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ABSTRACT
This paper studies CO2 emissions at a global level. The authors
use Dynamic Optimisation to derive the minimum penalty cost
on countries every single time. They then use an Imputation
Distribution Procedure to allocate the minimum penalty cost
among countries. Their work provides the extension of the
Shapley value cost allocation as a penalty to reduce CO2 emis-
sions. The paper has implications for how to provide initiatives to
improve cooperation on reducing CO2 emissions at an inter-
national level. Results show that a reduction in cost of only one
country can be harmful for other countries. In this way, some
countries can end up or worse off in a case where all countries
experience a uniform decrease in their penalty cost. Therefore,
the findings of this work suggest a low penalty-cost scenario that
helps the countries fight for pollution reduction and provide fruit-
ful links for policy-makers. They show that the Clean
Development Mechanism (CDM) of the Kyoto Protocol could be
implemented by the Shapley value cost allocation.
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1. Introduction

In CO2 emissions at a global level, free-riding is a key problem for countries design-
ing and signing an agreement because of the nature of public goods. Two problems
exist when numbers of countries join an agreement. One is to recognise the targeted
level of CO2 emissions; the other is how the targeted level can be allocated among
the countries in a consistent and stable fashion. In this paper, we try to tackle these
two issues and give suggestions on the Clean Development Mechanism (CDM) of the
Kyoto Protocol as a cost-effective tool to reduce CO2 emissions to the committed tar-
gets which is also discussed by Buchner and Carraro, (2004), Ringius, Torvanger, and
Underdal (2002) and Viguier (2004).
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We study the aforementioned problem in a cooperative game context. First, we
calculate the Pareto-Optimal level of CO2 emissions and then use Shapely value to
allocate the payoff (in our case, penalty cost) among players (countries). We use
Dynamic Optimisation instead of Dynamic Equilibrium to derive the optimal path,
i.e., a minimum penalty cost every single time. Then, we use the concept of an
Imputation Distribution Procedure for the purpose of allocating a minimum penalty
cost among countries. Our work provides a new extension of the Shapley value cost
allocation as a penalty to reduce CO2 emissions among the players. Our research
offers implications for the Kyoto Protocol, which can provide initiatives for improv-
ing cooperation for CO2 emissions control and will provide policy tools or incentives
that will have a positive effect on countries’ welfare. Theoretically, for CO2 emissions,
an incentive must be based on a cost and benefit analysis for policy analysis. The
highest incentives must be at the level where a high net benefit exists for reducing
CO2 emissions at a committed target. However, it is difficult to calculate net benefit
empirically for policy. Therefore, employing a cost-effective approach becomes a sub-
stitute for policy implications. It will lead us to make the policy for reducing CO2

emissions. Our cost analysis may be implemented by the Clean Development
Mechanism (CDM) of the Kyoto Protocol. The Clean Development Mechanism
(CDM), which is defined in the Kyoto Protocol (IPCC, 2007), can provide an emis-
sions-reductions project, which generates a Certified Emission Reduction in unit
terms in order to limit countries’ emissions to a targeted level.1 This paper suggests a
method of working out the minimum penalty cost for any given aggregate targeted
level as a Pareto-Optimal outcome and how to allocate cost among individ-
ual countries.

There are three strands of literature studying pollution in a game-theory context.
Many papers (see, for example, Chander & Tulkens, 1992, 1995; Filar & Gaertner,
1997; Gaertner, 2001; Germain, Toint, Tulkens, & De Zeeuw, 2003; Kaitala, M€aler, &
Tulkens, 2006; L. Petrosjan & Zaccour, 2003; Tulkens & Eyckmans, 1999) describe
the willingness of a country or a group of countries who are committed to reducing
their emissions.

Other papers focus on non-cooperative games, such as the prisoner’s dilemma or
chicken games (Akimoto, Matsunaga, Fujii, & Yamaji, 2000; Asheim, Froyn, Hovi, &
Menz, 2006; Okada, 2007; Pittel & R€ubbelke, 2012; Shiqiu, 2005; Svirezhev, von Bloh,
& Schellnhuber, 1999). Further, Carraro and Moriconi (1997); Forg�o, F€ul€op, and Prill
(2005), Haurie and Viguier (2003), Scheffran and Pickl, (2000) and Wu, Chen,
Cheng, and Liou (2014) arrived at a numerical estimation of CO2 emissions.

Our research relates to the last strand of literature. These studies try to find out
cooperative gains of abatement costs and then assign that cooperative penalty cost
among players (countries). Therefore, some studies examined allocation rules for
emissions reductions. Germain et al. (2003) extended the model of Chander and
Tulkens (1995) in the form of a dynamic setting (closed loop) and at each time point,
cooperation was negotiated. Besides that, they also defined a mechanism with the
core theoretical idea of ensuring a stable grand coalition. Botteon (2001) studied sta-
ble environmental agreements at a global level by using a model of asymmetric play-
ers and found that the Shapley value stimulates high cooperation. Further extension
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was made by L. Petrosjan and Zaccour (2003) for trans-boundary pollution games by
computing characteristic function and the Shapley value for each player and the
Shapley value allocated with time consistent. Further, Benchekroun and Taherkhani
(2014) examined pollution reduction costs by using time-consistent Shapley value
allocation and examined country adoption to reduce pollution depending on a change
in its damage (abatement) cost function.

Our work relates to the literature in the context of the recent surveys on CO2

emissions reduction by the likes of Kozlovskaya, Petrosyan, and Zenkevich (2010)
and L. A. Petrosjan and Zenkevich (2015), but our findings are based on optimality
and cost allocation. This was so that we could examine a strategic static framework
from the literature. Therefore, the difficulty is in adaptation and CO2 emissions. In
pollution problems (CO2 emissions), stability is most important for achieving cooper-
ation among the countries to overcome the free-rider problem. L. A. Petrosjan and
Zenkevich (2015) described three conditions for ensuring the stability of cooperation:
time consistency; stability with dynamics; and irrational behaviour. The time consist-
ency property by using differential cooperative games was introduced by L. A.
Petrosjan (1993). Time consistency property means that when any cooperation builds
up, the partners of those cooperating are going to cooperate guided by
principle (optimal) each time. The result of a cooperation agreement for a strategic
stable solution appeared by using a Nash Equilibrium, which supports strategic
cooperation.

Perhaps the most pioneering work on applying the Shapley value was done by
Littlechild and Owen (1973). In this paper they demonstrated that airport cost alloca-
tion is closely related to the Shapley value in a static model. In our paper, we discuss
both the Pareto-Optimality and Imputation Distribution Procedure to allocate the
penalty cost in a dynamic optimal path. An airport game theoretic analysis which
was introduced by Littlechild and Owen (1973) could be used for the cost allocation
of CO2 emissions among countries to reduce pollution. In the literature, this
approach is widely used in different kinds of cost-allocation problems (for more
details see Castro, G�omez, & Tejada, 2009; Littlechild & Thompson, 1977; V�azquez-
Brage, Van den Nouweland, & Garcıa-Jurado, 1997).

The rest of the paper is organised as follows. Section 2 introduces the emission-
game model, Nash Equilibrium and values for characteristic function. In section 3,
cooperative dynamic game and possible coalitions for all countries are discussed. The
calculation, the decomposition of the Shapley value and cost allocation among coun-
tries are presented in section 4. Discussions are presented in section 5; in particular,
we compare our model with Littlechild and Owen (1973). The concluding remarks
and policy suggestions are explained in section 6.

2. Dynamic game emission model

For the study of abatement cost analysis, we use a simple dynamic game model with
pollution stock which was introduced by L. Petrosjan and Zaccour (2003). Let there
be n countries in the game of pollution control by i 2 ð1; 2; ::::::; nÞ . The country i
CO2 emission rate is referred by ZiðtÞ at every moment t � 0 . The emissions of
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countries form a pollution stock. The accumulated pollution stock is noted by YðtÞ at
time t and can be written in the form of differential equation;

_y tð Þ ¼
Xn
i¼1

zi tð Þ�dy tð Þ; (1)

Where yð0Þ ¼ y0>0 and d>0 is the natural rate of the pollutant country.
Suppose �zi is the emission rate of the country as usual and CiðziÞ is the cost of

CO2 emissions for reduction when country i limits its emission to Zi.

Ci zi tð Þð Þ ¼ c
2

zi tð Þ��zið Þ2; 0 � zi tð Þ � �zi; c>0 (2)

The pollution stock that is the damage cost to a country i is noted by DiðzðtÞÞ ;

Di yð Þ ¼ piy tð Þ; pi>0: (3)

The main objective of each country in game of CO2 emission is to reduce damage
costs and CO2 emission reduction costs. Therefore, a non-cooperative problem is
solved as follows:

U if g; y� � ¼ min
zi

ð1
t

Ci zið Þ þ Di yð Þ� �
e�qtdt; i ¼ 1; ::::::; nð Þ (4)

Subject to

_y tð Þ ¼
Xn
i¼1

zi tð Þ�dy tð Þ;

Where q is a discount rate that is common.
For the definition of best emission path, we solve following problem as follows:

U I; yð Þ ¼ min
zi

ð1
t

Ci zið Þ þ Di yð Þ� �
e�qtdt (5)

Subject to

_y tð Þ ¼
Xn
i¼1

zi tð Þ�dy tð Þ;

We want to add some remarks to the calculation of such a formulation. First, we
chose a simple ecological problem in economics and put a stress on cost allocation
and a model for allocating pollution costs over time in a desired manner. Second,
this model has the main problem that each country’s cost depends on the stock of
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pollution and on the total CO2 emissions. Third, the first derivate of two-cost func-
tion under two assumptions (convexity and sign) must be natural. Therefore, the
meaning of convexity of CiðziÞ is that the MAC (marginal abatement cost) for reduc-
ing CO2 emission is high for low emission levels (Germain et al., 2003). Fourth, we
found mathematically that countries will reduce their costs at a similar rate.
Alongside the computation by dynamics, we will finally conclude that pollution is
reduced by reducing CO2 emissions.

2.1. The Nash Equilibrium

Suppose, I ¼ ½1; 2; :::::::; n� is a group of countries. Therefore, a coalition problem,
K � I, in sub coalition, k, is

U K; yð Þ ¼ min
Zið Þi2K

ð1
t

X
i2K

Ci zið Þ þ Di yð Þ� �
e�qtdt; (6)

Subject to

_y tð Þ ¼
Xn
i¼1

zi tð Þ�dy tð Þ; y 0ð Þ ¼ y0>0 (7)

The coalition K value is defined in Equation (6), where k stands for a group of
countries, where k<n , which make a coalition that is calculated by using c core2

assumption. Therefore, in coalition K, the objective is to minimise its members’ costs
and the remaining countries respond individually supported to minimise their total
cost. We solved for n�kþ 1 player to estimate the Nash Equilibrium. While in L.
Petrosjan and Zaccour (2003), when a coalition is formed, non-signatories played the
strategy gained from a scenario of non-cooperation, this strategy was the solution to
Equation (6). We consider L. Petrosjan and Zaccour’s (2003) model for the equilib-
rium of a linear differential game where each country plays a dominant strategy.

2.2. Value function

Let us suppose that the coalition K of k countries, with n�k denoting countries that
are not part of the coalition, choose to minimise cost strategy. Suppose UðK;YÞ is a
value function of coalition K. The coalition K is written by using the Hamilton-
Jacobi-Bellman equation (HJBE) as follows,

qU K; yð Þ ¼ min
zi

X
i2I

Ci zið Þ þ Di yð Þ� �þ @Ui

@t

X
i2I

zi � dy
� 	( )

(8)

By differentiating the right-hand side of Equation (8) with respect to yi, we get

zni ¼ �zi� 1
c
@Ui

@y
(9)
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By substituting Equation (9) in Equation (8), we get:

qU K; yð Þ ¼ 1
2c

@Ui

@y

� 	2

þ piyþ @Ui

@y

X
i2I

�zi � 1
c

X
m2I

@Um

@y
� dy

 !
(10)

By using the linear function as follows

Ui ¼ Eiyþ Fi; i 2 I (11)

The above equation satisfies the Hamilton-Jacobi-Bellman equation (HJBE).
By writing Equation (10) in a linear function form, we have

qEiyþ qFi ¼ 1
2c

Ei
2 þ piyþ Ei

Xn
i¼1

�zi � 1
c
EI � dy

 !
(12)

Where

EI ¼
X
i2I

Ei

Now by comparing coefficient of variables with equal power, we get

Ei ¼ pi
qþ d

Fi ¼ Ei
q

Xn
i¼1

�zi � 1
c
EI þ 1

2c
Ei

 !

Where

EI ¼
X
i2I

Ei

By substituting the values of Ei and Fi in Equation (11).

Ui K; yð Þ ¼ pi
q qþ dð Þ qyþ

X
i2I

�zi � 1
c qþ dð Þ

X
j2I

pj þ 1
2c qþ dð Þ pi

 !
(13)

This is the construction of the Nash Equilibrium. Therefore, the solution will be in
the Nash Equilibrium in the sub-game and it will satisfy the initial condition.

3. Cooperative solution of the emissions-reduction game model

The calculation of the characteristic function is not usual (L. Petrosjan and Zaccour,
2003). Therefore, when the value of a characteristic function is calculated for a grand
coalition K � I, the leftover players are bound to the Nash Equilibrium.
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Now consider the case where players agree to cooperate. Let us suppose that all
players are going to minimise their total payoff under cooperation. Let a cooperative
game be noted by Ccðy0; tÞ , where all players agreed to the optimality principle.
There must be an agreement on how players can act cooperatively and how they can
share their cooperative payoff to build up an optimal solution of cooperative design.
Therefore, the optimal solution of the Cooperative game Ccðy0; tÞ must fulfil these
two conditions.3 In this way, we solve the dynamic optimisation problem.

U K; yð Þ ¼ min
i2I

ð1
t

e�qt
X
i2I

Ci zið Þ þ Di yð Þ� �
dt (14)

For further interpretation, the Bellman function satisfies the Hamilton-Jacobi-
Bellman Equation (HJBE), that is:

qU K; yð Þ ¼ min
i2I

X
i2I

Ci zið Þ þ Di yð Þ� �þ @U
@y

X
i2I

zi � dy
� 	( )

(15)

By taking the derivative of the right-hand side (RHS) of Equation (15) with respect
to zi, and tends to zero to get the best approach for emission reduction,

zi ¼ �zi� 1
c
@U
@y

(16)

We write the linear form of the Bellman function in the following way

U K; yð Þ ¼ Eyþ F where E implies
@U
@y

Now we write Equation (15) in linear form and solve to get

E ¼
P

i2I pi
qþ d

(17)

F ¼ 1
q

X
i2I

�Zi � n
2c

E
� 	

(18)

By inserting the value of Equation (17) in Equation (16), we get the optimal strat-
egy for players under cooperation.

zi ¼ �zi� 1
c

P
i2I pi

qþ d
(19)

The optimal path of CO2 emission relies on how cooperation among the countries
can remain viable. The solution of optimal principle will be effective along the
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trajectory path fygtt0 . We use the Pontryagin’ maximum principle to get the optimal
strategy for z ¼ ðz1; :::::::; znÞ

Substituting these sets of optimal strategies into Equation (7) yields an optimal tra-
jectory path fygtt0 , such that,

y tð Þ ¼ y0 þ
ð1
t

e�qt Ci zið Þ þ Di yð Þ� �
dt (20)

By solving Equation (20) and substituting Equation (19), we get as:

y tð Þ ¼ y0e
�dt� 1

d

X
i2I

�zi �
n
P
j2I

pj

c qþ dð Þ

2
64

3
75e�dt þ 1

d

X
i2I

�zi �
n
P
j2I

pj

c qþ dð Þ

2
64

3
75 (21)

Now the Bellman function takes form as:

U K; y; tð Þ ¼
P

i2I pi
q qþ dð Þ qyþ

X
i2I

�zi � n
P

i2I pi
2c qþ dð Þ

 !
(22)

3.1. All possible coalition outcomes

The total cost at the optimal level contains a subset of the countries except the grand
coalition. Therefore, a subset of grand coalition is defined as 2n�n�2. The objective
function that we consider for coalition will be the sum of all countries’ objective
function. Therefore, for the optimisation solution, we insert Nash values for decision
strategies of players that are obtained to compute the Nash Equilibrium. The values
function for coalition K is UðS; y; tÞ. This value function is computed as follows:

U S; y; tð Þ ¼ min
zið Þi2K

ð1
t

X
i2S;S�I

Ci zið Þ þ Di yð Þ� �
e�qtdt; (23)

Subject to

_y tð Þ ¼
Xn
i¼1

zi tð Þ�dy tð Þ; y 0ð Þ ¼ y0>0

Suppose UðS; y; tÞ is a function of the value of coalition S. The coalition S can be
written by using the Hamilton-Jacobi-Bellman Equation (HJBE) as follows,

qU S; y; tð Þ ¼ min
zi;i2S

X
i2S

Ci zið Þ þ Di yð Þ� �þ @US

@t

X
i2S

zi � dy
� 	( )

(24)
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Differentiating the right hand side (RHS) of Equation (24) with respect to yi , we
get:

zi
S ¼ �zi� 1

c
@US

@y
(25)

Substituting Equation (2), Equation (3) and Equation (25) in Equation (24) then
we get:

qU S; y; tð Þ ¼ 1
2c

@US

@y

� 	2

þ piyþ @US

@y

X
i2S

�zi � 1
c

X
m2I

@Um

@y
� 1

c

X
i2InS

Ei � dy

 !
(26)

Where

Ei ¼ @Ui

@y

By using linear function as follows:

US ¼ ESyþ FS; S � I (27)

The above equation satisfies the Hamilton-Jacobi-Bellman Equation (HJBE)
Writing Equation (26) in way of linear function, we have

qESyþ qFS ¼ 1
2c

ES
2 þ piyþ ES

Xn
i¼1

�zi � 1
c

X
i2InS

Ei � 1
c
ES � dy

 !
(28)

Now by comparing coefficient of variables with equal power, we get

ES ¼
P

j2S pj
qþ d

FS ¼ ES
q

Xn
i¼1

�zi � 1
c

X
i2InS

Ei � 1
2c

ES

 !

By substituting the values of ES and FS in Equation (28)

US S; y; tð Þ ¼
P

j2S pj
q qþ dð Þ qyþ

X
i2I

�zi � 1
c qþ dð Þ

X
j2InS

pj þ 1
2c qþ dð Þ

X
i2S

pi

 !
(29)

4. Shapley value computation

In (Shapley, 1953), it was defined that the Shapley value is distinctive. Therefore, the
Shapley value presents a principle for Pareto-Optimal distribution of a total gain of
UsðK; y; tÞ and it can be defined without using the concept of dominance.
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Our main aim is to calculate the Shapley value for every country i and then assign
each country’s marginal contribution, which is the difference between values of char-
acteristic function in this form UðK; y; tÞ�UðKnfig; y; tÞ . In the case where equilib-
rium exists, values are connected to the Nash Equilibrium in K coalition and other
remaining countries (players) in InK.

Now we will allocate the total abatement cost among the countries by the Shapley
value under cooperation if the grand coalition formed.

We consider that the cooperative game has n countries. We know that the Shapley
value is

Shi U; y; tð Þ ¼
X

i2I;K�I

n�kð Þ! k�1ð Þ!
n!

U K; y; tð Þ � U Kn if g; y; t� �� �
(30)

Now, in this case, the game is symmetric; therefore, all players have the same
Shapley values which are given as

Shi U; y; tð Þ ¼ 1
2q qþ dð Þ 2p

Xn
i¼1

�zi þ qy

 !
� n2p2

c qþ dð Þ

( )
(31)

4.1. Allocation of the Shapley value

The cost allocation for the reduction of CO2 emissions will be allocated among the
countries with the methodology of a cooperative game.

Let the state of a cooperative game be defined as in a pair ðy; tÞ and denoted by
Cðy; tÞ. After that, a sub game starts at a time t with pollution stock yI . Let CðyI; tÞ
be a sub-game which started along a cooperative trajectory. Furthermore, in a sub-
game CðyI; tÞ, the characteristic function for grand coalition K � I is defined as in its
minimum cost and written as UðK; y; tÞ . The cooperative cost (total) can be distrib-
uted among the countries as UðI; y; 0Þ which is a minimum cost for a grand coalition
I in Cðy; 0Þ . Suppose ShiðU; y; tÞ ¼ fSh1ðU; y; tÞ; ::::::::::::::::::; ShnðU; y; tÞg denoted
the Shapley value in sub-game Cðy; tÞ . At last, kiðtÞ ¼ fk1ðtÞ; ::::::::::::::::::; knðtÞg , a
cost which is allocated among the countries i at time t.

The kiðtÞ ¼ fk1ðtÞ; ::::::::::::::::::; knðtÞg called an Imputation Distribution
Procedure if

Shi U; y; 0ð Þ ¼
ð1
0

e�qtki tð Þdt; (32)

It means that the time function kiðtÞ points to an Imputation Distribution
Procedure for an overall cost of country i which is given by the element of game
Cðy; 0Þ of the Shapley value if we decompose the Imputation Distribution
Procedure. It means that the total sum of the discounted cost will be equal to
ShiðU; y; 0Þ.
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Theorem 1 :
The kiðtÞ ¼ fk1ðtÞ; ::::::::::::::::::; knðtÞg where kiðtÞ ¼ qShiðU; yI; tÞ� d

dt ShiðU; yI; tÞ
at any instant of time t 2 ½0;1Þ is a time consistent Imputation Distribution
Procedure if it satisfies following condition,

Shi U; y; 0ð Þ ¼
ðt
0

e�qski sð Þdsþ e�qtShi U; yI; t
� �

(33)

Proof :-
First, we want to prove that it is an Imputation Distribution Procedure.

ki tð Þ ¼ qShi U; yI; t
� �� d

dt
Shi U; yI ; t
� �

(34)

Multiplying both sides of the above equation by e�qt and integrating it, we get:

ð1
0

e�qtki tð Þdt ¼
ð1
0

e�qtqShi U; yI; t
� �� d

dt
Shi U; yI; t
� �

dt

¼ �e�qtShi U; yI ; t
� �j1o

¼ Shi U; yI; 0
� �

¼ Shi U; y; 0ð Þ

We need to show that kiðtÞ is a time consistent for this, so we have to prove
that ShiðU; y; 0Þ ¼ Ð t0 e�qskiðsÞdsþ e�qtShiðU; yI; tÞ

After putting the values of Equation (30) into Equation (33) and calculating it we
get

ki tð Þ ¼ pyI tð Þ þ n2p2

2c qþ dð Þ2 (35)

Where yIðtÞ is given in Equation (21).
Now we check that kiðtÞis time consistent. That must decompose the Shapley value

for each country i at t ¼ 0, so Equation (31) becomes as follows

Shi U; y; 0ð Þ ¼ 1
2q qþ dð Þ 2p

Xn
i¼1

�zi þ qy 0ð Þ
 !

� 6p2

c qþ dð Þ

( )
(36)

By multiplying both side of Equation (35) by e�qt and integrating it, we derive

ð1
0

e�qtki tð Þdt ¼
ð1
0

e�qt pyI tð Þ þ n2p2

2c qþ dð Þ2
" #

dt (37)
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Now yIðtÞ is given in Equation (21) that is

y tð Þ ¼ y0e
�dt� 1

d

X
i2I

�zi �
n
P
j2I

pj

c qþ dð Þ

2
64

3
75e�dt þ 1

d

X
i2I

�zi �
n
P
j2I

pj

c qþ dð Þ

2
64

3
75

By inserting the value of yIðtÞ in Equation (37) we get

ð1
0

e�qtki tð Þdt¼
ð1
0

e�qt p y0e�dt�1
d

X
i2I

�zi�
n
X
j2I

pj

c qþdð Þ

2
664

3
775e�dtþ1

d

X
i2I

�zi�
n
X
j2I

pj

c qþdð Þ

2
664

3
775

0
BB@

1
CCA

þ n2p2

2c qþdð Þ2

2
66666664

3
77777775
dt

¼
ð1
0

e� qþdð Þtpy0dt�
ð1
0

e�qtp
d

Xn
i¼1

�z� np
c qþdð Þ

 !
dt

þ
ð1
0

e� qþdð Þtp
d

Xn
i¼1

�z� np
c qþdð Þ

 !
dtþ

ð1
0

e�qt n2p2

2c qþdð Þdt

(38)

After simplifying all above integral in Equation (38), it will lead to

ð1
0

e�qtki tð Þdt ¼ 1
2q qþ dð Þ 2p

Xn
i¼1

�zi þ qy 0ð Þ
 !

� n2p2

c qþ dð Þ

( )
(39)

¼ Shi U; y; 0ð Þ (40)

Finally, it is noticed that the Shapley value must be in the core. Therefore, the
next theorem shows that the sub-cooperative game Cðy; tÞ is convex in the core of
game; the Shapley value is the centre of gravity (Shapley, 1971).

Theorem 2 :
A cooperative game UðK; y; tÞ will be convex if it satisfies the property of super-addi-

tive i.e.,

U K [ S; y; tð Þ � U K; y; tð Þ þ U S; y; tð Þ
or

U K [ S; y; tð Þ�U K; y; tð Þ�U S; y; tð Þ � 0
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Proof :-
Let

jKj ¼ k; jSj ¼ s
jK [ Sj ¼ kþ s jIj ¼ m

U K [ S; y; tð Þ�U K; y; tð Þ�U S; y; tð Þ � 0 (41)

We know that from Equation (22) and Equation (29)

U K; y; tð Þ ¼ kp
q qþ dð Þ qyþ

X
i2I

�zi � mk
2c qþ dð Þ

 !
(42)

U S; y; tð Þ ¼ sp
q qþ dð Þ qyþ

X
i2I

�zi � sp
c qþ dð Þ þ

msp
2c qþ dð Þ

� 	
(43)

Similarly

U K [ S; y; tð Þ ¼ kþ sð Þp
q qþ dð Þ qyþ

X
i2I

�zi � kþ sð Þp
c qþ dð Þ þ

m kþ sð Þp
2c qþ dð Þ

 !
(44)

Inserting the values of Equation (42), Equation (43) and Equation (44) into
Equation (41)

kþ sð Þp
q qþ dð Þ qyþ

X
i2I

�zi � kþ sð Þp
c qþ dð Þ þ

m kþ sð Þp
2c qþ dð Þ

 !
� kp
q qþ dð Þ qy þ

X
i2I

�zi � mk
2c qþ dð Þ

 !

� sp
q qþ dð Þ qyþ

X
i2I

�zi � sp
c qþ dð Þ þ

msp
2c qþ dð Þ

� 	
� 0

By simplifying, we get

py
qþ d

6 sþ kð Þ � s� kð Þ þ
p
Xn
i¼1

�zi

q qþ dð Þ 6 sþ kð Þ � s� kð Þ þ p
cq qþ dð Þ s2 � sþ kð Þ2

� �
þ mp
2cq qþ dð Þ sþ kð Þ2 þ k2 þ s2

� �
� 0

p
cq qþ dð Þ s2 � sþ kð Þ2

� �
þ mp
2cq qþ dð Þ sþ kð Þ2 þ k2 þ s2

� �
� 0

Hence, it proves that the Shapley value is convex and it also proves that a coopera-
tive game is convex.
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Theorem 3 :-
The Shapley value ShiðU; yÞ of the game UðI; y; tÞ belongs to core.

Definition of core :
The emission reduction cost CiðziÞ will be at the core of coalitional game UðI; y; tÞ

if 8 k � I
P

i2I CiðziÞ � UðK; y; tÞ

Proof :-
Suppose, K � I; S ¼ K [ fig where i 2 K then, ShiðU;K; y; tÞ � ShiðU; S; y; tÞ .

To prove this, we consider a permutation p of K. Let nðp; iÞ be a marginal contribu-
tion of i in K, then

Shi U;K; y; tð Þ ¼ 1
jKj!

X
p2
Q

Kð Þ
n p; ið Þ

Where, pðKÞ is a set of all permutations of all members of K . We know that S ¼
K [ fig, again let n0ðp; iÞ be the average marginal contribution of i in S. The permu-
tation, which is an average that is taken over the jSj! which is different from permuta-
tion p that is taken over C, then

Shi U; S; y; tð Þ ¼ 1
jKj!

X
p2
Q

Kð Þ
n0 p; ið Þ

It shown that 8 p 2QðKÞ, so we have

n0 p; ið Þ � n p; ið Þ;

As the marginal contribution of i in S will still be nðp; iÞ., if we place j after i and
on the other hand, if we put j before i, then we get the convexity of

n0 p; ið Þ � n p; ið Þ

Now the same property can be satisfied in general for any of set S � K; thus we
have to prove that

i 2 K � S ) Shi U;Kð Þ � Shi U; Sð Þ

Therefore,

X
i2K

Shi U;Kð Þ �
X
i2K

Shi U; Sð Þ

1730 M. LUQMAN ET AL.



That is

U Kð Þ �
X
i2K

Shi U; Sð Þ

Now, let us consider the allocation

Shi U; Sð Þð Þi2S

It is clearly seen that no part of the allocation of S can be blocked in this alloca-
tion

Shi U; Ið Þ; :::::::::::::::::::; Shi U; Ið Þð Þ

It is also clear that more of the coalition can block this and furthermore that

Shi U; Ið Þþ; :::::::::::::::::::::::::þ Shi U; Ið Þð Þ ¼ U Ið Þ

This shows that the Shapley value allocation is a core or an element of core and it
is the centre of gravity.

5. Discussion

In this section, we discuss how our optimal cost allocation in the form of characteris-
tic function could be adopted in the case of the pollution problem. A characteristic
function is a mathematical tool to measure a strategic coalition. We apply the
Imputation Distribution Procedure in a characteristic function for cost allocation that
will satisfy Pareto-Optimal condition. The Shapley value will take that imputation
which will satisfy some definitions and theorems that are discussed in Section 4.

The imputation is usually linked to a pay-off distribution procedure (minimum
cost allocation in our case) in dynamic games. In our case, an interesting discussion
can be about how to distribute these amounts among the countries. Therefore, the
distribution procedure is feasible over time. So the amount is distributed to each
country with the sum of its total share (see the Imputation Distribution Procedure
definition). Our analysis decomposes total minimum penalty cost for the CO2 emis-
sions over time. It means that if the countries renegotiate the agreement at any time
along the cooperative trajectory, they would get the penalty.

The coalition formation in a cooperative game has some benefits for all the coun-
tries to participate in a game, but in the real world if we would like to overcome the
problem of pollution, coalition formation takes too much time and faces difficulties.
One of the difficult tasks is that although all the countries know the benefit of coali-
tion formation, all the countries do not agree upon how to distribute the penalty cost
immediately among each other through cooperation. All the countries usually spend
a lot of time bargaining with each other. This process creates complications and diffi-
culties as the number of players increases – although there are some solutions, like
the Shapley value, for the problem of how to allocate the cost to reduce pollution.
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This concept needs to be settled by the governing authority and it could not be seen
in a free cooperative game in which there is no government. To tackle this issue, our
paper suggests that the Shapley value cost allocation through the Imputation
Distribution Procedure is an efficient way and the Clean Development Mechanism of
Kyoto Protocol could play a governing role.

One option is highlighted by Littlechild and Owen (1973), which suggests to us to
adopt the Shapley value cost allocation; this approach is only applicable in the case
where the grand coalition forms. In the pollution problem, the Shapley value of the
airport problem is applicable, but this approach does not follow the principle of
Pareto-Optimality. Therefore, in our case, it does not seem to be the best one. The
details of the airport problem in our case are presented in the Appendix. In this
paper, we have taken n numbers of countries that would like to share the cost of pol-
lution (the penalty cost of CO2 emissions). We have made the assumption that the
country or groups of countries have different characteristics. In order to make the
agreement, they must follow the optimal path. While in the airport problem, the
countries will bargain about how the value of coalition will be distributed, it is time
consuming and leads us to high penalty costs when countries form a grand coalition.
Regarding the policy implications of our analysis, there are three types of groups of
countries: those like the EU with a high preference for the protection of the environ-
ment; those like the USA, Australia and Canada with a weak preference for the envir-
onment, but with high per capita incomes; and those like China, Brazil and India,
with a weak preference for the climate and a low per capita income. The environ-
mental protection problem includes all countries of the globe by definition. Some of
the countries whose policies of environmental protection can make a difference at the
level of CO2 emissions, and many countries are acting as non-atomistic agents. This
issue could be handled through the Kyoto Protocol, and especially through the Clean
Development Mechanism.

6. Concluding remarks

In the game of pollution reduction among countries, we consider the Shapley value
as a penalty-cost sharing rule for allocating pollution costs to each country. We
examined the characteristic function on assigning the Shapley outcome to every coun-
try and finally its time decomposition to distributing the penalty cost among the
countries. The most important implication of our analysis is that the allocation of the
Shapley value for emission penalty costs provides the motivations for each country to
take a positive action towards reducing pollution.

This paper found that the minimum penalty cost could be allocated through a
Dynamic Optimisation. Our paper derived an optimal path to find out the minimum
cost of CO2 emission. Our key finding is that the Shapley value penalty-cost alloca-
tion for the problem of pollution is optimal and the cost allocation by Imputation
Distribution Procedure provides new tools for the researcher. Our findings should
promote the penalty-cost allocation rule of the Shapley value at a global level.

However, this analysis provides a time-dependent policy tool for all the countries
through the Shapley value cost allocation for the pollution problem. The analysis has
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policy implications for global environmental protection in a time-dependent manner.
Therefore, we provide a Dynamic Optimisation solution in the form of a characteris-
tic function that has the properties of Pareto-Optimality and found a minimum pen-
alty-cost allocation strategy. The governing authorities can take the initiative to
handle the global free-riding problem. This is a promising way to tackle the global
issue. Our analysis offers guidelines for institutions like the International
Environmental Agreement (IEA), and the Kyoto Protocol to implement the Clean
Development Mechanism (CDM).

Notes

1. According to Burniaux, Chateau, Dellink, Duval, and Jamet (2009) the Clean
Development Mechanism (CDM) of the Kyoto Protocol could be used to improve the
mitigation policies by cost-effective analysis. The Clean Development Mechanism (CDM)
is an income source of United Nations Framework Convention on Climate Change in
terms of funds to finance the programs and projects on voluntary basis to tackle the
adverse effects of climate.

2. This assumption was discussed by (Chander & Tulkens, 1995; Germain et al., 2003).
3. (1) There must be an agreement on the set of strategic cooperation.

(2) There must be a mechanism to distribute the payoff among the Cooperative players.
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Appendix

In general, we assumed that C1<C2<::::::::::::::::::::<Cn. There exists an assumption in the pol-
lution problem which is if the coalition of country fi1; i2; ::::::::::::::::::::ikg, ij 2 ð1; 2; ::::::::::; nÞ
in such a way that i1< i2< i3<::::::::::::::::::::::::<ik will make and form a group, all the coun-
tries, those belonging to j , j � ik , could get the benefits from the coalitional group; but if
i > ik, then the countries could not get the benefits from the coalitional group.

The standardised cooperative game in the pollution problem is that if N ¼
ð1; 2; ::::::::::::::; nÞ for K � N, the cost of coalition K to form the cooperation is:

c Kð Þ ¼ Max Cjjj 2 K
� �

Where, cðKÞ denoted the characteristic cost function. Similarly,

c Nð Þ ¼ Cn

The savings game behaviour which is relevant to the pollution cost is UðK; y; tÞ ¼ ðN; sÞ :

s Kð Þ ¼
X
j2K

Cj�c Kð Þ

Definition
The cooperative game is a pair UðK; y; tÞ ¼ ðN; vÞ in which N ¼ ð1; 2; 3; :::::::::::::::; nÞ is the

finite set of players (countries) and v : 2N ! R is the characteristic function such that vð/Þ ¼ 0.
(Littlechild & Owen, 1973) showed that if the grand coalition formed, then the Shapley

value allocates the cost (in our case, we take it as penalty cost) ShðciÞ to the player (country) i
as follows:

Sh cið Þ ¼ Sh ci�1ð Þ þ Ci�Ci�1Pn
k¼i

nk

Where, nk denotes the numbers of players (countries) of coalition k and Shðc0Þ ¼ C0 ¼ 0.
Therefore, we assumed that ni ¼ 1 for all i 2 ð1; 2; 3; ::::::::::::::::::::::; nÞ. The Shapley value

penalty cost allocation will be:

Sh cið Þ ¼ Sh ci�1ð Þ þ Ci�Ci�1

n� iþ 1

A. Coalition formation for the problem of pollution reduction
The countries must bargain for making the agreement successful in a way that the value of

a coalition will be distributed with the others to make a coalition. For this purpose, we
assumed that every country would choose the option which is more suitable for it at any time.
In the pollution problem, the best choice for every country is the lowest emission penalty cost
for reducing emissions. So, if coalition K ¼ ði1; i2;::::; ikÞ , ij 2 ð1; 2; ::::; nÞ8j ¼ ð1; 2; ::::; kÞ
where i1<i2<::::<ik are formed, the all the countries l<ik could get the benefits from this
coalition to overcome the pollution problem. The procedure of making the coalition is as fol-
lows. Any country i 2 N could make a coalition K if i 2 K . A coalition will be formed if its
entire membership is agreed and if so, then the countries could sign the contracts for reducing
CO2 emissions by cooperation. If the country i is the member of another coalition at the same
time, then he will accept that coalition where he gets the lowest cost. In the problem of pollu-
tion reduction, if the coalition is formed with an ‘open membership method’, then the penalty
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cost allocation by Shapley value could not lead to making the grand coalition by the rule of
Littlechild and Owen (1973).

B. Empirical findings

Example
In this example, we consider the case where Ci ¼ i; i 2 ð1; 2; ::::::::::::::::; nÞ.
By following (Littlechild & Owen, 1973), we consider that the two member countries will

make the coalition. It means that if country n makes the coalition with country n�1, in this
way these two countries who make the coalition will pay the n�2 penalty cost units. We
assume that the two coalition counties will distribute these penalty cost units of n�2 in the
proportion that they had paid for reducing CO2 emissions. In this paper, we assume that the
countries will allocate the penalty cost for the problem of pollution by the Shapley value rule
within the coalition. So, after simplifying the Shapley value formula for country k that will pay
ShðkÞ as

Sh n;n�1ð Þ
n ¼ 1þ n�1

2
¼ nþ 1

2

similarly, the Shapley value penalty cost allocation for country n�1 will be:

Sh n;n�1ð Þ
n�1 ¼ n�1

2

If country n would like to make a grand coalition with all other countries, which can min-
imise its penalty cost with the Shapley value cost allocation rule, then country n should pay
the penalty cost by:

Xn
i¼1

1
n
¼ 1

n
þ 1
n� 1

þ :::::::::::::::::::::::::::: þ 1
2
þ 1

If country n wants to make the grand coalition with all other countries, then by the
Shapley value rule, his minimum penalty cost will be:

1
5
þ 1
4
þ 1
3
þ 1
2
þ 1 ¼ 137

60

This penalty cost is more than 2 while in other ways it is 0.7. Similarly, when the number
of countries n ¼ 15, then the net penalty cost for reducing CO2 emissions that the country n
will pay in coalition ðn; n�2Þ will be 0.57; on the other hand, in grand coalition it will be 3.32.
So, it concludes that as the number of countries n, then each of them have a great incentive to
form the coalition ðn; n�2Þ rather than the grand coalition. It is too difficult and takes too
much time to make the grand coalition.
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