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Introduction

Numerical simulation of blood flow in the arterial tree is 
challenging due to difficulties in describing the gemetry, 
nonlinear wall viscoelasticity, and non-Newtonian rheolo-
gical properties of blood. One-dimensional models pre-
sent a good compromise between Windkessel and three-di-
mensional models [1, 2]. Numerical simulation of arterial 
flow is very useful for the thorough understanding of 
pressure and flow waves propagation phenomena.
The goal of this paper is to present a method of characte-
ristics (MOC) [3, 4] for solving a nonlinear one-dimensi-
onal model in an arterial tree with elastic and  viscoelastic 
wall. The developed method was applied to the 37-ele-
ment silicone model of arterial tree with available experi-
mental data [5]. The test was used in [6] to check the 

ability of the mathematical model and the numerical sc-
heme of correctly describing the multiple reflections from 
multiple outflow and junction conditions. Here we used 
this benchmark to verify the in-house  developed code by 
comparing the obtained results with the experimental data 
and with the results of other methods.

Mathematical model

A one-dimensional model of blood flow in a pipe with 
viscoelastic wall reads [6]:
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where x, t are the space and the time coordinate, respe-
ctively, A  is cross-sectional area (A = D2π/4), Q is vo-
lume flow rate, and v = Q/A, p is transmural pressure, ρ 
is fluid density, A0 is constant cross-sectional area at a 
constant pressure of p0. Coefficients f , CD  and   are 
defined by:
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where m is fluid viscosity,   is constant for particular 
velocity profile, E  is elastic modulus and   is retarda-
tion time constant in the Voigt model.

Numerical method

The artery is discretized into a number of elements of 
length Δx. Fig. 1 shows two typical elements (denoted 
by j and k) bounded by nodes (I, J, and K). The pressure 
is defined at the nodes, A is defined in the middle of each 
element (and it is considered to be constant along the 

element) and Q is defined at each end of each element. 
Thus, four unknowns are stored for each element. For 
example, the unknowns related to the element j are pJ , 
Q jL , Q jD  and Aj , as shown in Fig. 1.
By using Eq. (3), Eqs. (1) and (2) can be transformed 
into a set of compatibility equations, which are valid 
along two characteristic lines defined by ξ±= ±v c  in 
the form:
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where C C AD2 , and c A C= / ( )ρ  is wave speed. 
We establish relationship between pressure and area 
from the discretized form of Eq. (3), which serves to 
exclude A from the set of unknowns. The third equation 
related to each node is the continuity equation. For 
example, at node R in Fig. 2, this equation reads:
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where QTJ  is the branching flow from the large artery into 
a small one, which is modeled by the inertial four element 
Windkessel as depicted in Fig. 2. In this model, LJ is iner-
tance, rJ is resistance, CTJ is the capacity of branching 
arteries and RJ is the peripheral resistance at node J.
We discretized Eq. (5) and all other auxiliary equations 
by using second order accuracy, and the resulting system 
of algebraic equation is solved by a direct method. The 

Fig. 1. An element of a discretized arterial tree with the arrange-
ment of variables. For each element, three variables are stored: 
pressure p j , flow rate Q jR  at the element outlet, and Q jL  at the 
element inlet. The time instances are denoted by n, n-1, n-2, n-3, 
and n-4. Dashed lines denote the characteristics defined by 
ξ+= +v c  and ξ−= −v c ; empty circles denote the nodes at 
the new instance at which unknowns should be calculated; filled 
circles denote nodes at older time instances at which the values 
of all variables are known from the previous integration steps; 
squares denote the interpolation points F and B on the forward 
and backward characteristic lines, and the auxiliary interpolation 
points N and M are at the same time instances as the points F and 
B, respectively; triangles denote midpoints f and b of the forward 

and backward characteristics, respectively

Fig. 2. Electrical analogue scheme of the Windkessel model defi-
ning the node outlet boundary condition

Fig. 3. Scheme of 37-segment arterial tree. The node number zero 
denotes the arterial tree inlet, where a periodic flow rate was 

prescribed. Filled circles denote measurement sites
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Fig. 4. 37-artery network. Pressure (left) and flow rate (right) at midpoints of two arterial segments: (a) Aortic Arch II and (b) Thoracic 
Aorta II. Black solid lines represent in vitro experimental data (Exp.), green solid lines denote numerical results of the developed method 
with elastic arterial wall (MOC), and red dashed lines denote numerical results of the method of characteristics with viscoelastic arterial 

wall (MOC_visc) [4]

Table 1. Percentage RMS errors of the calculated pressure and flow rate with respect to the measurements at the locations indicated in 
Fig. 3, and the range of these errors from six other numerical schemes

Arterial segment Numerical scheme p
RMS Q

RMS

Aortic arch II
Six schemes min 1.68 12.02

max 1.94 12.34
MOC 1.77 12.47

MOC – visc. 1.56 11.89

Thoracic aorta II
Six schemes min 2.17 25.26

max 2.53 25.62
MOC 2.26 26.27

MOC – visc. 2.15 24.50

Left subcl. I
Six schemes min 3.05 13.87

max 3.12 14.45
MOC 3.19 14.39

MOC – visc. 3.04 13.53

R. iliac-femoral II
Six schemes min 3.65 23.90

max 3.97 24.80
MOC 3.97 26.02

MOC – visc. 3.68 22.52

Left ulnar
Six schemes min 2.57 12.42

max 2.75 12.91
MOC 2.67 12.81

MOC – visc. 2.28 11.36

R. anter. tibial
Six schemes min 3.21 9.88

max 3.43 11.05
MOC 3.90 10.98

MOC – visc. 3.15 8.15

Right ulnar
Six schemes min 2.42 11.22

max 2.66 11.73
MOC 2.62 11.84

MOC – visc. 2.53 10.70

Splenic
Six schemes min 2.22 9.02

max 2.36 9.79
MOC 2.52 10.37

MOC – visc. 1.93 7.80
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method is implicit, unconditionally stable and capable of 
dealing with nonlinearities.
At the inlet node the pressure or the inflow can be 
 prescribed. In all simulations, the initial  conditions were 
Q x,0 0( )= , A x A,0 0( )=  and p x p,0 0( )= . The inte-
gra tion time should be long enough to achieve 
 cycle-to-cycle periodicity, and the last cycle is examined.

Results and discussion

Fig. 3 schematically shows the examined network. All 
data relevant to this problem are provided in the supple-
ment material [6]. In the performed simulation each se-
gment was divided into a number of elements (total 
number of elements was 431), and integration time step 
was 1 ms. Fig. 4 shows the comparison of the measured 
and calculated pressure and flow (for the case of elastic 
and viscoelastic wall), and Table 1 shows the percentage 
root mean square (RMS) errors of the calculated results 
with respect to the experimental data of the developed 
method and the range of these errors from the six other 
methods examined in [6].
In the case of elastic wall, most of the MOC errors are 
very similar in size to errors from six numerical schemes 
(see Table 1). In the case of viscoelastic wall, the pre-
ssure and flow RMS errors are slightly reduced, and a 
reduction in peak values of pressure and flow rate is 
achieved (that is closer to experimental data) because of 
damping high frequency oscillations.
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