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Summary 

In ice-infested waters, propellers of a polar ship are likely to be exposed to ice loads in 

different scenarios. Propeller milling with ice is one of the most dangerous cases for ice-

propeller interaction. In this study, we try to simulate dynamic milling process of ice-

propeller and reproduce resulting physical phenomena. Cohesive element method is used to 

model ice in the simulation. To simulate material properties of ice, an elastoplastic softening 

constitutive law is developed. Both crushing and fracture failures are included in the ice-

propeller milling process. The ice loads in 6 Dofs acting on blades of a propeller are 

calculated in time domain. The average and standard deviations of simulated dominant ice 

loads are compared with those from model test. A good agreement is achieved. By varying 

propeller rotation speed, advance velocity and cutting depth on ice block, the sensitivity study 

has been carried out. The results show that dominant ice loads are affected much by the three 

parameters. It is shown that decreasing rotation speed, or increasing advance velocity and 

cutting depth may lead to higher ice loads. Care should be taken to avoid over-loading on 

propeller when operating in ice for polar ship. 

Key words: propeller-ice milling; cohesive element; constitutive law; ice loads; 

propeller 

1. Introduction 

As global warming and ice shrinking in the polar waters, increasing voyages are 

expected to come for polar ships. As an essential equipment, propeller installed on polar ships 

may be subjected to ice loads in different ways since sea ice exists widely. It is not enough to 

check only the hydrodynamic loads on the propeller as studied by Ghassabzadeh et al. [1], but 

it is also necessary to estimate the ice loads on the propeller. The impact load could result in 

damage to structure of the propeller and endanger shipping safety. Therefore, it is worth to 

investigate the ice-propeller interaction. 
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Generally speaking, ice-propeller interaction could be divided into three scenarios. The 

first one is called ice blockage, where ice block keeps a certain distance from propeller. The 

existing of ice has an influence on stream field close to propeller. The propulsion efficiency 

would decrease accordingly. The second one is direct collision of ice pieces with propeller. In 

this case, the ice pieces are often small enough and taken as rigid bodies so that they are not 

able to break during collision. The last one is that propeller mills with large ice block. The 

resulting ice forces are usually an order of magnitude larger than the forces occurred in the 

first two cases. Consequently, it is meaningful to do research on propeller-ice milling process. 

Since the 1990s, full scale and model scale tests for propeller-ice interaction have been 

performed and used for prediction of ice loads. As a part of Joint Research Project 

Arrangement between Canada and Finland, many researchers carried out full-scale 

measurements by using simplified blades and sea ice [2, 3, 4, 5, 6]. Considering the cost 

problem, scale-model tests were also carried out with refrigerated model ice [7, 8, 9, 10, 11]. 

As for numerical method, only a few researchers have studied ice-propeller milling in 

complex conditions. Wang et al. [12, 13] introduced a numerical prediction method to 

calculate the ice milling action. Ye et al. [14] and Wang et al. [15] investigated propeller-ice 

contact using peridynamics method, and focused on analyzing the effect of factors influencing 

the contact load. Khan et al. [16] developed a numerical tool to assess the effects of propeller-

ice interaction on the loads acting on the propellers. The tool was then calibrated based on the 

results from model tests. 

In this paper, a numerical model is built up by combining cohesive element method with 

an elastoplastic softening constitutive law to simulate dynamic propeller milling with ice 

process. In order to validate the accuracy of the present model, a verification study is 

accomplished by comparing simulated result with the measurement from model test carried 

out at the ice tank of Institute for Ocean Technology (IOT) by Wang et al. [11]. The main 

factors that may affect the milling process, including rotation speed of screw, advance 

velocity and cutting depth, are considered in the sensitivity analysis. Finally, some 

conclusions are drawn based on simulation results. 

2. Numerical models 

When the propeller blade contacts with the ice, the ice failure includes crushing, 

fracture and crack. Wang et al. [11] have found that ice cracking arises in the interaction 

between ice and propeller in ice milling tests, and Khan et al. [16] observed crushing 

happened in propeller milling ice tests when the blade edge cut the ice block. Such crushing 

and fracture failures are also found in the interaction between ship and level ice [17, 18, 19, 

20]. These dis-continuous problems are difficult to be solved by simply using traditional FEM 

method that is based on the continuous assumption. Thus, cohesive element method (CEM) is 

introduced to solve the occurrence and propagation of ice fracture and crack during the ice-

structure interaction. 

Cohesive element method (CEM) is an extension of cohesive zone model (CZM) in 

FEM simulations. CZM was firstly proposed by Hillerborg et al. [21] to model the local crack 

propagation of an unreinforced concrete beam. Due to the good performance of CEM in 

modeling the initiation and propagation of crack, many researchers have introduced CEM into 

ice mechanics to simulate the fracture of ice material [22, 23, 24, 25]. 

In the framework of CEM, the ice elements are divided into two kinds of elements: bulk 

elements and cohesive elements. As shown in Fig. 1, the cohesive elements are inserted into 

every internal faces between the neighboring finite bulk elements. The bulk elements and the 

cohesive elements share nodes on the contact surfaces, thus deformation and stress could 

transmit directly between them. The cohesive elements respond to the external tensile force, 
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and cohesive surface will separate based on a traction-separation law. After reaching failure 

criteria, the cohesive surfaces are completely separated and the cohesive elements will be 

damaged. Thus, the crack is generated and propagates along the path of cohesive surfaces. On 

the other hand, the bulk elements also respond to the external force based on its own 

constitutive model. 

 

Bulk elements

Cohesive elements

 
Fig. 1. Illustration of bulk elements and cohesive elements 

The most commonly used traction-separation law in CEM is linear softening model, 

which is firstly proposed by Mi et al. [26]. The function of linear softening model is listed as 

follows, 
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where T and S are the cohesive forces in normal direction (mode I fracture) and tangential 

direction (mode II fracture), respectively; δn and δτ are crack separations in normal and 

tangential direction; T0 and S0 are the maximum stress in normal and tangential direction 

which are called fracture stress, while δn
1 and δτ

1 are the corresponding crack separations. δn
f 

and δτ
f are the maximum crack separations in normal and tangential direction. Fig. 2 shows 

the relationship between normal separation and cohesive force for mode I and II fracture. 

Taking mode I fracture as an example, T at the crack tip zone firstly linearly increases with 

the growth of δn under the external loads. When T reaches maximum stress T0, the crack 

begins to arise from this time. With the continuous development of δn, the material stiffness 

presents linear softening with the gradually expansion of the crack. When T decreases to zero, 

δn reaches maximum crack separations δn
f, which means the cohesive element is damaged and 
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the adjacent bulk elements separate. The fracture energy GIC (GIIC for mode II fracture) is 

released during this process, whose value is equal to the area of the traction-separation curve. 
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Fig. 2. Relationship between cohesive force and crack separation (Left: model I; Right: model II) 

Besides the fracture and crack, local crushing should also be considered in the 

simulations of ice-propeller interaction. However, the mesh applied in the FEM simulation is 

always too coarse to present the feature of local crushing, i.e., such microscopic failure is 

difficult to be explicitly modeled in the simulation. Hilding et al. [27] proposed a numerical 

approach, which took local crushing as a product of multiple micro-crack branching in the 

contact zone. An elastoplastic linear softening constitutive law, taken as a homogenization 

approach, was applied and have been proved to be effective by Wang et al. [25]. This 

constitutive law is applied to the ice bulk elements to model local crushing in the simulations, 

and its hardening curve is shown in Fig. 3. σY is compressive strength which is the initial point 

of crushing. After experiencing a linear softening phase, crushed strain εc is obtained and 

henceforward the ice material is seen as totally crushed. When the strain comes to failure 

strain εf, the ice bulk element is completely damaged and deleted. 
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Fig. 3. Elastoplastic constitutive law [27] 

3. Numerical setup for propeller ice milling 

Numerical model was established according to ice milling model tests performed by 

Wang et al. [11] in the ice basin of Institute for Ocean Technology, National Research 

Council of Canada (IOT). The configuration of the model tests is shown in Fig. 4. Podded 

propulsor was fixed to a carriage and towed forward at a constant speed to mill intact ice 

block. The propeller was designed with reference to Stone Marine Meridian series [28]. The 

blades of the propeller were thicken for the safety of shipping in ice-covered waters. The 
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EG/AD/S ice was used in the experiments. The EG/AD/S ice is generated by the cooling of a 

diluted aqueous solution of ethylene glycol (EG), aliphatic detergent (AD), and sugar (S) 

under approximately -20°C, which can provide similar material properties with the first-year 

columnar sea ice. 

 
Fig. 4. The model test configuration of ice-propeller milling [11] 

 

There are four blades in total. The diameter of propeller is 300mm. The mean 

pitch/diameter ratio is 0.76 and the expanded blade area ratio is 0.669. The model of propeller 

after meshing is shown in Fig. 5. The propeller is taken as rigid body so that deformation of 

propeller under ice action is neglected. The material properties of the propeller are given in 

Table 1. 

 

 
Fig. 5. Propeller model after meshing (left: face; right: back) 

Table 1 Material properties of propeller model  

Items Value 

Density (kg/m3) 7850 

Elastic modulus (GPa) 200 

Poisson ratio 0.3 

The model of ice block is built up as shown in Fig. 6. The size is 300mm in length, 

70mm in width and height, which was determined by a prior verification study to eliminate 

the influence of boundary effect and meantime guarantee the calculation efficiency. The ice 

model was made of hexahedral ice bulk elements and cohesive elements. Both ice local 

crushing failure and fracture failure are considered. The elastoplastic constitutive law is used 

to simulate local crushing failure, while cohesive element is used to simulate fracture failure. 
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Table 2 presents the properties of ice bulk elements and cohesive elements applied in the 

simulations. The compressive strength and shear strength (S0) are chosen based on the 

measured values in the model test provided by Wang et al. [11]. The other parameters are 

determined with reference to the work by Timco et al. [29] on the engineering properties of 

first-year sea ice. 

 

Table 2 Properties of ice bulk and cohesive element 

Bulk elements Cohesive elements 

Items Value Items Value 

Density (kg/m3) 910 Density (kg/m3) 910 

Elastic modulus (GPa) 5 Elastic modulus (GPa) 5 

Poisson ratio 0.3 T0/Tensile strength (KPa) 500 

Compressive strength (KPa) 200 S0/Shear strength (KPa) 100 

Crushed strain εc 0.35 GIC/Fracture energy in mode I (J/m2) 30 

Failure strain εf 0.5 GIIC/Fracture energy in mode II (J/m2) 30 

 

Length (70mm)

Width (300mm) Height (70mm)

Bulk elements

Cohesive elements

 
Fig. 6. The model of ice block after meshing 

The ice-propeller milling model is set up in LS-DYNA for numerical simulation. The 

propeller rotates at a constant angular speed of 5 rps clockwise and moves along minus X axis 

at 0.5 m/s. The blades mill ice with back side. The cutting depth is 35 mm, which is the same 

as model test setup. Moreover, in order to simulate propeller milling with infinitely wide ice 

block, the boundary of both sides of ice block are fixed in 6 degrees of freedom as shown in 

Fig. 7. The most commonly used contact algorithm built-in LS-DYNA is penalty function 

method, which is defined by the keyword of CONTACT. Command of CONTACT-

ERODING-NODES-TO-SURFACE is suitable for modeling the contact between two bodies 

with considerably different stiffness, which is used to detect ice-propeller contact and 

calculate the interaction force. The friction coefficient between ice and propeller is set to 0.2. 

The ice-ice contact is detected by using another command named CONTACT-ERODING-

SINGLE-SURFACE, which is suitable for modeling the contact between two bodies with 

similar stiffness. The corresponding friction coefficient is set to 0.1. The explicit time 
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integration algorithm is used in LS-DYNA and time step is set up automatically based on 

minimum element size.  

X

Y

Z

Translation

Rotation

Fixed 

boundary

Fixed 

boundary

 
Fig. 7. The model of ice-propeller milling 

4. Verification and validation of numerical methods 

4.1.1 Sensitivity study on ice mesh size 

It is important to study the effect of ice mesh size on simulation results. The ice mesh 

size refers to the length of ice bulk element and cohesive element, as shown in Fig. 6. In this 

section, sensitivity study is performed by changing ice mesh size. Then the simulated results 

are compared with model test results to validate the numerical model. The four kinds of ice 

meshes are studied with sizes of 2.5mm, 3mm, 3.75mm and 4.28mm, which are d/120, d/100, 

d/80 and d/70 respectively, where d is the diameter of the propeller. They are labelled as S1, 

S2, S3 and S4 respectively. Fig. 8 shows the calculated resultant forces and moments at time 

interval 0.15s~0.20s. Only one blade milled ice block within the time interval. It can be found 

that both resultant forces and moments tend to rise unsteadily at the first stage and then 

decrease non-monotonously afterwards. Since there is only one blade interacting with ice, the 

global trend of the forces and moments is due to invasion and withdrawal of the blade in ice. 

The fluctuation of the force and moment signals is caused by local failures of ice block. 

As the size of ice decreases, the ice loads tend to increase. However, this tendency 

becomes weak and the ice loads tend to be convergent when the size decreases to a certain 

value. It is clear from Fig. 8 that the simulated ice loads using S2 mesh are close to those 

using the finest mesh, S1 mesh. Table 3 shows the average value and the standard deviation of 

calculated ice loads. The relative errors compared to the corresponding ice loads using S1 

mesh are also presented in brackets. It should be noted that the relative errors for S2 mesh are 

less than 5%. Therefore, balancing the computation efficiency and accuracy, S2 mesh is used 

in the following simulation cases. 
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Fig.8. Calculated time series of ice loads with different ice mesh sizes 

Table 3 Comparison of ice loads for cases with different ice mesh sizes 

Mesh size 
Resultant force (N) Resultant moment (N·m) 

Mean StD Mean StD 

S1 62.7 (-) 39.5 (-) 7.54 (-) 4.71 (-) 

S2 59.8 (4.6%) 37.6 (4.8%) 7.25 (3.8%) 4.49 (4.5%) 

S3 30.9 (50.7%) 20.6 (47.8%) 3.67 (51.3%) 2.44 (48.2%) 

S4 16.7 (73.4%) 12.4 (68.6%) 1.99 (73.6%) 1.49 (68.4%) 

 

4.1.2 Comparison with model test results 

In the model tests carried out by Wang et al. [11], a load cell was installed on one of the 

four blades, which is also named as key blade. The resultant ice load and moment acting on 

the key blade from the simulations are used for comparison with model test results.  
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Fig. 9. Simulated and measured ice loads on the key blade 

The time series of simulated and measured ice loads within 1 second are presented for 

comparison in Fig. 9. It can be seen that there are five typical peaks for both resultant forces 

and moments during the time interval. The peaks and trends of ice load signals from 

simulation agree well with model test results. Table 4 and Table 5 show the peak values and 

the moment when they occur for both simulated and measured ice loads. The relative errors 

between simulation and model test results are also included in the bracket. It is found that the 

peak values and time from simulation coincide well with model test results except the second 

peak. The relative errors between averaged ice forces and moments are as low as 0.4% and 

9.1% respectively, which demonstrates that the simulated results are valid and effective. The 

trends of the simulated and measured ice loads for one blade cutting process differ from each 

other, which reflects the inherent random nature of ice-structure interaction process. It should 

be noted that the second peak of measured moment is obviously smaller than the other peaks. 

The reason may be that the material property of ice block changes during milling process. 

Moreover, during the time when the key blade is not interacting with the ice, it is exposed to 

hydrodynamic load at low level. Since the effect of seawater is not considered in the 

numerical model, the resulting load is taken as zero in the simulation. 
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Table 4 Comparison of peak values for ice force 

Peak 
Experiment Simulation 

Time(s) Value (N) Time(s) Value (N) 

Peak1 0.156 155.9 0.149 (-4.5%) 151.6 (-2.8%) 

Peak2 0.345 191.5 0.358 (3.8%) 189.3 (-1.2%) 

Peak3 0.542 180.5 0.553 (2.0%) 179.8 (-0.4%) 

Peak4 0.731 178.8 0.749 (2.5%)  156.8 (-12.3%) 

Peak5 0.931 162.7 0.949 (1.9%)  195.4 (20.0%) 

Mean of 5 peaks - 173.9 - 174.6 (0.4%) 

 

Table 5 Comparison of peak values for ice moment 

Peak 
Experiment Simulation 

Time(s) Value (N·m) Time(s) Value (N·m) 

Peak1 0.146 19.02 0.149 (2.1%) 17.95 (-5.6%) 

Peak2 0.328 12.61 0.358 (9.1%) 19.92 (57.9%) 

Peak3 0.544 17.07 0.553 (1.7%) 19.52 (14.4%) 

Peak4 0.736 17.84 0.750 (1.9%) 16.24 (-8.9%) 

Peak5 0.944 18.75 0.953 (0.9%) 19.51 (4.1%) 

Mean of 5 peaks - 17.06 - 18.62 (9.1%) 

 

In order to give a deeper comparison of the simulated and measured ice loads for one 

blade cutting process, Fig. 10 shows the simulated and measured ice loads between 

0.48s~0.60s as an example. The fluctuated behaviour of simulated ice loads is caused by the 

local crushing and fracture of ice material, which reflects well the actual ice failure mode 

during ice-propeller interaction. The curves of measured loads are much more smooth than 

the simulated ones. This indicates that the measured curves are the filtered results, however, 

their sampling and filtered criterion are unknown. In order to facilitate the comparison, the 

simulated results are filtered by a low frequency filter and the filtered results are also shown 

in Fig. 10. It can be seen that the shape and trend of main peak in the smoothed load curves 

obtained from simulation approach those measured in the experiment. The low peaks arisen in 

the experimental loads are caused by the hydrodynamic loads, which are not considered in the 

simulations. Thus, it is reasonable that the smoothed simulation load levels are slightly lower 

than the measured ones due to neglect of hydrodynamic loads in the simulations. 
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Fig. 10. Simulated and measured ice loads for one blade cutting process 

 

4.1.3 Analysis of simulated results 

The stress nephograms at different time instants are given in Fig. 11, from which the 

physical process of propeller milling with ice can be observed clearly. At the initial stage of 

the interaction, the blade starts to intrude ice and crushes against the ice block to cut the ice. 

As the intrusion process continues, the edge of the blade keeps crushing with ice block and 

paves a way to pass through. Simultaneously, the contact area between ice block and blade 

surface increases as the propeller disc advances into ice block. The blade surface may collide 

with ice block and ice pieces chopped from milling process to induce additional contact force 

as well. The deformation of ice fragments during the ice crushing process can be clearly 

observed in Fig. 11. As the edge of blade leaves from ice block, a piece of ice is cut off from 

the original ice block. It is clear to see from Fig. 11(d) that the cutting edge of ice block after 

milling is irregular which shows that the fracture and cracking happen during milling process. 

The reason is that the relative speed between ice block and blade is high at the contact point 

when the screw rotates fast. This leads to a high strain rate that may exceed the limit (10-3) of 

ductile-brittle transition area according to Carney et al. [30]. Thus, the ice block behaves 

brittle failure mode. The ice pieces chopped from ice block would continue to collide with 

rotating blade and get shattered into smaller pieces. In addition, it can be seen from Fig. 11 
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that the highest effective stress appears at the contact area between the blade and ice block. 

With the continuous intrusion of blade into the ice block, more medium effective stress zones 

discretely distribute in the whole area of the ice block. This result is reasonable and reflects 

the propagation of stress between ice elements within the ice block. 

(b)(a)

(c) (d)

 
Fig. 11. Stress nephograms during dynamic propeller-ice milling process 

Fig. 12 shows several time series of ice forces and moments in 6 Dofs during time 

interval of 0.15s ~ 0.2s. It can be seen clearly that the contact force has a trend of increasing 

first and decreasing after a peak value. This is mainly dependent on contact area between ice 

block and blade. The contact force augments to maximum when the contact area reaches the 

largest. Moreover, increasing rate of ice force is higher than decreasing rate clearly. This may 

be affected by shape of the blade. On the other side, ice pieces cut off may still interact with 

propeller until they leave away from the propeller disk completely. The resulting impact 

force, as additional action, prevents the total ice load from dropping quickly. The longitudinal 

force FX and moment MY are relatively larger than the other loads, which may threaten the 

structural safety of propeller. Therefore, these two loads are selected as the objects for 

comparison in the following study to analyze the influence of different key factors on the 

simulated loads. 
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Fig. 12. Time series of simulated ice force and moment in 6 DoFs exposed to propeller 

5. Parametric study 

Based on the numerical model, the effects of rotation speed, advance velocity and 

cutting depth on ice load in longitudinal and transverse directions are analyzed. The parameter 

setups of the simulation are kept the same as those used in Section 3 if not stated else. The 

calculated results from all cases are compared with the basic case. The average value and 

standard deviation of ice load components FX and MY are of interest herein. The load 

components from other cases are shown in percentage compared to the results of the basic 

case whose components are taken as 100%. 

5.1.1 Rotation speed 

In this section, five different rotation speeds are used for investigating how much the ice 

load components would be affected. They are 3, 4, 5, 6 and 7rps, where 5rps was applied to 

the basic case. The average values and standard deviations of ice load components FX and MY 

under different rotation speeds are given in Fig. 13. It is found that both load components FX 

and MY show similar trend as rotation speed increases. The average and standard deviation 

descend successively as the rotation speed increase. Especially for the average, it decreases in 
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a linear way approximately. Fig. 14 presents the time series of FX and MY with rotation speeds 

of 3, 5 and 7 rps within the same range of phase angle from simulations. It is seen from Fig. 

14 that the effect of rotation speed is minor at the load increasing stage, but major in the load 

dropping stage. The more slowly the propeller rotates, the larger the peak value of load time 

series tends to become. This is mainly attributed to that it takes longer for full contact of ice-

propeller under the condition of slow propeller rotation. Moreover, the possibility of chopped 

ice pieces colliding with blades increases, which may result in slow declining of ice loads 

when the blade leaves off ice block. Therefore, to speed up propeller rotation to some extent 

could be helpful to break ice block efficiently and also reduce ice loads to improve the safety 

of propeller operation in ice-covered waters.  
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Fig. 13. Statistics of ice load FX and MY based on simulations with different rotation speeds 
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5.1.2 Advance velocity 

Five different advance velocities are used for investigating how much the ice load 

components would be influenced. The screw is advancing straightly to the ice block at 0.2, 

0.35, 0.5, 0.65 and 0.8 m/s respectively, where 0.5 m/s is used in the basic case. Fig. 15 shows 

the curves of average values and standard deviations of ice load components FX and MY as 

function of advance velocity. It is clear that both load components FX and MY increase 

significantly as the advance velocity increases, especially for average ice load components.  

Fig. 16 presents time series of ice load FX and MY at advance velocities of 0.2, 0.5 and 

0.8 m/s. We can see that the simulated ice loads are affected by relative velocity between ice 

and propeller strongly. During the ice milling process, the ice loads increase significantly with 

the increasing velocity. The peak of ice loads at the highest velocity 0.8 m/s is almost twice 

the peak loads from the basic case with 0.5 m/s. This may pose a great challenge to the safe 

use of propeller in ice. Therefore, it is suggested that the advance velocity should be well 

controlled to avoid damage of propeller. 
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Fig. 15. Statistics of ice load FX and MY based on simulations with different advance velocities 
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Fig. 16. Time series of simulated ice load FX and MY with different advance velocities 

5.1.3 Cutting depth 

Five cutting depths are used to study the influence of cutting depth on ice loads. The 

cutting depths of 21, 24.5, 28, 31.5 and 35 mm are set up in the simulations, where 28 mm is 

used in the basic case. Fig. 17 shows variations of average values and standard deviations of 

ice loads as a function of cutting depth. It is clear that both load components FX and MY 

increase significantly as the cutting depth increases, especially for average ice load 

components.  

Fig. 18 presents time series of ice load FX and MY at cutting depths of 21, 28 and 35 

mm. It is seen that as the velocity increases, the ice load level increases at both descending 

and ascending stages. This trend is caused by the long interaction process and large contact 

area for ice and blade with big cutting depth. Moreover, the edge of blade enters ice block 

ahead of expected time when cutting depth become large. Simultaneously, it is found that ice 

loads decrease to zero at the same time for different cases. The reason is that at the exiting 

stage the edge of the blade leaves away from the ice block before the surface. From Fig. 11 

(d), it can observed that the contact force is small and can be neglected though the surface still 

interacts with chopped ice pieces. Thus, the time when the load turns to zero depends on when 

the edge of blade exits from ice block. Fig. 19 shows the stress nephograms with different 

cutting depths at the same moment before the blade exits from ice block. From the figure, it 

can be found that the exiting time of the blade edge for different cutting depths is almost the 

same and thus the loads drop to zero simultaneously. This conclusion coincides with that 

obtained by Wang et al. [15]. 
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Fig. 17. Statistics of ice load FX and MY based on simulations with different cutting depths 

0.15 0.16 0.17 0.18 0.19 0.20

0

-20

-40

-60

-80

-100

-120

-140

-160
 21mm

 28mm

 35mm

F
X
 (

N
)

Time (s)
0.15 0.16 0.17 0.18 0.19 0.20

0

-5

-10

-15

-20
 21mm

 28mm

 35mm

M
Y

 (N
m

)

Time (s)  
Fig. 18. Time series of simulated ice load FX and MY with different cutting depths 
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Fig. 19. Stress nephograms at the same moment with different cutting depths (a. 21mm; b. 28mm; c. 

35mm) 
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6. Conclusion 

In this paper, we develop a numerical method to simulate continuous ice-propeller 

milling process based on an elastoplastic softening constitutive law with cohesive element 

method, which is implemented in commercial finite element software LS-DYNA. The present 

numerical method models ice cracking and crushing behaviors happened in the ice-propeller 

interaction, and the numerical results are validated by comparing with the available 

experimental results. Then, the effects of rotation speed of screw, advance velocity and 

cutting depth on dominant ice load components are analyzed and discussed. The main 

conclusions can be drawn as follows: 

(1) There exists a large fluctuation of simulated ice loads due to local failures of ice 

and small pieces of ice generated. The simulated time series of ice loads coincide 

well with model test results with respect to the peak values and the time when the 

peak values occur, indicating that the linear softening constitutive law used in 

cohesive element method is capable of modeling propeller-ice milling process. 

(2) Ice loads are affected by setup of ice mesh size. The loads will increase with 

decreasing ice mesh size. The ice loads tend to be steady when the size increases to 

certain level.  

(3) According to the sensitivity study, the ice loads are affected by rotation speed of 

screw, advance velocity and cutting depth to varying degrees in terms of average 

and standard deviation values. The dominant ice loads decrease as the rotation 

speed increases and increase as the advance velocity or cutting depth increases. The 

ice loads are influenced by the advance velocity most compared to the other two 

factors.  

It is shown that the present numerical method has a good prospect in modeling ice-

propeller interactions. However, it should be noted that all conclusions are drawn based on the 

present simulation. Besides, the sensitivity of ice properties to the ice loads is not investigated 

herein and should be studied in the future. 
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