impairment Scale (CIS) Maternal Ratings of Popularity	
Volz-Sidiropoulou,	N = 183 children and	Self-report rating scale: Competence Scale for	The ADHD group was significantly more likely
Boecker, & Gauggel	adolescents, with	Children and Adolescents (CCA)	than the TD group to show a PIB in daily
(2016)	and without ADHD,	Parent rating: Child Behavioral Checklist	activities relative to parent reports.
_	age range 6-15 years	(CBCL)	
Whitley, Heath, &	N = 54, with and	Self-report rating scale: Self-Perception Profile	Teachers rated the students in the ADHD group
Finn (2008)	without ADHD, age	tor Children (SPPC)	as pertorming significantly lower than the TD in
	range 6-13 years	Children's Depression Inventory (CDI)	scholastic, behavioral, and social areas.
		Teacher ratings: Teacher version of SPPC	Difference scores for PIB was greater for the
		Teacher Report Form (TRF)	ADHD group than for the TD group.
		The Social Skills Rating Scale (SSRS)	1
Wiener et al. (2012)	N = 152, children	Self-report rating scale: Self-Perception Profile	Children with ADHD demonstrated a higher
	with and without	for Children (SPPC)	PIB than TD children.
	ADHD, age range 9-	Attributions for ADHD questionnaire (AAQ)	
	14 years	Parent rating: Conners' Parent Rating Scale-	
		Revised: Long form (CPRS)	
		Teacher rating: Conners' Teacher Rating Scale – Revised: Lono form (CTRS)	
Positive Illusory Bias	s – ADHD in Adult Sar	mples	
Knouse, Bagwell,	N = 88 adults with	Self-report rating: Driving History Survey,	Despite poorer driving performance (e.g. more
Barkley, & Murphy	and without ADHD,	Driving Behavior Survey (DBS), Estimates of	collisions, speeding tickets, etc.) adults with
(2005)	mean age $= 31.93$	Driving Ability	ADHD rated themselves as comparable to TD
		Experimental task: Driving simulation	adults, demonstrating a PIB in driving.
Prevatt, Proctor,	N = 197 college	Self-report ratings: Work Performance Rating	Students with ADHD were significantly more
Best, Baker, Van	students with and	Scale (WPRS), Driving Behavior Survey	likely to engage in PIB in their global rating of
Walker, & Taylor	without ADHD,	(DBS)	work performance and driving citations than
(2012)	mean age = 21.59		the TD group.

Findings	Compared to the TD group, drivers with ADHD overestimated their driving abilities ar inderestimated their degree of intoxication, ndicating PIB.	n youth with ASD, youth reported fewer ASI ymptoms and higher empathy than parents. N lifteences were found between youth and arents in controls.	arents rated the children with ASD's social kills and competence as significantly worse han the children did.	Adolescent boys with ASD rated their own ocial skills (as well as parent and teacher) as vorse than the TD group, indicating no PIB.	Discrepancy identified between parent and dolescent with ASD's rating of social unctioning, with adolescents rating themselv is comparable to their peers.
Measures	Self-report ratings: Conners Adult ADHD Rating Scale (CAARS), ADD/H Adolescent Self-Report Scale, Barratt Impulsiveness Scale (BIS), Driving history and experience questionnaire (DHEQ), Personal Drinking Habits Questionnaire (PDHQ) Experimental task: computerized driving simulation task	Self- and parent-report ratings: Autism Spectrum Quotient (AQ), Empathy Quotient s (EQ) and Systemizing Quotient (SQ) d p	Self- and parent-report ratings: Spence Social F Skills Questionnaire, Social Competence with s Peers Questionnaire	Standardized measures: Child and Adolescent Social Perception (CASP), Clinical Evaluation s of Language Fundamentals Revised (CELF-R) v Self., parent- and teacher-ratings: Social Skills Rating System (SSRS), Child Behavior Checklist (CBCL)	Self-report ratings: Social Skills Rating System I Student Form (SSRS-S), Hostile Attribution a Questionnaire (HAQ), Children's Depression f Inventory (CDI), Social Anxiety Scale – a Adolescents (SAS-A)
Participants	<i>N</i> = 38 drivers with and without ADHD, age range 19-30 years	N = 42 children and adolescents with and without ASD, age range 9.3-18.2 years old	<i>N</i> = 19 children with ASD, age range 6.5-15 years old	N = 42 adolescent boys with and without ASD, age range 12-15 years	<i>N</i> = 53 adolescents with ASD, mean age = 13.22
Study	Weafer, Carmarillo, Fillmore, Milich, & Marczinski (2008)	Johnson, Filliter, & Murphy (2009)	Knott, Dunlop, & Mackay (2006).	Koning & Magill- Evans (2001)	Lerner, Calhoun, Mikami, & De Los Reyes (2012)

Study	Participants	Measures	Findings
		Parent-report ratings: Social Skills Rating System Parent Form (SSRS-P), Parental Self Efficacy Scale (PSES)	
Positive Illusory Bias	 Intellectual Disabili 	ity in Child and Adolescent Samples	
Salaun, Reynes, & Berthouze-Aranda (2013)	<i>N</i> = 23 adolescents with ID (6-18 years old)	Intervention: Adapted Physical Activity Programme Self-report ratings: Physical Self-Inventory (PSI-VSF-ID), EUROFIT Test Battery, Body	The main predictor of adolescent's self- perceptions was their tendency to demonstrate a PIB before the intervention.
Zic & Igric (2001)	N = 40 children with and without ID (7-10.5 vears old)	Image rereption, Obesity awareness Standardized measures: Behavior Rating Profile: Student Rating Scale	Children with ID rated their confidence in their own abilities and success in relationships as equal to their peers.
Positive Illusory Bias	– Intellectual Disabili	ty in Adult Samples	
Eden & Randle- Phillips (2017)	<i>N</i> = 88 young adults with ID, age range 16-25 years old	Self-report ratings: Stunkard figure rating scale (SFRS)	Females with ID underestimated their body size, demonstrating a PIB. Individuals with ID also had difficulty accurately associating a body weight category (e.g. overweight, healthy weight) accurately to their own bodies.
McVilly, Burton- Smith, & Davidson (2000)	N = 102 adults with ID, age range 18-82 years old	Self- and proxy-ratings: Comprehensive Quality of Life Scale For Adults (ComQol-A4), Mehrabian and Epstein Empathy Questionnaire (MEEQ)	Using a standardized approach to assessing QoL, results indicated a high degree of subject/proxy correspondence, suggesting no PIB.
Positive Illusory Bias	- Learning Disability	in Child and Adolescent Samples	
Alvarez & Adelman (1986)	<i>N</i> = 19 students with LD (9.6-15.2 years old)	Self-report ratings: Piers-Harris Self-Concept Scale <u>Experimental measures</u> : self-efficacy measure (based on work by Bandura and Adams, 1977), measure of expectancy and aspiration of success, math task (20 math problems)	Across measures, participants with LD demonstrated "overstatements" (i.e. an overestimation) of their abilities, such as in their actual performance on the math task.

Study	Participants	Measures	Findings
Bear & Minke (1996)	N = 84 children with and without TD Grade 3	Self-report rating: Self-Perception Profile for Children (SPP-C), Self-evaluation interview	Children with LD were able to identify their specific deficits (e.g. forgetfulness, etc.), but
	LLD, Olduc J		well as their peers, indicating a PIB.
Heath, Roberts, &	N = 58 adolescents	Standardized measures: Wechsler Abbreviated	Adolescents with LD significantly
Toste (2013)	with and without	Scale of Intelligence (WASI), Wide Range	overestimated their performance in math
	LD, 13.33-17.50	Achievement Test (WRAT-3)	relative to their actual performance, but not in
	years	Parent-report rating: Conners' Parent Rating Scales (CPRS-R:L)	spelling.
Heath & Glen	N = 79 children	Standardized measures: Wechsler Intelligence	Children with LD had a positive bias in their
(2005)	with and without	Scale for Children (WISC-III Block Design and	predicted performance on a spelling task, but
	LD, 10.6-13.5 years	Vocabulary), Wide Range Achievement Test	after positive feedback their predictions became
		(WRAT-3), Woodcock Reading Mastery-Word	accurate. Children without LD had no original
		Attack	positive bias and no significant changes based
		Self-report rating: Prediction of performance on	on feedback.
		WRAT-3, Youth Self-Report (YSR)	
Priel & Leshem	N = 80 children	Self-report rating: Pictorial Scale of Perceived	Children with LD had a greater positive bias in
(1990)	with and without	Competence and Social Acceptance	cognitive competence than their peers. Their
	LD, 6.5-7.5 years	Teacher-report rating: Teacher Rating Scale of	self-perceptions of peer acceptance were
		Children's Competence and Acceptance	comparable to their peers, despite significantly
		Experimental tasks: standardized tests assessing	lower sociometric and teacher ratings,
		math, reading decoding, and reading	suggesting PIB.
		comprehension, and sociometric status	
Stone & May	N = 101 adolescents	Self- parent- and teacher-report rating: Skills	Students with LD overestimated their academic
(2002)	with and without	Rating Survey (SRS)	skills relative to their actual performance.
	LD, Grades 9-12	Self-report rating: Multidimensional Self-	These overestimations were less pronounced
		Concept Scale (MSCS)	for students without LD.
		Experimental task: vocabulary task with	
		predictions (self, parent, and teacher	
		predictions), computation task with predictions	
		(self, parent and teacher predictions)	

$\mathbf{G}_{i} = \mathbf{I}_{i}$		16	
Study	Participants	Measures	r mangs
<u>Metamemory – ADF</u>	<u>ID in Child and Adole</u>	scent Samples	
Antshel & Nastasi	N = 62 children	Parent-report rating/interview: Behavior	At T1 (age 4), TD & ADHD children had
(2008)	with and without	Assessment Scale for Children (BASC),	similar metamemory abilities, but at T2 (a year
	ADHD; mean age at	Schedule for Affective Disorders and	later) controls made strong gains in
	T1 = 4.9 years old;	Schizophrenia for School-Age Children (K-	metamemory while ADHD kids lagged behind.
	mean age at $T2 =$	SADS-PL)	On the picture-learning task both two groups
	5.8 years old	Standardized measures: Wechsler Preschool	performed comparably on actual picture
		and Primary Scale of Intelligence (WPPSI-R),	learning, but the ADHD was more optimistic in
		Developmental Neuropsychological	the number of pictures they could recall in
		Assessment (NEPSY)	order. This demonstrates inaccurate JOLs in
		Metamemory task: question adapted from	this group.
		Kreutzer et al. (1975), picture-learning task	
		(JOL)	
Castel, Lee,	N = 116 children	Standardized measures: Wechsler Intelligence	There were no significant differences between
Humphreys, $\&$	with and without	Scale for Children (WISC-IV), Wechsler	controls and children with ADHD in terms of
Moore (2011)	ADHD, 6-9 years	Individual Achievement Test (WIAT-II)	memory capacity, but children with ADHD
		Parent-report rating: Diagnostic Interview	were less selective than controls in terms of the
		Schedule for Children (DISC-IV)	value of items recalled (i.e. control of memory).
		<u>Metamemory task</u> : selectivity task	
Voelker, Carter,	N = 24 children	Metamemory questionnaire: self-reflection on	No significant group differences between
Sprague, Gdowski,	with and without	strategies used	ADHD and non-ADHD boys on development
& Lachar (1989)	ADHD, age range		of metamemory knowledge.
	6-12 years		
Metamemory – ADH	ID in Adult Samples		
Knouse,	N = 68 adults with	Self-report rating: Computerized Diagnostic	Adults with ADHD were as accurate as adults
Anastopoulos, &	and without ADHD,	Interview Schedule for Children modified for	without ADHD in terms of accuracy of JOL on
Dunlosky (2012)	mean age = 26.85	adults (C-DISC-IV), ADHD Rating Scale	a paired-associate recall task despite
			remembering tewer words.
		<u>Standardized measure</u> : Wechsler Adult	
		Intenigence scare (WAIS)	

Study	Participants	Measures	Findings
		<u>Metamemory task</u> : JOL paradigm using paired- associate recall task	
aradise, & (2006)	N = 56 adults with and without ADHD,	<u>Metamemory task</u> : JOL paradigm using paired- associate recall task	No significant differences between the ADHD and non-ADHD groups in terms of accuracy of
	age range 18-60 years old	Self-report rating: ADHD Rating Scale (ADHD-RS), Symptom Checklist-90-Revised (SCT00-R),	JOL.
		Standardized measure: Shipley Institute of Living Scale	
nory – Autis	m Spectrum Disorder	· in Child and Adolescent Samples	
: Happé	N = 45 children with and without	Standardized tests: Wechsler Intelligence Scale for Children (WISC-III)	Overall, the metamemory results were comparable across ASD and TD groups.
	ASD, age range 6.4- 15.7 years	<u>Metamemory tasks</u> : performance judgements and certainty judgements	However, children with ASD were more accurate in judging their memory for non-social than social stimuli.
oucher, & 999)	<i>N</i> = 144 children with ASD, ID, and TD, mean age = 8.5 years	<u>Standardized tests</u> : Wechsler Intelligence Scale for Children (WISC) <u>Experimental tasks</u> : false belief test, memory span test, memory strategy task, prospective	Children with ASD and ID were not impaired on any of the metamemory tasks assessed.
		memory task <u>Metamemory tasks</u> : metamemory test 1 (knowledge of the effect of number of items on own memory), metamemory test 2 (knowledge of effect of age on others' memory)	
lades, & 1999)	<i>N</i> = 36 children with ASD, ID, and TD, mean age = 10.4 years	Experimental tasks: picture span assessment test, recall readiness test	Children with ASD and ID had impaired recall readiness compared to TD group (i.e. would prematurely judge themselves as ready for recall).

Study	Participants	Measures	Findings
Grainger, Williams, & Lind (2016a)	N = 63 children with and without	Standardized tests: Wechsler Abbreviated Scale of Intelligence (WASI)	Children with ASD showed diminished accuracy in their judgments of confidence,
~	ASD, mean age = 13.4 years	Parent-report rating: Social Responsiveness Scale (SRS)	indicating metacognitive monitoring impairments in ASD.
		Metamemory task: JUC task (based on a video)	
Grainger, Williams,	N = 43 adolescents	Metamemory tasks: JOL tasks (paired-word	Across types of JOL tasks, adolescents with
$\propto r \ln (20102) -$		associates), and cue-alone JUL task (cued-	ASD demonstrated typical accuracy, suggesting
Experiment 2	ASD, mean age = 13.5 years	recall task)	no metamemory impairment.
Wojcik, Allen,	N = 32 children	Standardized tests: Wechsler Abbreviated Scale	The ASD group were significantly less accurate
Brown, & Souchay	with and without	of Intelligence (WASI), Autism Spectrum	on the action memory task than controls, but
(2011)	ASD, age range	Quotient (AQ), Autism Diagnostic Observation	there were no significant differences in the
	7.05-16.06 years	Schedule (ADOS)	judgments of confidence on memory
		Metamemory task: action memory task with JOC	performance.
Wojcik, Moulin, &	N = 36 children	Metamemory tasks: episodic FOK task and	Children with ASD made significantly higher
Souchay (2013)	with and without	semantic FOK task	inaccurate FOK predictions compared to the
	ASD, age range		control group but only for episodic materials
	9.04-17.03 years		and not the semantic task.
Metamemory – Auti	sm Spectrum Disorder	r in Adult Samples	
Cherkaoui &	N = 52 adults with	Experimental tasks: intention offloading task,	Performance of the ASD group was
Gilbert (2017)	and without ASD,	implicit confidence measure	significantly poorer than the control group as
	18-40 years old	Self-report rating scale: Metacognitions	well as metacognitive evaluations of memory.
		Questionnaire (MQ), Prospective and	The ASD group failed to compensate for
		Retrospective Memory Questionnaire (PRMQ)	impaired performance in subsequent trials and would engage in fewer reminders.
Cooper, Plaisted-	N = 48 adults with	Standardized tests: Wechsler Abbreviated	Compared to the TD group, the ASD group had
Grant, Baron-	and without ASD,	Intelligence Scale (WASI), Autism Spectrum	significantly worse metamemory for perceived-
Cohen, & Simons (2016)	mean age $= 30.92$	Quotient (AQ) and Raven's matrices	imagined info, but not for self-other information.

ıdy	Participants	Measures	Findings
		<u>Metmemory task</u> : computer based reality monitoring task, involving word pairs with JOC	
1S, 1	N = 36 adults with and without ASD, mean age = 29.7	Standardized tests: Autism Spectrum Quotient (AQ), Autism Diagnostic Observation Schedule (ADOS), Wechsler Abbreviated Intelligence	The ASD group made significantly less accurate FOK judgements compared to the control group.
	years	Scale (WASI) Metamemory task: EOK task (word naire)	
		Self-report rating: Metacognitions Questionnaire (MQ)	
		Experimental task: animations task	
ls, i	N = 36 adults with	Standardized tests: Autism Spectrum Quotient	Adults with ASD demonstrated typical
	and without ASD,	(AQ), Autism Diagnostic Observation Schedule	accuracy on a standard cue-alone JOL task
-	mean age $= 29.7$	(ADOS)	compared to the TD group, suggesting no
*1	years	Metamemory task: 'cue-alone' JOL task	metamemory impairment.
Intelle	ctual Disability in Cl	hild and Adolescent Sample <u>s</u>	
r X	N = 144 children	Standardized tests: Wechsler Intelligence Scale	Children with ASD and ID were not impaired
<i>-</i>	with ASD, ID, and	for Children (WISC)	on any of the metamemory tasks assessed.
-	without (mean age	Experimental tasks: false belief test, memory	
	= 8.5 years)	span test, memory strategy task, propspective	
		memory task	
		<u>Metamemory tasks</u> : metamemory test 1	
		(knowledge of the effect of number of items on	
		own memory), metamemory test 2 (knowledge	
	M - 60 -1-11	01 effect 01 age on others memory)	
	v = ou cumuren with and without ID	<u>Metallictiony tasks: Incluory abuility, story vs.</u>	when inclainenory tasks contained
)	$m_{\text{the and}} = 13.1$	ust, study tunc, study pian	organizational reardes, the to group performed
	vears)		However when metamemory tasks had less
•			structure, they performed worse than their same
			age TD peers, and performed comparably to
			TD children of the same mental age.

Findings		Iren with LD performed	rse overall than TD children on	/ battery, and specifically had a	nce on the Organized List and	Paired Associates tasks.		ifferences were found between	edge calibration.		
		In Grade 4, child	significantly wor	the metamemory	worse performar	Study Time for I		No significant di	groups in knowl		
Measures	ld and Adolescent Samples	Metamemory tasks: Memory estimation,	organized list, preparation object, study time for	paired associates, study time for circular recall	Academic achievement: Stanford Research	Associates (SRA) survey of basic skills		Meta-reasoning task: Under/overconfidence	task from the Adult Decision-Making	Competence Battery (A-DMC)	
Participants	ning Disorders in Chi	N = 72 children	with and without	LD, Grade 2 and	Grade 4		HD in Adult Samples	N = 63 adults with	ADHD and	controls, age range	18-65 years
Study	Metamemory – Lean	Geary, Klosterman,	& Adrales (1990)				Metareasoning – AD	Mäntylä, Still,	Gullberg, & Del	Missier (2012)	

ADHD. PIB has been studied extensively in ADHD (Weyandt & Gudmundsdottir, 2015). We identified several studies that examined PIB in ADHD samples, including 31 empirical studies that are summarized in Table 1, with 28 studies in childhood/adolescence and three studies in adults.

Many studies suggest that individuals with ADHD are more likely to overestimate their competence in various areas relative to parent or teacher ratings, when compared to peers without ADHD. PIB has emerged in a wide range of areas such as academic abilities, social abilities, behavioural symptoms, activities of daily living (e.g. daily cognitive requirements, graphomotor skills, executive tasks), and difficult physical activities for children with ADHD (Helseth, Bruce, & Waschbusch, 2016; Hoza et al., 2004; Volz-Sidiropoulou, Boecker, & Gauggel, 2016). Children with ADHD generally overestimate their abilities across multiple domains of functioning, such as behavioral, scholastic and social domains (Bourchtein et al., 2017). Although some positive self-perceptions seem to have an adaptive quality in the general population, PIB in individuals with ADHD has been associated with several negative outcomes. This includes poorer response to treatment, high rates of aggression, and less prosocial behaviour (Hoza et al., 2010; Hoza, Pelham Jr., Dobbs, Owens, & Pillow, 2002; Linnea, Hoza, Tomb, & Kaiser, 2012). Additionally, in children with ADHD, PIB has been shown to be a unique predictor of maladjustment in a new environment (Jia, Jiang, & Mikami, 2016). Of the 28 studies conducted in child and adolescent samples, 24 of these studies suggest that children and adolescents with ADHD tend to overestimate their performance relative to typically developing controls. Parallel findings were reported in the three studies conducted with adult ADHD samples.

Four principal theoretical explanations have been proposed to account for PIB in individuals with ADHD. First, the cognitive immaturity hypothesis suggests that children with ADHD are behaviorally and cognitively immature, and this extends to their overestimation of self-competence, which is analogous to the estimation that occurs in younger children. Second, the neuropsychological deficits hypothesis attributes anosognosia (i.e. a neurologically based lack of awareness of personal errors and self-perceptions which is linked to frontal lobe and executive dysfunction) as the cause for difficulties in monitoring at the core of PIB in children with ADHD. Third, the ignorance of incompetence hypothesis stipulates that children with ADHD may have overly inflated self-perceptions due to their inability to recognize their deficits because they lack skills in these areas. Fourth, the self-protective hypothesis suggests that children with ADHD overestimate their competence in many areas as a coping mechanism, so that they can present as confident to others and preserve their self-esteem (Owens et al., 2007). In fact, the self-protective hypothesis has been commonly used to explain PIB in ADHD samples (Emeh & Mikami, 2014), though the theoretical underpinnings of PIB in ADHD continue to warrant deeper investigation.

However, the literature on PIB in ADHD remains controversial. Some studies have failed to identify a PIB in individuals with ADHD (Hoza et al., 2002; Jiang & Johnston, 2017). Some have suggested that differences in responses are attributable to methodological concerns, such as the use of arbitrary cut-off points when using discrepancy scores (Bourchtein et al., 2017). It has also been argued that comorbidities in areas such as depression, aggression, and academic difficulties, which are common in ADHD, have not always been adequately controlled for when examining PIB (Owens et al., 2007). Despite some varied findings and difficulties within this literature, compelling evidence remains to suggest that individuals with ADHD have difficulty adequately calibrating their self-perceptions in various domains when compared to an external rater's perception.

Autism. Four studies were identified studying PIB in children or adolescents with autism. The PIB in autism has almost exclusively been focused in the domain of social function. Several studies identified a discrepancy between self-reports and others' reports of social functioning, at least when considering individuals with autism who do not have intellectual disability. Children with Autism tend to rate their social skills as better than do their teachers and parents, and this discrepancy is larger than what is found when examining children without Autism (Koning & Magill-Evans, 2001; Knott, Dunlop, & Mackay, 2006; Vickerstaff, Heriot, Wong, Lopes, & Dossetor, 2007). Johnson, Filliter, & Murphy (2009) found discrepancies between self and parent judgements of autistic traits and empathy, such that youth with autism reported fewer autistic traits and more empathetic qualities. In a study by Lerner, Calhoun, Mikami, & De Los Reves (2012), discrepancies between the judgments of social skills between adolescents with autism and their parents were found to predict lower parental self-efficacy, fewer youth-reported hostile attributions to peers, and lower depression. Kanne, Abbacchi, and Constantino (2009) also detected informant discrepancies regarding psychiatric symptoms in children with autism, when compared to their parents' judgments, which were attributable to contextual factors rather than characteristics of the individual with autism. Overall, PIB of competence in youth with autism may provide important insights into youth social/emotional functioning and contextual factors.

ID. We only identified four studies that examined PIB in ID, with two in childhood/adolescence, and two in adulthood. Salaun, Reynes, and Berthouze-Aranda (2013) examined the contribution of PIB in the physical self-perceptions of adolescents with intellectual disabilities, and they found that the adolescents' inclination towards PIB was the main predictor of their physical self-perception and global self-esteem. Eden and Randle-Philips (2017) identified a similar trend in young adults with ID, such that they were more likely to underestimate their body size and hold positive beliefs about their bodies compared to their peers. Children with ID may also demonstrate a PIB in terms of their relationships with peers. While Zic and Igric (2001) found that children with ID did not rate their relationships to peers any lower than did their counterparts without ID, sociometric results from peers

demonstrated that children with ID were actually not accepted as much by their classmates as were children without ID. When looking more broadly at quality of life, a study by McVilly, Burton-Smith, and Davidson (2000) revealed that adults with mild ID rated their quality of life comparably to the rating of their proxy (i.e. parent or sibling).

LD. Children's self-perception in their own academic abilities can act as a predictor of future academic outcomes (Stringer & Heath, 2008). We identified six studies investigating PIB in LD, all of which included children and adolescents. It has been reported that children with LD tend to overestimate their academic competencies, demonstrating a positive bias, which may be linked to the maintenance of positive academic self-concept (Alvarez & Adelman, 1986; Bear & Minke, 1996; Heath & Glen, 2005; Stone & May, 2002). This positive bias in academic competencies may protect against feelings of depression, such that depressed students with LD were more accurate in their self-perceptions, whereas non-depressed students with LD demonstrated a pervasive positive bias (Heath, 1995). Priel and Leshem (1990) also found that young children with LD had a positive bias in peer acceptance, with their self-perceptions of peer acceptance equaling those of their TD peers despite significantly lower ratings from teachers in the domain of social skills. Interestingly, when children with LD who had demonstrated a positive bias were given positive feedback on their performance of a spelling task, their subsequent predictions became more accurate, suggesting a selfprotective hypothesis of PIB (Heath & Glen, 2005).

Metamemory Paradigms

Metamemory is an aspect of metacognition that specifically addresses one's awareness of their own memory capabilities, which includes reflecting on one's memory skills and using this knowledge to subsequently regulate one's learning (Bebko, McMorris, Metcalfe, Ricciuti, & Goldstein, 2014; Flavell, 1979). From the time when an item to be remembered is first introduced and continues throughout the encoding and retrieval phases of memory (Nelson & Narens, 1990), various paradigms can be deconstructed and studied with regards to metamemory. Before or during learning of a given item, ease of learning (EOL, i.e. a judgment of how difficult something will be to learn) and judgment of learning (JOL, i.e. the likelihood of remembering an item at later recall) can be assessed. Before recall, judgment of comprehension (JOC, i.e. the perceived comprehensibility of the information) and prediction of performance (i.e. how well they will preform on a later recall task) can be assessed. During testing, feeling of knowing (FOK, i.e. judgment about probability of recognizing the answer to a question) and feeling of familiarity (FOF, i.e. how familiar a certain item appears) can be assessed. After testing, confidence (i.e. a retrospective judgment of the probability that a question was answered correctly) can also be assessed (Ackerman & Thompson, 2015).

In children without neurodevelopmental conditions, estimating one's memory abilities and subsequently monitoring one's memory capacities can be quite difficult at a young age. However, this ability develops substantially throughout childhood, and older children become quite proficient at these skills (Holland Joyner & Kurtz-Costes, 1998). In a developmental sample, Cavanaugh and Borkowski (1980) demonstrated that memory performance and metamemory are related abilities in children.

ADHD. Only five studies (three in childhood/adolescence, and two in adulthood) have examined metamemory in ADHD samples. Antshel and Nastasi (2008) followed the development of metamemory in preschoolers with ADHD. At age four, children with ADHD had metamemory skills that were comparable to those of children without ADHD. However, a year later, the comparison group children made considerable gains in this domain, whereas children with ADHD did not, suggesting a developmental lag. Given the pronounced executive function impairments in ADHD, it is also understandable that executive control processes that play an important role in metamemory function may be impaired (Cornoldi, Barbieri, Gaiani, & Zocchi, 1999). For example, Castel, Lee, Humphreys, and Moore (2011) identified that children with ADHD did not maximize their memory performance due to their lack of control of selective memory tools. Voelker, Carter, Sprague, Gdowski, and Lachar (1989) also found in a small sample of boys with ADHD that they did not lack metamemory knowledge (i.e. effective memory strategies), but had difficulty selecting appropriate strategies and applying this practically. Despite these preliminary studies examining metamemory strategies in children with ADHD, no studies have investigated metamemory paradigms (e.g. JOL, FOK, confidence, etc.) in this population. In adults with ADHD, some research has shown comparable performance to peers without ADHD in making metamemory judgments of learning and predictions of performance (Knouse, Anastopoulos, & Dunlosky, 2012; Knouse, Paradise, & Dunlosky, 2006).

Autism. Metamemory has been examined more extensively in children with autism, with mixed findings that suggest areas of both competency and difficulty. We identified a total of 11 studies examining metamemory in autism, with seven including children/adolescents and four including adults.

Farrant, Boucher, and Blades (1999) found that children with autism were not impaired on any metamemory tasks relative to matched peers without autism, but many qualitative differences emerged, particularly in terms of strategy selection. In particular, individuals with autism used compensatory memory strategies (e.g. rehearsing, setting reminders) less frequently than their peers (Bebko, Rhee, McMorris, & Ncube, 2015; Cherkaoui & Gilbert, 2017). Farrant, Blades, and Boucher (1999) also examined individual's recall readiness (i.e. judgment of when they had accurately encoded information and would be able to retrieve it successfully) and found that children with autism were more discrepant in their judgment of recall readiness than controls. Additionally, Grainger, Williams, and Lind (2016a) found that children with autism were less accurate in their confidence judgments after a task (i.e. their own ratings of how likely they answered the question correctly was not as predictive of their actual performance, relative to controls), which may suggest impairments in metacognitive monitoring. When looking specifically at metamemory for face perception, Wilkinson, Best, Minshew, and Strauss (2010) found that children with autism had less accurate facial memory and confidence ratings (i.e. less reliable differentiation between their confidence ratings compared to children without autism), and a similar, though subtler, difficulty was found in adults with autism. In adults with autism, some studies have isolated areas of difficulty (e.g. reality monitoring and feeling-of-knowing), whereas others have found this population to be comparable to children without autism (e.g. judgment of learning; Cooper, Plaisted-Grant, Baron-Cohen, & Simons, 2016; Grainger, Williams, & Lind, 2014; Grainger, Williams, & Lind, 2016b).

However, there have also been several studies in children and adolescents with autism that indicated mixed findings regarding metamemory performance. For example, Wojcik, Waterman, Lestié, Moulin. and Souchay (2014) found that adolescents with autism made comparable judgments-of-learning to peers and could even regulate their study time according to these JOLs. In an action memory task, children with autism were as accurate as controls in judging the accuracy of their memory, which seems to suggest a lack of metamemory difficulties in this task (Wojcik, Allen, Brown, & Souchay, 2011). Some studies have also attempted to break down memory into different constructs to better understand this phenomenon. For example, Wojcik, Moulin, and Souchay (2013) investigated the feeling-ofknowing paradigm separately in episodic and semantic memory. Children with autism made inaccurate FOK predictions for episodic material, and not for semantic material. Additionally, Elmose and Happé (2014) examined how children with autism judge their own memory performance by looking at social and non-social stimuli. Although children with autism were accurate in predicting their memory performance overall, they were more accurate in their judgments for nonsocial than social material.

There is growing concern in the literature that language skills in autism may interfere with the study of metamemory in this population. In fact, Lockl and Schneider (2007) found that language abilities in young children were able to predict their future metamemory abilities. Additionally, Bebko et al. (2014) examined children's ability to spontaneously use rehearsal strategies and found that metamemory and language proficiency were both independent predictors of rehearsal strategy use. This is of particular significance in autism, as language difficulties are an important area of concern. As such, it appears as though examining metamemory while reducing linguistic requirements could prove useful to better understand these mechanisms in individuals with autism.

ID. Only two studies on metamemory in children/adolescents with ID were identified. Nonetheless, this is a worthwhile line of pursuit due to the fact that

although intelligence and metacognitive skills are related, they may develop partly independently as well (Veenman, Wilhelm, & Beishuizen, 2004). The preliminary evidence suggests that metamemory may be less well developed in individuals with ID than peers without ID. Lukose (1987) identified that when task characteristics were manipulated to increase the metamemory demands (e.g. create a less organized task), adolescents with ID performed more poorly on memory tasks. Farrant et al. (1999) also found that children with ID had impaired recall readiness when compared to their typically developing peers. It appears as though individuals with ID may lack the metamemory training program for children with ID, they had increased their metamemory knowledge and were able to apply these skills more effectively when prompted (Pérez & Garcia, 2002).

LD. In children and adults with LD, it has been shown that memory systems such as short-term memory and working memory are implicated in their academic performance (Swanson, 1994). Additionally, metacognitive abilities are crucial in skills such as reading and writing for children with LD (Wong, 1991). As such, metamemory may be of particular interest in this population (Gaultney, 1998; Harris, Graham, & Freeman, 1988). This review identified one study examining metamemory in children and adolescents with LD. Geary, Klosterman, and Adrales (1990) reported that Grade 4 children with LD performed significantly worse overall than TD children on a metamemory battery, and specifically had a worse performance on the Organized List and Study Time for Paired Associates tasks.

Meta-Reasoning Paradigms

Meta-reasoning is an aspect of metacognition that specifically refers to the cognitive processes that monitor our progress on reasoning and problem-solving activities, and regulates the time and effort needed to accurately complete these tasks (Ackerman & Thompson, 2017). The field of research defined by meta-reasoning is about trying to understand the underlying metacognitive processes of more complicated tasks, such as reasoning and decision-making. Meta-level processes are relevant for the study of reasoning and decision-making, as these processes help to regulate goal setting, strategy selection, and monitoring one's progress on a given cognitive activity (Bjork, Dunlosky, & Kornell, 2013). Despite these clear implications of meta-level processes for reasoning, there is limited work that has been done in the field of meta-reasoning (Ackerman & Thompson, 2015), including both typically and atypically developing samples.

Many parallels can be drawn between the study of meta-reasoning and metamemory. As such, many of the paradigms developed in metamemory can serve as a basis for our understanding of meta-reasoning. Before or during a reasoning task, judgment of solvability (JOS; i.e. judge whether the task is solvable at all or that they have the requisite knowledge to solve the task) can be assessed. During a reasoning task, feeling of rightness (FOR; i.e. monitoring the production of a quick intuitive answer to analyze it more deeply and potentially produce a new answer), warmth ratings (i.e. how "warm" someone is getting as a measurement of how close they are to obtaining a solution), intermediate confidence ratings (i.e. judgment of how confident they are of their problem solving throughout the solving process), and dynamic predicting of knowing (dPOK; i.e. intermediate judgments of one's probability of knowing) can be assessed. After a reasoning task, final judgment of confidence (FJC; i.e. one's confidence in the final answer, after the reasoning of problem-solving is complete) can be assessed (Ackerman & Thompson, 2015).

Despite the field of meta-reasoning being in its infancy, there are indications that this topic may be of importance to individuals with a variety of other cognitive difficulties, such as individuals with neurodevelopmental disorders.

ADHD. It is well established that individuals with ADHD tend to score lower than typically developing individuals on executive function tasks (Willcutt, Doyle, Nigg, Faraone, & Pennington, 2005). There have been relatively few studies that have examined meta-reasoning constructs in individuals with ADHD. Mäntylä, Still, Gullberg, and Del Missier (2012) examined decision-making and metacognitive constructs in adults with ADHD. Individuals with ADHD did not perform significantly worse on an over/underconfidence task of decision-making. Additionally, Basile, Toplak, and Andrade (in press) examined emotion recognition and resolution in children with ADHD. Despite no differences in overall accuracy on an emotion recognition task, children with ADHD were consistently more confident in their recognition of emotions compared to the TD group. Children with ADHD also showed lower resolution, indicating that TD children were better at discriminating correct from incorrect responses than children with ADHD. While resolution is a less direct measure of meta-reasoning (which is why we did not include this study in Table 1), these findings suggest differences between ADHD and controls in detecting correct and incorrect responses.

Autism. There is some evidence to suggest that individuals with autism may experience difficulties with reasoning abilities, such as syllogistic reasoning, counterfactual reasoning, and false belief understanding (Leevers & Harris, 2000; Peterson & Bowler, 2000). However, much of the emphasis has been placed on theory of mind reasoning, as social functioning is a core diagnostic feature of autism. Theory of mind refers to understanding how other's behaviours are motivated by their internal mental states (Sabbagh, 2004). Some studies have examined how metacognitive abilities contribute to mindreading reasoning. The "one-mechanism theory" proposes that mindreading and metacognition are intertwined abilities, so that impairment in one ability results in impairment in the other (Carruthers, 2009). However, Nichols and Stich (2003) propose that metacognition and mindreading are underpinned by different mechanisms, such that a "monitoring mechanism" is responsible for metacognition and a "mindreading mechanism" is responsible for mindreading. Grainger et al. (2014) identified mind-reading deficits in adults with

autism that were accompanied by significantly less accurate feeling-of-knowing judgments on this mind-reading task than adults without autism.

We did not find any studies on meta-reasoning in ID and LD, which is perhaps not surprising given that this is a relatively new field of study.

Characterizing the Estimation of Competence in Neurodevelopmental Disorders: Summary and Future Directions

There has been an emerging and growing literature on understanding the estimation of competence in individuals who experience impaired functioning across cognitive, academic and social domains, such as those with neurodevelopmental conditions. The estimation of competence has been identified as a critical domain for ADHD, but this domain has been less central for understanding other neurodevelopmental conditions, including autism, ID and LD. Given this, it is perhaps surprising that there is a literature examining paradigms related to the estimation of competence across all of these conditions, but it also suggests that there is some conceptual work to be done for understanding the relevance and basis across neurodevelopmental conditions. In our review, we found that PIB and metamemory paradigms have received empirical attention across the ADHD, autism, ID and LD special populations, but meta-reasoning (a relatively new domain of study) has only received attention in ADHD. Overall, there are more studies to suggest difficulties in these areas among these neurodevelopmental conditions than studies suggesting comparable performance to typically developing samples, but importantly not all studies consistently report such differences. We highlight the following considerations for advancing research in this area, specifically, consideration of conceptual questions, methodological issues and developmental considerations.

Conceptual Questions

The opportunity to examine the estimation of competence across a number of neurodevelopmental conditions, as we have done in this paper, provides an important lens for determining whether this is an important domain for understanding each condition. For example, there is some suggestion in models of ADHD and based on findings with the PIB paradigm, that the estimation of competence may be a key difficulty for individuals with ADHD (Barkley, 2015), it also appears to be relevant for autism, LD and ID, despite not being a central diagnostic feature of these conditions. We did not find any literature examining monitoring accuracy in motor or language disorders. In the case of ADHD, poor monitoring is thought to be related to manifestation of self-regulation difficulties in these individuals, which may be mediated by co-occurring problems in internalizing speech (Weyandt & Gudmundsdottir, 2015). For example, Corkum, Humphries, Mullane, and Theriault (2008) reported that children with ADHD produced more task irrelevant speech while solving problem-solving tasks than typically developing controls. Then, during

inhibition tasks, children with ADHD produced more task relevant speech, but their performance was lower than the typically developing group. Studies such as this one provide some insights into how cognitive monitoring may differ in ADHD relative to controls, for example, with respect to strategy selection and performance. Further work is needed to determine if monitoring accuracy may in fact be a defining feature for the difficulties observed in ADHD. However, even if monitoring difficulties may not be central in models for a given disorder, this does not mean that it is not relevant for study. Studies of clinical samples tend to focus on identifying impairments that may be diagnostic for a given disorder. The estimation of competence may not be defining of these disorders from a diagnostic perspective, but the relative awareness of one's successes and failures in tracking their performance in the environment may be useful for treatment and intervention planning, for example. Perhaps in the case of autism, LD and ID, monitoring difficulties may be correlated with executive function task performance difficulties that have been implicated in these disorders (Pennington, 2002). Many studies have called into question whether difficulties in performance calibration are specific to individuals with a given neurodevelopmental disability, or whether it is associated more generally to a shared underlying neurodevelopmental challenge (Bourchtein et al., 2017). For example, findings from Watabe, Owens, Serrano, & Evans (2018) and Jiang and Johnston (2017) suggest that the positive illusory bias demonstrated by children with ADHD is explained by their low competence in various areas and is not specifically due to their disorder. Miller and Geraci (2011) examined whether poor performers were unaware of their deficits by looking at confidence ratings. These students showed an overconfidence effect (i.e. estimated that they performed better than they did), but they also were less confident in these predictions compared to their typically performing peers, suggesting that poor performers may have some metacognitive insight. In autism, monitoring accuracy of the state of mind of others may be a defining feature of this disorder, related to theory of mind models. Conceptual models about how and why monitoring accuracy is relevant for each of these disorders will be important to explore in future studies (Dimaggio & Lysaker, 2010).

Methodological Questions

It was perhaps bold of us to include PIB in the same paper as metamemory and meta-reasoning paradigms, as the conceptual basis for these different paradigms are entirely different. They originate from different literatures, involve entirely different methods and may even lead to different interpretations of the findings. The PIB paradigm has been studied in clinical research, and to a metacognitive researcher, the idea that self-monitoring measured relative to an informant report would be regarded as conceptually measuring something entirely different, where actual performance is the reference point for metacognitive judgment. However, the discrepancy between informants in the clinical literature and discrepancy between judgments and performance are generally interpreted as estimation in competence difficulties across these studies. One important consideration in clinical research studies is that there is a focus on identifying difficulties and impairments (APA, 2013), and that often becomes the starting point for identifying relevant paradigms to assess performance and behavior in these special populations. In the case of children with ADHD, parents and teachers are regarded important informants for identifying the impairments of children with ADHD, and the question then posed by PIB paradigms is whether children with ADHD also recognize the difficulties reported by their parents and teachers. Alternatively, metacognitive researchers reference point is how subjective judgments of performance are related to actual performance. It is important to note that both traditions offer important insights for understanding monitoring accuracy across these special populations, but that systematic study and careful consideration must be given to ensure that these paradigms are selected for appropriate reasons.

One other point that is important about methodology is the reliance on subjective judgment in both the PIB and metacognition literatures. In the ADHD literature, the PIB findings highlight the discrepancy between informants, which may contribute to the general clinical practice of a lack of reliance on self-report of symptoms and difficulties in ADHD, at least for children and youth under 17 years of age (APA, 2013). To move forward in this field, we must trust that self-report and subjective judgments are telling us something useful about monitoring accuracy in ADHD, not simply to justify the lack of validity of self-report or subjective judgment. Perhaps the integration of metacognitive theories and paradigms can help to advance work in the field of ADHD. It is unclear whether the reliability and validity of subjective judgment or self-report poses similar challenges in the other neurodevelopmental conditions, including autism, LD and ID.

Developmental Considerations

The studies included in this review included all levels of development, from childhood to adults. Any conclusions based on these studies must take into account the cognitive development and the implications for monitoring accuracy. For example, there has been some convergence in the accuracy of metacognitive judgments in children suggesting significant improvement around 8 to 9 years of age (Koriat & Ackerman, 2010; Koriat & Shitzer-Reichert, 2002; Roebers & Howie, 2003; von der Linden & Roebers, 2006). Given the different paradigms and different periods of development, this further limits the potential conclusions we can draw about the estimation of competence across the neurodevelopmental conditions, but should be taken into account in future studies.

Conclusions

Paradigms related to the estimation of competence and monitoring accuracy offer methods to help us measure how well we track our performance across different domains, including cognitive performance to social information processing. Bridging across the clinical research and metacognitive research traditions, we identified PIB, metamemory and meta-reasoning as the most commonly studied paradigms for assessing monitoring accuracy in neurodevelopmental conditions. Overall, studies from PIB paradigms suggest that individuals with ADHD, autism, LD and ID tend to display a positive bias in their performance relative to other informants. In metamemory paradigms, individuals with ADHD, autism, ID and LD tend to show more discrepancy between their subjective judgments and memory performance relative to comparison controls, but these findings have not always been consistently found. Meta-reasoning has been less well-studied, but preliminary studies suggest differences in ADHD and autism samples. In order to advance work in these areas, consideration must be given to conceptual models, methodological issues (paradigm selection and interpretation of self-report and subjective judgment) and developmental considerations. To our knowledge, a review of this literature on the estimation of competence in neurodevelopmental disorders has not been undertaken, and we hope that this paper provides a reference point for the research done to date and consideration of relevant issues to advance this work.

References

- Ackerman, R., & Thompson, V. A. (2015). Meta-reasoning: What can we learn from metamemory? In A. Feeney & V. A. Thompson (Eds.), *Current issues in thinking and reasoning: Reasoning as memory* (pp. 164-182). New York, NY: Psychology Press.
- Ackerman, R., & Thompson, V. A. (2017). Meta-reasoning: Monitoring and control of thinking and reasoning. *Trends in Cognitive Sciences*, 21(8), 607-17.
- Alicke, M. D., & Govorum, O. (2005). The better-than-average effect. In M. D. Alicke, D. A. Dunning, & J. J. Krueger (Eds.), *The self in social judgment* (pp. 85-106). New York, NY: Psychology.
- Alvarez, V., & Adelman, H. S. (1986). Overstatements of self-evaluations by students with psychoeducational problems. *Journal of Learning Disabilities*, 19(9), 567-571.
- American Psychiatric Association. (2013). *Diagnostic and statistical manual of mental disorders* (5th ed.). Arlington, VA: American Psychiatric Publishing.
- Antshel, K. M., & Nastasi, R. (2008). Metamemory development in preschool children with ADHD. *Journal of Applied Developmental Psychology*, 29(5), 403-411.

- Baird, G. L., Scott, W. D., Dearing, E., & Hamill, S. K. (2009). Cognitive self-regulation in youth with and without learning disabilities: Academic self-efficacy, theories of intelligence, learning vs. performance goal preferences, and effort attributions. *Journal* of Social and Clinical Psychology, 28(7), 881-908.
- Barkley, R. A. (2015). Attention-Deficit Hyperactivity Disorder: A handbook for diagnosis and treatment. 4th Edition. New York: Guilford.
- Baron-Cohen, S. (2000). Theory of mind and Autism: A review. *International Review of Research in Mental Retardation*, 23, 169-184.
- Basile, A., Toplak, M. E., & Andrade, B. (in press). Using metacognitive methods to examine emotion recognition in children with ADHD. *Journal of Attention Disorders*.
- Bear, G. G., & Minke, K. M. (1996). Positive bias in maintenance of self-worth among children with LD. *Learning Disability Quarterly*, 19(1), 23-32.
- Bebko, J. M., McMorris, C. A., Metcalfe, A., Ricciuti, C., & Goldstein, G. (2014). Language proficiency and metacognition as predictors of spontaneous rehearsal in children. *Canadian Journal of Experimental Psychology*, 68, 46-58.
- Bebko, J. M., Rhee, T., McMorris, C. A., & Ncube, B. L. (2015). Spontaneous strategy use in children with Autism: The roles of metamemory and language skills. *Frontiers in Psychology*, 4(6), 182.
- Bjork, R. A., Dunlosky, J., & Kornell, N. (2013). Self-regulated learning: Beliefs, techniques, and illusions. Annual Review in Psychology, 64, 417-444.
- Boucher, J. (2003). Language development in Autism. *International Congress Series*, 1254, 247-253.
- Bourchtein, E., Langberg, J. M., Owens, J. S., Evans, S. W., & Perera, R. A. (2017). Is the positive illusory bias common in young adolescents with ADHD? A fresh look at prevalence and stability using latent profile and transition analyses. *Journal of Abnormal Child Psychology*, 45(6), 1063-1075.
- Bourchtein, E., Owens, J. S., Dawson, A. E., Evans, S. W., Langberg, J. M., Flory, K., & Lorch, E. P. (2018). Is the positive bias an ADHD phenomenon? Re-examining the positive bias and its correlates in a heterogeneous sample of children. *Journal of Abnormal Child Psychology*, 46(7), 1395-1408.
- Boyle, C. A., Boulet, S., Schieve, L. A., Cohen, R. A., Blumberg, S. J., Yeargin-Allsopp, M., ... Kogan, M. D. (2011). Trends in the prevalence of developmental disabilities in US children, 1997-2008. *Pediatrics*, 127, 1034-1042.
- Carruthers, P. (2009). How we know our own minds: The relationship between mindreading and metacognition. *Behavioral and Brain Sciences*, *32*, 121-128.
- Castel, A. D., Lee, S. S., Humphreys, K. L., & Moore, A. N. (2011). Memory capacity, selective control, and value-directed remembering in children with and without Attention-Deficit/Hyperactivity Disorder (ADHD). *Neuropsychology*, 25(1), 15-24.
- Cavanaugh, J. C., & Borkowski, J. G. (1980). Searching for metamemory-memory connections: A developmental study. *Developmental Psychology*, *16*(5), 441-453.

- Chan, T., & Martinussen, R. (2016). Positive illusions? The accuracy of academic selfappraisals in adolescents with ADHD. *Journal of Pediatric Psychology*, 41(7), 799-809.
- Cherkaoui, M., & Gilbert, S. J. (2017). Strategic use of reminders in an 'intention offloading' task: Do individuals with Autism spectrum conditions compensate for memory difficulties? *Neuropsychologia*, 97, 140-151.
- Cooper, R. A., Plaisted-Grant, K. C., Baron-Cohen, S., & Simons, J. S. (2016). Reality monitoring and metamemory in adults with Autism spectrum conditions. *Journal of Autism and Developmental Disorders*, 46, 2186-2198.
- Corkum, P., Humphries, K., Mullane, J. C., & Theriault, F. (2008). Private speech in children with ADHD and their typically developing peers during problem-solving and inhibition tasks. *Contemporary Educational Psychology*, *33*(1), 97-115.
- Cornoldi, C., Barbieri, A., Gaiani, C., & Zocchi, S. (1999). Strategic memory deficits in attention deficit disorder with hyperactivity participants: The role of executive processes. *Developmental Neuropsychology*, 15(1), 53-71.
- Coutinho, S. (2008). Self-efficacy, metacognition, and performance. *North American Journal* of *Psychology*, *10*(1), 165-172.
- Desoete, A., & Roeyers, H. (2006). Metacognitive macroevaluations in mathematical problem solving. *Learning and Instruction*, *16*(1), 12-25.
- Dimaggio, G., & Lysaker, P. H. (2010). *Metacognition and severe adult mental disorders: From research to treatment*. London: Routledge.
- Dunlosky, J., & Metcalfe, J. (2009). *Metacognition: A textbook of cognition, educational, life span, and applied psychology*. Thousand Oaks, CA: Sage.
- Eden, K., & Randle-Phillips, C. (2017). Exploration of body perception and body dissatisfaction in young adults with intellectual disability. *Research in Developmental Disabilities*, *71*, 88-97.
- Eisenberg, D., & Schneider, H. (2007). Perceptions of academic skills of children diagnosed with ADHD. *Journal of Attention Disorders*, *10*(4), 390-397.
- Elmose, M., & Happé, F. (2014). Being aware of own performance: How accurately do children with autism judge own memory performance? *Autism Research*, 7(6), 712-719.
- Emeh, C. C., & Mikami, A. Y. (2014). The influence of parent behaviors on positive illusory bias in children with ADHD. *Journal of Attention Disorders*, *18*(5), 456-465.
- Emeh, C. C., Mikami, A. Y., & Teachman, B. A. (2018). Explicit and implicit positive illusory bias in children with ADHD. *Journal of Attention Disorders*, 22(10), 994-1001.
- Evangelista, N. M., Owens, J. S., Golden, C. M., & Pelham, W. E. (2008). The positive illusory bias: Do inflated self-perceptions in children with ADHD generalize to perceptions of others? *Journal of Abnormal Child Psychology*, 36(5), 779-791.
- Farrant, A., Blades, M., & Boucher, J. (1999). Recall readiness in children with autism. *Journal of Autism and Developmental Disorders*, 29(5), 359-366.

- Farrant, A., Boucher, J., & Blades, M. (1999). Metamemory in children with autism. *Child Development*, 70(1), 107-131.
- Flavell, J. H. (1979). Metacognition and cognitive monitoring: A new area of cognitivedevelopmental inquiry. *American Psychologist*, 34(10), 906-911.
- Fritz, K., Howie, P., & Kleitman, S. (2010). "How do I remember when I got my dog?": The structure and development of children's metamemory. *Metacognition and Learning*, *5*(2), 207-228.
- Fefer, S. A., McQuade, J. D., Virga, C., Johnson, A., Gordon, K., Santiago-Rosario, M., ... Porter, J. (2018). Mother's observations of biased self-perceptions in children with ADHD. *Journal of Child and Family Studies*, 27, 1-15.
- Fliers, E. A., de Hoog, M. L., Franke, B., Faraone, S. V., Rommelse, N. N., Buitelaar, J. K., & Nijhuis-van der Sanden, M. W. (2010). Actual motor performance and self-perceived motor competence in children with ADHD compared to healthy siblings and peers. *Journal of Developmental and Behavioral Pediatrics*, 31(1), 35.
- Gaultney, J. F. (1998). Utilization deficiencies among children with learning disabilities. *Learning and Individual Differences*, 10(1), 13-28.
- Geary, D. C., Klosterman, I. H., & Adrales, K. (1990). Metamemory and academic achievement: Testing the validity of a group-administered metamemory battery. *The Journal of Genetic Psychology*, *151*(4), 439-450.
- Gerdes, A. C., Hoza, B., & Pelham, W. E. (2003). Attention-deficit/hyperactivity disordered boys' relationships with their mothers and fathers: Child, mother, and father perceptions. *Development and Psychopathology*, *15*(2), 363-382.
- Grainger, C., Williams, D. M., & Lind, S. E. (2014). Metacognition, metamemory, and mindreading in high-functioning adults with autism. *Journal of Abnormal Psychology*, *123*(3), 650-659.
- Grainger, C., Williams, D. M., & Lind, S. E. (2016a). Metacognitive monitoring and control processes in children with autism: Diminished judgment of confidence accuracy. *Consciousness and Cognition*, 42, 65-74.
- Grainger, C., Williams, D. M., & Lind, S. E. (2016b). Judgment of learning accuracy in highfunctioning adolescents and adults with Autisms. *Journal of Autism and Developmental Disorders*, 46, 3570-3582.
- Harris, K. R., Graham, S., & Freeman, S. (1988). Effects of strategy training on metamemory among learning disabled students. *Exceptional Children*, 54(4), 332-338.
- Harter, S. (1981). A model of mastery motivation in children: Individual differences and developmental change. In W. A. Collins (Ed.), Aspects of the development of competence (pp. 215-255). Hillsdale, NJ: Erlbaum.
- Heath, N. L. (1995). Distortion and deficit: Self-perceived versus actual academic competence in depressed and nondepressed children with and without learning disabilities. *Learning Disabilities Research & Practice*, 10(1), 2-10.

- Heath, N. L., & Glen, T. (2005). Positive illusory bias and the self-protective hypothesis in children with learning disabilities. *Journal of Clinical Child and Adolescent Psychology*, *34*(2), 272-281.
- Heath, N., Roberts, E., & Toste, J. R. (2013). Perceptions of academic performance: Positive illusions in adolescents with and without learning disabilities. *Journal of Learning Disabilities*, 46(5), 402-412.
- Helseth, S. A., Bruce, B. S., & Waschbusch, D. A. (2016). Overestimation of physical abilities among boys with and without ADHD. *Journal of Attention Disorders*, 20(2), 163-167.
- Holland Joyner, M., & Kurtz-Costes, B. (1998). Metamemory development. In N. Cowan (Ed.), *The development of memory in childhood* (pp. 275-300). New York, NY: Psychology Press.
- Hoza, B., Gerdes, A. C., Hinshaw, S. P., Arnold, L. E., Pelham, W. E., Molina, B. S., Abikoff, H. B., Epstein, J. N., Greenhill, L. L., Hechtman, L., Odbert, C., Swanson, J. M., & Wigal, T. (2004). Self-perceptions of competence in children with ADHD and comparison children. *Journal of Consulting and Clinical Psychology*, 72, 382-391.
- Hoza, B., Murray-Close, D., Arnold, L. E., Hinshaw, S. P., Hechtman, L., & The MTA Cooperative Group (2010). Time-dependent changes in positively biased selfperceptions of children with ADHD: A developmental psychopathology. *Development* and Psychopathology, 22, 375-390.
- Hoza, B., Pelham Jr., W. E., Dobbs, J., Owens, J. S., & Pillow, D. R. (2002). Do boys with attention-deficit/hyperactivity disorder have positive self-illusory self-concepts? *Journal of Abnormal Psychology*, 111, 268-278.
- Hoza, B., Vaughn, A., Waschbusch, D. A., Murray-Close, D., & McCabe, G. (2012). Can children with ADHD be motivated to reduce bias in self-reports of competence? *Journal* of Consulting and Clinical Psychology, 80(2), 245-254.
- Hoza, B., Waschbusch, D. A., Pelham, W. E., Molina, B. S., & Milich, R. (2000). Attentiondeficit/hyperactivity disordered and control boys' responses to social success and failure. *Child Development*, 71(2), 432-446.
- Jia, M., Jiang, Y., & Mikami, A. Y. (2016). Positively biased self-perceptions in children with ADHD: Unique predictor of future maladjustment. *Journal of Abnormal Child Psychology*, 44(3), 575-586.
- Jiang, Y., & Johnston, C. (2017). Controlled social interaction tasks to measure selfperceptions: No evidence of positive illusions in boys with ADHD. *Journal of Abnormal Child Psychology*, 45, 1051-1062.
- Johnson, S. A., Filliter, J. H., & Murphy, R. R. (2009). Discrepancies between self- and parent-perceptions of autistic traits and empathy in high functioning children and adolescents on the Autism spectrum. *Journal of Autism and Developmental Disorders*, *39*(12), 1706-1714.

- Kanne, S. M., Abbacchi, A. M., & Constantino, J. N. (2009). Multi-informant ratings of psychiatric symptom severity in children with Autisms: The importance of environmental context. *Journal of Autism and Developmental Disorders*, 39(6), 856-864.
- Knott, F., Dunlop, A.-W., & Mackay, T. (2006). Living with autism. Autism, 10(6), 609-617.
- Knouse, L. E., Anastopoulos, A. D., & Dunlosky, J. (2012). Isolating metamemory deficits in the self-regulated learning of adults with ADHD. *Journal of Attention Disorders*, 16(8), 650-660.
- Knouse, L. E., Bagwell, C. L., Barkley, R. A., & Murphy, K. R. (2005). Accuracy of selfevaluation in adults with ADHD: Evidence from a driving study. *Journal of Attention Disorders*, 8(4), 221-234.
- Knouse, L. E., Paradise, M. J., & Dunlosky, J. (2006). Does ADHD in adults affect the relative accuracy of metamemory judgments? *Journal of Attention Disorders*, 10(2), 160-170.
- Koning, C., & Magill-Evans, J. (2001). Social and language skills in adolescent boys with Asperger syndrome. *Autism*, 5(1), 23-36.
- Koriat, A., & Ackerman, R. (2010). Choice latency as a cue for children's subjective confidence in the correctness of their answers. *Developmental Science*, 13(3), 441-453.
- Koriat, A., & Shitzer-Reichert, R. (2002). Metacognitive judgments and their accuracy. In: P. Chambres, M. Izaute, & P. J. Marescaux (Eds.), *Metacognition* (pp. 1-17). Springer, Boston, MA.
- Langberg, J. M., Epstein, J. N., Girio-Herrera, E., Becker, S. P., Vaughn, A. J., & Altaye, M. (2011). Materials organization, planning, and homework completion in middle-school students with ADHD: Impact on academic performance. *School Mental Health*, 3(2), 93-101.
- Leevers, H. J., & Harris, P. L. (2000). Conterfactual syllogistic reasoning in normal 4-yearolds, children with learning disabilities, and children with Autism. *Journal of Experimental Child Psychology*, 76, 64-87.
- Lerner, M. D., Calhoun, C. D., Mikami, A. Y., & De Los Reyes, A. (2012). Understanding parent-child social informant discrepancy in youth with high functioning Autism spectrum disorders. *Journal of Autism and Developmental Disorders*, 42(12), 2680-2692.
- Linnea, K., Hoza, B., Tomb, M., & Kaiser, N. (2012). Does a positive bias relate to social behavior in children with ADHD? *Behavior Therapy*, 43, 862-875.
- Lockl, K., & Schneider, W. (2007). Knowledge about the mind: Links between theory of mind and later metamemory. *Child Development*, 78(1), 148-67.
- Lukose, S. (1987). Knowledge and behavior relationships in the memory ability of retarded and nonretarded students. *Journal of Experimental Child Psychology*, 43(1), 13-24.
- Mäntylä, T., Still, J., Gullberg, S., & Del Missier, F. (2012). Decision making in adults with ADHD. *Journal of Attention Disorders*, *16*(2), 164-173.

- McQuade, J. D., Mendoza, S. A., Larsen, K. L., & Breaux, R. P. (2017). The nature of social positive illusory bias: Reflection of social impairment, self-protective motivation, or poor executive functioning?. *Journal of Abnormal Child Psychology*, 45(2), 289-300.
- McVilly, K. R., Burton-Smith, R. M., & Davidson, J. A. (2000). Concurrence between subject and proxy ratings of quality of life for people with and without intellectual disabilities. *Journal of Intellectual & Developmental Disability*, 25(1), 19-39.
- Mikami, A. Y., Calhoun, C. D., & Abikoff, H. B. (2010). Positive illusory bias and response to behavioral treatment among children with attention-deficit/hyperactivity disorder. *Journal of Clinical Child & Adolescent Psychology*, 39(3), 373-385.
- Miller, T. M., & Geraci, L. (2011). Unskilled but aware: Reinterpreting overconfidence in low-performing students. *Journal of Experimental Psychology: Learning, Memory, and Cognition*, 37(2), 502-506.
- Mitchell, K. J. (2015). Foreward. In K. J. Mitchell (Ed.), *The genetics of neurodevelopmental disorders* (pp. ix). Hoboken, NJ: John Wiley & Sons.
- Murray-Close, D., Hoza, B., Hinshaw, S. P., Arnold, L. E., Swanson, J., Jensen, P. S., ... Wells, K. (2010). Developmental processes in peer problems of children with attentiondeficit/hyperactivity disorder in The Multimodal Treatment Study of Children With ADHD: Developmental cascades and vicious cycles. *Development and Psychopathology*, 22(4), 785-802.
- Nelson, T. O., & Narens, L. (1990). Metamemory: A theoretical framework and new findings. In G. Bower (Ed.), *Psychology of learning and motivation: Advances in research and theory* (pp. 125-173). Academic Press.
- Nichols, S., & Stich, S. (2003). *Mindreading: An integrated account of pretence, self-awareness, and understanding other minds.* Oxford, UK: Oxford University Press.
- Ohan, J. L., & Johnston, C. (2011). Positive illusions of social competence in girls with and without ADHD. *Journal of Abnormal Child Psychology*, *39*(4), 527-539.
- Owens, J. S., Goldfine, M. E., Evangelista, N. M., Hoza, B., & Kaiser, N. M. (2007). A critical review of self-perceptions and the positive illusory bias in children with ADHD. *Clinical Child and Family Psychology Review*, 10(4), 335-51.
- Owens, J. S., & Hoza, B. (2003). The role of inattention and hyperactivity/impulsivity in the positive illusory bias. *Journal of Consulting and Clinical Psychology*, 71(4), 680-691.
- Pennington, B. F. (2002). *The development of psychopathology: Nature and nurture*. Guilford: New York.
- Pérez, L. M., & Garcia, E. G. (2002). Programme for the improvement of metamemory in people with medium and mild mental retardation. *Psychology in Spain*, 6(1), 96-101.
- Peterson, D. M., & Bowler, D. M. (2000). Counterfactual reasoning and false belief understanding in children with Autism. *Autism*, 4(4), 391-405.
- Pieschl, S. (2009). Metacognitive calibration an extended conceptualization and potential applications. *Metacognition and Learning*, 4(1), 3-31.

- Prevatt, F., Proctor, B., Best, L., Baker, L., Van Walker, J., & Taylor, N. W. (2012). The positive illusory bias: Does it explain self-evaluations in college students with ADHD?. *Journal of Attention Disorders*, *16*(3), 235-243.
- Priel, B., & Leshem, T. (1990). Self-perceptions of first- and second-grade children with learning disabilities. *Journal of Learning Disabilities*, 23(10), 637-642.
- Rizzo, P., Steinhausen, H. C., & Drechsler, R. (2010). Self-perception of self-regulatory skills in children with attention-deficit/hyperactivity disorder aged 8-10 years. *ADHD Attention Deficit and Hyperactivity Disorders*, 2(4), 171-183.
- Roebers, C. M., & Howie, P. (2003). Confidence judgments in event recall: Developmental progression in the impact of question format. *Journal of Experimental Child Psychology*, 85(4), 352-371.
- Sabbagh, M. A. (2004). Understanding orbitofrontal contributions to theory-of-mind reasoning: Implications for Autism. *Brain and Cognition*, 55(1), 209-219.
- Salaun, L., Reynes, E., & Berthouze-Aranda, S. E. (2013). Adapted physical activity programme and self-perception in obese adolescents with intellectual disability: Between morphological awareness and positive illusory bias. *Journal of Applied Research in Intellectual Disabilities*, 27(2), 112-124.
- Schneider, W., Visé, M., Lockl, K., & Nelson, T. O. (2000). Developmental trends in children's memory monitoring: Evidence from a judgment-of-learning task. *Cognitive Development*, 15, 115-134.
- Shiels, K., & Hawk Jr., L. W. (2010). Self-regulation in ADHD: The role of error processing. *Clinical Psychology Review*, 30(8), 951-961.
- Steward, K. A., Tan, A., Delgaty, L., Gonzales, M. M., & Bunner, M. (2017). Self-awareness of executive functioning deficits in adolescents with ADHD. *Journal of Attention Disorders*, 21(4), 316-322.
- Stone, C. A., & May, A. L. (2002). The accuracy of academic self-evaluations in adolescents with learning disabilities. *Journal of Learning Disabilities*, 35(4), 370-383.
- Stringer, R. W., & Heath, N. (2008). Academic self-perception and its relationship to academic performance. *Canadian Journal of Education*, 31(2), 327-345.
- Swanson, H. L. (1994). Short-term memory and working memory: Do both contribute to our understanding of academic achievement in children and adults with learning disabilities? *Journal of Learning Disabilities*, 27(1), 34-50.
- Swanson, E. N., Owens, E. B., & Hinshaw, S. P. (2012). Is the positive illusory bias illusory? Examining discrepant self-perceptions of competence in girls with ADHD. *Journal of Abnormal Child Psychology*, 40(6), 987-998.
- Taylor, S. E., & Brown, J. D. (1988). Illusions and well-being: A social psychological perspective on mental health. *Psychological Bulletin*, 103, 193-210.
- Veenman, M. J. V., Wilhelm, P., & Beishuizen, J. J. (2004). The relation between intellectual and metacognitive skills from a developmental perspective. *Learning and Instruction*, 14(1), 89-109.

- Vickerstaff, S., Heriot, S., Wong, M., Lopes, A., & Dossetor, D. (2007). Intellectual ability, self-perceived social competence, and depressive symptomatology in children with high-functioning Autisms. *Journal of Autism and Developmental Disorders*, 37(9), 1647-1664.
- Voelker, S. L., Carter, R. A., Sprague, D. J., Gdowski, C. L., & Lachar, D. (1989). Developmental trends in memory and metamemory in children with attention deficit disorder. *Journal of Pediatric Psychology*, 14, 75-88.
- Volz-Sidiropoulou, E., Boecker, M., & Gauggel, S. (2016). The positive illusory bias in children and adolescents with ADHD: Further evidence. *Journal of Attention Disorders*, 20(2), 178-186.
- von der Linden, N., & Roebers, C. M. (2006). Developmental changes in uncertainty monitoring during an event recall task. *Metacognition and Learning*, 1(3), 213-228.
- Watabe, Y., Owens, J. S., Serrano, V., & Evans, S. W. (2018). Is positive bias in children with attention deficit hyperactivity disorder a function of low competence or disorder status? *Journal of Emotional and Behavioral Disorders*, 26(2), 79-92.
- Weafer, J., Camarillo, D., Fillmore, M. T., Milich, R., & Marczinski, C. A. (2008). Simulated driving performance of adults with ADHD: Comparisons with alcohol intoxication. *Experimental and Clinical Psychopharmacology*, 16(3), 251.
- Weinstein, N. D. (1980). Unrealistic optimism about future life events. *Journal of Personality* and Social Psychology, 39(5), 806-820.
- Weinstein, N. D. (1982). Unrealistic optimism about susceptibility to health problems. *Journal of Behavioral Medicine*, 5(4), 441-460.
- Weyandt, L. L., & Gudmundsdottir, B. G. (2015). Developmental and neuropsychological deficits in children with ADHD. In R. A. Barkley (Ed.), *Attention Deficit Hyperactivity Disorder: A handbook for diagnosis and treatment* (4th Edition, pp. 116-139). Guilford: New York.
- Whitley, J., Heath, N., & Finn, C. (2008). The role of attention-deficit hyperactivity disorder in the self-perceptions of children with emotional and behavioural difficulties. *McGill Journal of Education/Revue des sciences de l'éducation de McGill*, 43(1), 65-80.
- Willcutt, E. G., Doyle, A. E., Nigg, J. T., Faraone, S. V., & Pennington, B. F. (2005). Validity of executive function theory of attention-deficit/hyperactivity disorder: A meta-analytic review. *Biological Psychiatry*, 57(11), 1336-1346.
- Wilkinson, D. A., Best, C. A., Minshew, N. J., & Strauss, M. S. (2010). Memory awareness for faces in individuals with Autism. *Journal of Autism and Developmental Disorders*, 40, 1371-1377.
- Wiener, J., Malone, M., Varma, A., Markel, C., Biondic, D., Tannock, R., & Humphries, T. (2012). Children's perceptions of their ADHD symptoms: Positive illusions, attributions, and stigma. *Canadian Journal of School Psychology*, 27(3), 217-242.
- Wojcik, D. Z., Allen, R. J., Brown, C., & Souchay, C. (2011). Memory for actions in autism spectrum disorder. *Memory*, 19(6), 549-558.

- Wojcik, D. Z., Moulin, C. J., & Souchay, C. (2013). Metamemory in children with Autism: Exploring the "feeling-of-knowing" in episodic and semantic memory. *Neuropsychology*, 27(1), 19-27.
- Wojcik, D. Z., Waterman, A. H., Lestié, C., Moulin, C. J. A., & Souchay, C. (2014). Metacognitive judgments-of-learning in adolescents with Autism. *Autism*, 18(4), 393-408.
- Wong, B. Y. L. (1991). The relevance of metacognition to learning disabilities. In B. Y. L. Wong (Ed.), *Learning about learning disabilities* (pp. 231-258). Burnaby, BC: Academic Press Inc.
- Zic, A., & Igric, L. (2001). Self-assessment of relationships with peers in children with intellectual disability. *Journal of Intellectual Disability Research*, 45(3), 202-211.

Received: January 13, 2019