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Abstract. In this work, construction methods for formally self-dual codes are generalized
in the form of block λ-circulant matrices. The constructions are applied over the rings F2,
R1 = F2 + uF2 and S = F2[u]/(u

3
− 1). Using n-block λ-circulant matrices for suitable

integers n and units λ, many binary FSD codes (as Gray images) with a higher minimum
distance than best known self-dual codes of lengths 34, 40, 44, 54, 58, 70, 72 and 74 were
obtained. In particular, ten new even FSD [72, 36, 14] codes were constructed together with
eight new near-extremal FSD even codes of length 44 and twenty-five new near-extremal
FSD even codes of length 36.
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1. Introduction

Formally self-dual codes are those that have the same weight enumerators as their
duals. Iso-dual codes are codes that are equivalent to their duals. Of course self-
dual codes are both iso-dual and formally self-dual but there are formally self-dual
codes that are not self-dual. Formally self-dual codes can have better minimum
distances than self-dual codes of the same lengths, as will be showcased throughout
the paper. Formally self-dual codes work in the exact same way for the Assmus-
Mattson theorem as self-dual codes and they have been studied quite extensively in
the literature. For shortness of the notation, throughout the paper, we will use the
abbreviation FSD to describe formally self-dual codes.

Betsumiya and Harada studied binary optimal odd FSD codes in [2], whereas
Dougherty et al. considered optimal FSD codes over F5 and F7 in [8]. In [3], a
classification of FSD even codes of lengths up to 16 was done. In [10], a classification
of extremal even FSD codes of lengths 20 and 22 was done. Extremal double circulant
FSD even codes were classified in [13]. Betsumiya and Harada considered FSD codes
related to Type II codes in [4]. Near extremal FSD even codes of lengths 24 and
32 and later FSD even codes of lengths divisible by 8 were studied in [14] and [20],
respectively. In [6], a classification of extremal even FSD codes of length 30 was
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made. In [11], optimal subcodes of FSD codes of lengths 16-22 were analysed by
using their distance profiles.

Parallel to our main methods, some recent studies have shown that good FSD
codes can be obtained from FSD codes over certain rings. A family of rings of
characteristic 2 was used quite effectively in [19] to obtain FSD codes with better
minimum distances than the self-dual ones as well as some near-extremal FSD codes.
In [1], constructions were applied to the rings F3 + vF3 and F5 + vF5 to find some
good FSD codes over the fields F3 and F5 with better minimum distances than the
self-dual codes.

Two main construction methods for FSD codes use double circulant and bordered
double circulant matrices over the binary field as well as over appropriate rings. In
this work, we will generalize these methods by introducing a general block-matrix
construction as well as λ-circulant matrices. Our construction methods generalize
all the existing methods of constructions and their effectiveness is demonstrated by
the highly substantial number of good FSD codes (near-extremal or better than self-
dual) that we have obtained. We will apply our methods to three main alphabets,
all of characteristic 2, namely the binary field F2, the ring R1 = F2 + uF2 and
S = F2[u]/(u

3 − 1). In the case of S, since the Gray map is not duality-preserving,
we will prove the existence of the MacWilliams identities that are preserved under
the Gray map, which help us find binary FSD codes as the images of FSD codes
over S. Using n-block λ-circulant matrices for suitable integers n and units λ, we
were able to obtain many binary FSD codes with a higher minimum distance than
best known self-dual codes of lengths 34, 40, 44, 54, 58, 70, 72 and 74. Ten new
even [72, 36, 14] codes were also constructed. In addition to these, eight new near-
extremal FSD even codes of length 44 and twenty-five new near-extremal FSD even
codes of length 36 were obtained.

The rest of the paper is organized as follows: In Section 2, we give the necessary
preliminaries about FSD codes as well as the rings over which the constructions
are described. In particular, the MacWilliams identities are given for the Lee weight
enumerators of codes over S, to demonstrate that the image of FSD codes are binary
FSD codes. In Section 3, the main construction methods are described with the
proofs. Section 4 includes numerical results, where many good FSD codes of different
lengths constructed through our constructions are tabulated.

2. Preliminaries

In this paper, we will work mainly on the binary field F2 and two of its ring ex-
tensions, namely F2 + uF2, where u2 = 0 and S = F2[u]/(u

3 − 1). In order to
understand the constructions better, we will recall some of the properties of these
rings, leaving aside the binary field as an obvious case. We refer the reader to [16]
for the definitions and notations on codes.

Let R be one of the rings; F2, R1 or S and C a code of length m over R. The
dual of C is defined as C⊥ = {y ∈ Rm | y · x = 0 for all x ∈ C}, where · denotes
the Euclidean inner product a · b =

∑

aibi. A code C is said to be self-orthogonal if
C ⊆ C⊥, self-dual if C = C⊥ and iso-dual if C is permutation equivalent to C⊥. The
code is said to be even if all the codewords have even Lee weight.
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Definition 1. A code C is called FSD if the code C and its dual C⊥ have the same
weight enumerator. A binary FSD even code of length m is called extremal if d =
2 ⌊m/4⌋+ 2 and near-extremal if d = 2 ⌊m/4⌋.

The ring F2 + uF2 ≃ F2[u]/(u
2) is a commutative ring of characteristic 2 and

it contains the binary field as a subring. It has just one non-trivial ideal, given by
(u). Type II, Type IV, self-dual codes and cyclic codes over F2 + uF2 have been
studied extensively in [9]. Through its different extensions that appeared later in
the literature, we now refer to this ring as R1.

We recall that a linear code C of length m over the ring R1 is an R1-submodule
of Rm

1 .

The elements of R1 are 0, 1, u, 1+u and their Lee weights are defined as 0, 1, 2, 1,
respectively.

A Gray map φ is defined as φ : Rm
1 −→ F2m

2

φ
(

a+ bu
)

=
(

b, a+ b
)

, (1)

where a, b in Fm
2 . φ is a distance preserving, duality preserving isometry from

(Rm
1 , dL) to

(

F2m
2 , dH

)

, where dL and dH denote the Lee and Hamming distance
in Rm

1 and F2m
2 , respectively. This means if C is a linear code over R1 with parame-

ters
[

m, 2k, d
]

, (here 2k means the number of the codewords), then φ (C) is a binary
linear code of parameters [2m, k, d]. Moreover, φ(C⊥) = φ(C)⊥.

Since the Gray map is a duality-preserving map, self-dual codes over R1 have
self-dual binary images, but more importantly for our work we have the following
theorem, as a consequence of the duality-preserving property of φ:

Theorem 1. If C is an iso-dual code over R1 of length m, then φ(C) is an iso-dual
binary code of length 2m. If C is an FSD code over R1 of length m, then φ(C) is an
FSD binary code of length 2m.

2.1. The ring S = F2[u]/(u
3 − 1) and the MacWilliams Identity

The ring F2[u]/(u
3 − 1), which will be denoted by S here, was used quite effectively

in [17] to construct many new binary self-dual codes of length 68. Thus we recall
some properties of the ring S from [17], leaving some of the details for the work in
question.

We start by observing that the ring is structurally quite familiar, namely S ∼=
F2 × F4. S is not local and its ideal structure is given by I0 ⊂ Iu+u2 , I1+u+u2 ⊂ S,
where;

I1+u+u2 =
(

1 + u+ u2
)

=
{

0, 1 + u+ u2
}

,

Iu+u2 = (1 + u) =
{

0, u+ u2, 1 + u, 1 + u2
}

.

The units in S are given by
{

1, u, u2
}

and the non-units are

{

u+ u2, 1 + u, 1 + u2, 1 + u+ u2
}

.
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A linear code C of length m over S is an S-submodule of Sm and has a generating
matrix that is permutation equivalent to

G =





Ik1
A B C

0
(

u+ u2
)

Ik2
0

(

u+ u2
)

D
0 0

(

1 + u+ u2
)

Ik3

(

1 + u+ u2
)

E





We define a Gray map as follows:

ϕ : Sm → F
3m
2

a+ bu+ cu2 7→
(

a, b, c
)

.

Definition 2. The Lee weight of an element x = a+ bu+ cu2 ∈ S is the Hamming
weight of its Gray image, i.e. wL

(

a+ bu+ cu2
)

= wH (a) + wH (b) + wH (c).

Since the Gray map ϕ introduced above does not preserve orthogonality, we can-
not immediately have a theorem such as Theorem 1. In order to have an analogous
result, we need to show that the MacWilliams identities for the Lee weight enumer-
ators of codes over S exist. We will quickly establish this by using Wood’s results
in [21].

Let us label the elements in S = {g1, g2, . . . , g8} as S = {0, u2, u, u + u2, 1, 1 +
u2, 1 + u, 1 + u+ u2}

Definition 3. The complete weight enumerator of a linear code C over S is defined
as

cweC(X1, X2, . . . , X8) =
∑

c∈C

X
ng1

(c)
1 X

ng2
(c)

2 · · ·X
ng8

(c)
8 ,

where ngi(c) is the number of appearances of gi in the vector c.

The complete weight enumerator gives us a lot of information about the code,
such as the size of the code, the minimum weight of the code and the weight enu-
merator of the code for any weight function.

Now, since S is a Frobenius ring, the MacWilliams identities for the complete
weight enumerator hold. To find the exact identities we define the following character
on S :

Definition 4. Define χ : S → C× by

χ(a+ bu+ cu2) = (−1)c.

It is easy to verify that χ is a non-trivial character when restricted to each non-
zero ideal, hence it is a generating character for S.

Then we make up an 8× 8 matrix T , by letting T (i, j) = χ(gigj). The matrix T
is given as follows:

T =

























1 1 1 1 1 1 1 1
1 1 1 1 −1 −1 −1 −1
1 1 −1 −1 1 1 −1 −1
1 1 −1 −1 −1 −1 1 1
1 −1 1 −1 1 −1 1 −1
1 −1 1 −1 −1 1 −1 1
1 −1 −1 1 1 −1 −1 1
1 −1 −1 1 −1 1 1 −1

























.
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The following theorem then follows from [21] (Theorem 8.1) quite easily:

Theorem 2. Let C be a linear code over S of length m and suppose C⊥ is its dual.
Then we have

cweC⊥(X1, X2, . . . , X8) =
1

|C|
cweC(T · (X1, X2, . . . , X8)

t),

where ()t denotes the transpose.

Now, in S, we have wL(0) = 0; wL(1) = wL(u) = wL(u
2) = 1; wL(1 + u) =

wL(1+u2) = wL(u+u2) = 2 and wL(1+u+u2) = 3. Thus, identifying the variables
corresponding to the elements with the same weight we get the symmetrized weight
enumerator, namely,

sweC(X,Y, Z,W ) = cweC(X,Y, Y, Z, Y, Z, Z,W ). (2)

Now, combining Theorem 2 and the definition of the symmetrized weight enu-
merator, we obtain the following theorem:

Theorem 3. Let C be a linear code over S of length m and let C⊥ be its dual. Then
we have

sweC⊥(X,Y, Z,W ) =

1

|C|
sweC(X + 3Y + 3Z +W,X + Y − Z −W,X − Y − Z +W,X − 3Y + 3Z −W ).

We are now ready to obtain the MacWilliams identity for the Lee weight enu-
merator. Define the Lee weight enumerator for codes over S as the homogeneous
polynomial

LeeC(W,X) =
∑

c∈C

W 3n−wL(c)XwL(c). (3)

Considering the weights that the variables X,Y, Z,W of the symmetrized weight
enumerator represent, we easily get the following theorem:

Theorem 4. Let C be a linear code over S of length m. Then

LeeC(W,X) = sweC(W
3,W 2X,WX2, X3).

Now combining Theorem 3 and Theorem 4 we obtain the following theorem:

Theorem 5. Let C be a linear code over S of length m and let C⊥ be its dual. With
LeeC(W,X) denoting its Lee weight enumerator as given in (3), we have

LeeC⊥(W,X) =
1

|C|
LeeC(W +X,W −X).

Note that this is exactly the same identity that is satisfied by the Hamming
weight enumerators of binary codes. The existence of the identity gives us the
following corollary that is of central importance for our work:

Corollary 1. If C is an FSD code over S of length m, then ϕ(C) is a binary FSD
code of length 3m. Moreover, the Lee weight enumerator of C is the same as the
Hamming weight enumerator of ϕ(C).
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3. Constructions

In this section, we introduce the construction methods for FSD codes over commu-
tative Frobenius rings by block λ-circulant matrices.

Let R be a commutative Frobenius ring and v = (v1, v2, . . . , vm) an element of the
R-module Rm. The λ-cyclic shift of v is defined as σλ (v) = (λvm, v1, v2, . . . , vm−1),
where λ ∈ R. An m × m square matrix A is called λ-circulant if every row is a
λ-cyclic shift of the previous one, in other words, A is in the following form;















a1 a2 a3 · · · am
λam a1 a2 · · · an−1

λam−1 λam a1 · · · am−2

...
...

...
. . .

...
λa2 λa3 λa4 · · · a1















.

If λ = 1 the matrix is simply called circulant. Recently, in [19], Karadeniz et
al. applied the double and bordered double circulant constructions for a family of
commutative Frobenius rings of characteristic 2. The constructions were generalized
to double λ-circulant codes in [1]. λ-circulant matrices share properties of circulant
matrices such as they commute with each other and they are permutation equivalent
to their transposes.

Theorem 6. Let Ai be a λ-circulant matrix of size m ×m for 1 ≤ i ≤ n over R.
Suppose that there is a weight function on R such that wt(a) = wt(−a) for all a ∈ R.
Then the code C generated by

G =
[

Imn M
]

where M =











A1 A2 · · · An

An A1 · · · An−1

...
...

. . .
...

A2 · · · An A1











(4)

is an FSD code over R. Moreover, C is iso-dual if char (R) = 2. The code is called
an n-block λ-circulant code.

Proof. Let C be the code generated by G. Then the dual C⊥ of C is generated by

G′ =
[

M t −Imn

]

.

Let Πn be the permutation

Πn = (1, n) (2, n− 1) · · · (k − 1, n− k + 2) (k, n− k + 1) ,

where k = ⌊n/2⌋. It is easily observed that Ai and At
i are permutation equivalent

since when Πm is applied to rows and then to columns of Ai, we obtain At
i. So the

matrix

M ′ =











At
1 At

2 · · · At
n

At
n At

1 · · · At
n−1

...
...

. . .
...

At
2 · · · At

n At
1
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is obtained by applying Πm to each block ofM . ThenM t is obtained by applying Πn

to M ′ block-wise. Let C′′ be the code generated by G′′ =
[

MT Imn

]

. The matrices
G and G′′ are permutation equivalent and so are the codes they generate. On the
other hand, C⊥ and C′′ have the same weight enumerator since wt(a) = wt(−a) for
each a ∈ R. Hence C is formally self-dual. Moreover, C is isodual if R is a ring of
characteristic 2 since C⊥ = C′′.

Theorem 7. Let M and R be as in (4); a, b ∈ R and let b denote the all-b row of
length mn. Then the code generated by

[

Imn+1
a b

b
t M

]

is an FSD code over R. The code is iso-dual when char (R) = 2 and it is called a
bordered n-block λ-circulant code.

Proof. Let C be the code generated by G. Then the dual C⊥ of C is generated by

G′ =

[

a b

b
t M t − Imn+1

]

Applying the same permutations as in the proof of Theorem 6, we see that C is
equivalent to C′′, which is generated by

G′′ =

[

a b

b
t M t Imn+1

]

.

On the other hand, C⊥ and C′′ have the same weight enumerator since wt(a) =
wt(−a) for each a ∈ R. Hence C is formally self-dual. Moreover, C is isodual if R is
a ring of characteristic 2 since C⊥ = C′′.

The constructions given in theorems 6 and 7 can be generalized further by consid-
ering λ0-circulating blocks of matrices. Such a code is called λ0-n-block λ-circulant
code. We illustrate this construction in the following example;

Example 1. Let R = R1 and r1 = (1 + u, u), r2 = (1, 1 + u), r3 = (1 + u, 1 + u)
and r4 = (0, u) be the first rows of circulant matrices A1, A2, A3 and A4, respec-
tively. Let C be the λ0 block circulant code over R1 generated by

G =









I8

A1 A2 A3 A4

λ0A4 A1 A2 A3

λ0A3 λ0A4 A1 A2

λ0A2 λ0A3 λ0A4 A1









,

where λ0 = 1+u. Then C is an iso-dual code. The binary code ϕ (C) is a binary even
FSD code of parameters [32, 16, 8], which is optimal. A partial weight distribution of
the code is given by 1 + 364z8 + 2048z10 + 6720z12 + · · · . Even FSD codes of these
parameters have been studied extensively in [14].

More examples for the generalization of Theorem 7 are given in Tables 3,4 and
6.
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4. Computational results

In this section, the methods from Section 3 are applied to the rings F2, R1 and S.
FSD codes with parameters better than self-dual codes are tabulated. New near-
extremal FSD even codes are constructed for lengths 36, 38 and 44. For the rest of
the paper (.)∗ is used to denote that the code is optimal as a linear code and (.)b

is used to denote that the minimum distance of the code is the distance of the best
known linear code with respect to the online database [12].

Remark 1. In the tables that follow, n denotes the number of blocks, m denotes
the length of each block, a and b denote the borders of the block circulant matrix
(In the case of bordered double circulant constructions given in Theorem 7), Ai is a
λ-circulant matrix for each 1 ≤ i ≤ n and λ0 is as in Example 1. The order of the
automorphism group of C is denoted by |Aut(C)|. In order to fit the upcoming tables
we denote the element 1 + u of R1 as 3 and 1 + u+ u2 of S as 7. All computations
were run on an average PC, using the magma algebra system ([5]).

Example 2. Let A1 and A2 be 2 × 2 (1 + u)-circulant matrices over R1 with first
rows r1 = (1, 1 + u) and r2 = (1 + u, u). Then the bordered 2-block (1 + u)-circulant
code generated by

G =













I5

u 1 1 1 1
1 1 1 + u 1 + u u
1 1 1 u 1 + u
1 1 + u u 1 1 + u
1 u 1 + u 1 1













is an iso-dual code over R1. The binary image of the code is an odd binary FSD
[20, 10, 6]

∗
code that is optimal as a linear code. A partial weight distribution of the

code is 1+40z6+160z7+130z8+· · · and its automorphism group has order 28×3×5.

Example 3. Let C be the pure double circulant code with the first row

r = (11000100101111110100111) .

Then C is an iso-dual code by Theorem 6. The code C is an optimal linear [46, 23, 11]
∗

code and a partial weight distribution of C is given by

1 + 3312z11 + 9660z12 + 121440z15 + 235290z16 + · · · .

With respect to the online database of linear codes, [12], a binary linear [46, 23, 11]∗

code is constructed as a shortened puncturing of the unique Type II [48, 24, 12]
∗
. The

code C is equivalent to the one kept in [12].

4.1. Binary even FSD [72, 36, 14] codes

The existence of a Type II binary self-dual [72, 36, 16] code is an open problem that
has generated a lot of interest in the last four decades. Equivalent to the same
problem is the existence of a binary Type I self-dual [72, 36, 14] code. The best
known binary self-dual codes of length 72 have minimum distance 12, see [7, 15].
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The first examples of binary [72, 36, 14] FSD even codes were constructed in [19]. In
this section, we construct 10 binary FSD even [72, 36, 14] codes, which are different
than the codes given in [19]. The results are given in Table 1.

Example 4. Let λ = 1 + u, n = 1 and let C be the double λ-circulant code with
the first row r1 = (u, 0, u, u, 0, u, 0, 0, 0, u+ 1, 0, 1, u + 1, u + 1, 1, 0, 1, 1, ) over R1.
Then C is an iso-dual code. The Gray image ϕ (C) of C is a binary FSD even
code of parameters [72, 36, 14]. A partial weight enumerator of the code is given by
1 + 9036z14 + 121959z16 · · · .

n r1, . . . , rn Partial weight distribution
4 000110011, 111101100, 101111100, 100011011 1 + 9144z14 + 120897z16 + · · ·
4 000100101, 011101011, 101000000, 110110000 1 + 8748z14 + 123525z16 + · · ·
4 101110001, 000100010, 001010011, 101011101 1 + 8748z14 + 123660z16 + · · ·
4 000100101, 011101011, 000101111, 000100110 1 + 9072z14 + 121383z16 + · · ·
4 000100110, 001010101, 101000000, 110110000 1 + 8640z14 + 124479z16 + · · ·
3 111100111010, 110101101100, 111011001011 1 + 8640z14 + 125433z16 + · · ·
3 000111110111, 001101011000, 100110001101 1 + 9288z14 + 120537z16 + · · ·
1 100100010000010111111111000111010000 1 + 8820z14 + 122841z16 + · · ·
1 100100010000010111000011000100111011 1 + 8748z14 + 123831z16 + · · ·

Table 1: Binary FSD [72, 36, 14] codes as n-block circulant codes over F2

4.2. New near extremal binary FSD even codes

Extremal binary FSD even codes do not exist for many lengths and the non-existence
of near-extremal binary FSD even codes have been studied in [18]. In [13], possible
weight enumerators of near-extremal binary FSD even codes of lengths 16 to 46 has
been determined. In this section, we construct new binary near-extremal FSD even
codes for lengths 36, 38 and 44, where possible weight enumerators are;

W36 = 1 + (225 + α) y8 + (2016− 6α) y10 + · · · ,

W38 = 1 + (171 + α) y8 + (1862− 5α) y10 + · · · ,

W44 = 1 + (1320 + α) z10 + (10461− 8α) z12 + · · · .

The existence of near-extremal binary FSD even codes is known for weight enu-
merators; α =0, 9, 13, 18, 27, 36, 45, 47, 63, 64, 72, −4, −9, −21, −27, −36, −38,
−45, −54, −55 and −72 for W36; α =0, 22, 31, 44, 66, 176, −19, −22, −44, −53,
−66, −176 for W44.

In this work, we were able to construct binary near-extremal FSD even codes
with weight enumerators; α =3, 6, 12, 15, 21, 24, 30, 33, 39, 42, 48, 60, 96, 144, −3,
−6, −12, −15, −18, −24, −30, −33, −42, −144 in W36; α =10, 30, 50, 80, −10,
−11, −30 and −70 in W44.
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Example 5. For n = 1 and λ = 1, let C be the double circulant code over S of
length 12 with the first row of A1 as r1 =

(

1, u2, 1 + u, u+ u2, 1, 1 + u2
)

. Then C
is iso-dual by Theorem 6. The Gray image of C is a binary near-extremal FSD even
code with weight enumerator α = 144 in W36. The weight enumerator of the code is
different than the ones in [13].

More new near extremal FSD even codes are constructed in Table 2.

λ r1 a, b |Aut(C)| α

1
(

u, 1 + u2, 0, 7, 1 + u2
)

1 + u2, u 30 3

1
(

1 + u2, 1 + u2, u, 0, 7
)

1 + u2, 1 15 6

u
(

0, 1 + u2, 1, u+ u2, u
)

u+ u2, u 3 12
u (1 + u, 7, 0, 1, 0) 1 + u, 1 3 15

u
(

u, 0, u+ u2, u2, 1 + u
)

1 + u2, 1 3 21
u

(

1 + u2, u2, u, u2, 1
)

u+ u2, 1 3 24

u
(

1, 1, 0, u2, 7
)

1 + u2, u2 3 30

1
(

u2, 0, 1 + u2, 1, 1 + u
)

1 + u2, 1 15 33

u
(

1 + u, 7, 7, 0, 1 + u2
)

1 + u, 1 3 39
u

(

1 + u2, 7, 1, u2, u2
)

1 + u, u 3 42

1
(

u, u2, u, 1 + u2, u
)

u+ u2, u 15 48

u
(

7, u2, 1 + u2, 7, 1
)

1 + u, u 3 60

1
(

u+ u2, u+ u2, 1, 1, 1 + u2
)

1 + u, u2 60 96

u
(

7, u, u+ u2, 0, 0
)

1 + u2, u 3 −3
u

(

0, u2, 1, u, 7
)

1 + u2, 1 3 −6

1
(

0, 7, 1 + u2, 0, 1
)

u+ u2, u 15 −12

u
(

1 + u, u, 1 + u, 0, u2
)

1 + u2, u 3 −15
u (7, u, 1 + u, 1, 7) 1 + u, u2 3 −18

1
(

1 + u2, u, 1, 1 + u2, 0
)

1 + u, u 15 −24
u (7, 0, u, u, 1) 1 + u2, u 3 −30
u

(

1 + u2, u+ u2, 7, u, 0
)

1 + u, u 3 −33

1
(

1 + u, 1 + u, u, u2, 0
)

1 + u2, u2 15 −42

1
(

1 + u2, 1 + u2, u, 1 + u, u
)

1 + u2, u2 1440 −144

Table 2: 24 new near extremal FSD even codes of length 36 over S by Theorem 7

For a list of known near-extremal FSD even codes of length 38 we refer to [13].
In the following example we construct a code with a new weight enumerator by
applying bordered 2-block circulant construction on F2.

Example 6. Let C be the bordered 2-block circulant code with r1 = (111100111) ,
r2 = (101011100) and a = 1 = b over F2. The code C is an even code and it is FSD
by Theorem 7. |Aut (C)| = 2 × 32 and C has a weight enumerator with α = −9 in
W38.

Example 7. Let C be the binary bordered 3-block circulant code with r1 = (1110101) ,
r2 = (1100100) , r3 = (0010100), a = 0 and b = 1. Then C is a near-extremal FSD
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even code with weight enumerator α = −11 in W44. The existence of an FSD code
with this weight enumerator was unknown. The automorphism group of the code has
order 3× 7.

We were able to construct seven near extremal binary FSD even codes of length
44 with new weight enumerators as Gray images of FSD codes over R1, which are
listed in Table 3.

n λ0 λ r1, . . . , rn a, b |Aut(C)| α
2 3 1 (u01u3) , (03u01) 3, 3 2× 5 30
2 3 1 (0330u) , (33101) 3, 3 2× 5 50
5 1 1 (13) , (10) , (uu) , (3u) (33) 1, 1 225 10
5 1 1 (30) , (11) , (1u) , (u3) (u1) 1, 1 225 80
5 1 1 (u0) , (u3) , (03) , (11) (13) 1, 1 225 −10
5 1 1 (3u) , (0u) , (1u) , (uu) (13) 1, 1 225 −30
5 1 1 (3u) , (03) , (33) , (13) (u0) 1, 1 225 −70

Table 3: Optimal [44, 22, 10] FSD even codes as images of bordered n-block circulant codes over R1

Remark 2. Throughout the paper the binary FSD codes that have been listed have
better minimum distances than the best known self-dual codes, except for the ones
listed in Tables 2 and 10, which have the same distance as the corresponding extremal
self-dual code.

Theorem 6 is applied over F2 in Table 8. Its generalization is applied over R1

and S in Table 4 and in Table 6, respectively. Theorem 7 is applied in Tables 5, 7,
9 and 10.

λ0 λ r1 r2 Partial weight distribution
1 1 (01113) (013u0) 1 + 280z9 + 1052z10 + · · ·
1 1 (1u0uu) (1330u) 1 + 320z9 + 992z10 + · · ·
1 1 (u1u03) (u303u) 1 + 340z9 + 972z10 + · · ·
3 1 (1013u) (3u303) 1 + 260z9 + 1030z10 + · · ·
3 1 (11u01) (33100) 1 + 280z9 + 1010z10 + · · ·
3 1 (10u33) (u1033) 1 + 300z9 + 1020z10 + · · ·
3 1 (u3u00) (110u1) 1 + 320z9 + 1000z10 + · · ·
3 1 (u3311) (00013) 1 + 320z9 + 982z10 + · · ·
3 1 (0u31u) (1111u) 1 + 360z9 + 922z10 + · · ·
3 3 (01133) (u31uu) 1 + 340z9 + 982z10 + · · ·
3 3 (03u30) (u1331) 1 + 240z9 + 1166z10 + · · ·
3 3 (00u33) (3u03u) 1 + 300z9 + 1022z10 + · · ·
3 3 (1030u) (01311) 1 + 320z9 + 1012z10 + · · ·

Table 4: Binary [40, 20, 9]b FSD codes as Gray images of 2-block circulant codes over R1
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n m r1, . . . , rn a, b |Aut(C)| Partial weight distribution
2 8 11000001, 11010100 0, 1 26 1 + 172z8 + 352z9 + · · ·
2 8 10001010, 10110001 0, 1 27 1 + 204z8 + 384z9 + · · ·
2 8 10001101, 00011001 1, 1 26 1 + 220z8 + 384z9 + · · ·
2 8 10001011, 11101111 0, 1 26 1 + 236z8 + 416z9 + · · ·
2 8 10111110, 10000101 0, 1 27 1 + 268z8 + 448z9 + · · ·
4 4 1110, 1000, 0110, 0111 0, 1 293 1 + 140z8 + 320z9 + · · ·
4 4 1001, 1000, 1000, 0111 0, 1 293 1 + 204z8 + 512z9 + · · ·
4 4 1010, 0110, 0001, 1100 0, 1 29523 1 + 332z8 + 640z9 + · · ·
1 16 1000101110011100 0, 1 24 1 + 192z8 + 298z9 + · · ·
1 16 0111001100101101 0, 1 24 1 + 200z8 + 380z9 + · · ·
1 16 1100101001101001 0, 1 24 1 + 208z8 + 282z9 + · · ·
1 16 0001111011101111 0, 1 25 1 + 208z8 + 388z9 + · · ·
1 16 1110011000111110 0, 1 24 1 + 210z8 + 284z9 + · · ·
1 16 1000101110110000 0, 1 24 1 + 212z8 + 392z9 + · · ·
1 16 1100001111101001 1, 1 27 1 + 220z8 + 384z9 + · · ·
1 16 0110111010000110 0, 1 24 1 + 224z8 + 266z9 + · · ·
1 16 1010111011110010 0, 1 24 1 + 224z8 + 282z9 + · · ·
1 16 0101010000011001 0, 1 24 1 + 240z8 + 266z9 + · · ·
1 17 10101110111110110 pure 17 1 + 153z8 + 527z9 + · · ·
1 17 01111110100011111 pure 17 1 + 170z8 + 527z9 + · · ·
1 17 11101000001001011 pure 17 1 + 187z8 + 459z9 + · · ·
1 17 11001111111100110 pure 2× 17 1 + 187z8 + 493z9 + · · ·
1 17 11011101000100100 pure 17 1 + 204z8 + 442z9 + · · ·
1 17 11111010111011001 pure 17 1 + 221z8 + 408z9 + · · ·
1 17 10011011011000010 pure 17 1 + 255z8 + 816z9 + · · ·

Table 5: Optimal binary linear [34, 17, 8] codes as odd FSD codes over F2

n λ0 λ r1, . . . , rn Partial weight distribution

3 u2 1 (1 + u, u, u) ,
(

u2, u+ u2, 0
)

,
(

1 + u, 1, u+ u2
)

1 + 729z11 + 3096z12 + · · ·

3 u2 1
(

1 + u, 1 + u2, 0
)

, (1 + u, 0, 1) ,
(

u2, 1, 7
)

1 + 864z11 + 3123z12 + · · ·

3 1 1 (1, 1, 0) ,
(

1, 0, 1 + u2
)

,
(

u2, u+ u2, 1 + u2
)

1 + 1080z11 + 5706z12 + · · ·

3 1 1 (0, 7, 1 + u) ,
(

1 + u, 1 + u2, 1 + u2
)

, (u, 1, u) 1 + 1404z11 + 5031z12 + · · ·
1 - u

(

1 + u, 1 + u2, 1 + u2, 1, u+ u2, 7, u+ u2, u, 1
)

1 + 621z11 + 2970z12 + · · ·

1 - u
(

u+ u2, u2, 1, u+ u2, u, u+ u2, 1, u+ u2, u+ u2
)

1 + 648z11 + 3051z12 + · · ·

1 - u
(

1, 1, u, u, u, 1+ u2, 1 + u+ u2, 1 + u2, 0
)

1 + 729z11 + 3051z12 + · · ·

1 - u
(

u2, u+ u2, u+ u2, 7, 1 + u, u+ u2, 1 + u, 7, u
)

1 + 864z11 + 2916z12 + · · ·
1 - u

(

1 + u, 1 + u2, 1 + u2, 1, u+ u2, 1 + u, u, 1, 1
)

1 + 918z11 + 3132z12 + · · ·

1 - u2
(

1, 1 + u2, 1, 7, u+ u2, u, 1, 7, 1 + u
)

1 + 891z11 + 2889z12 + · · ·

Table 6: Binary FSD [54, 27, 11]b codes as Gray images of FSD codes over S
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r1 r2 r3 r4 Partial weight distribution
1111001 1011001 0111111 1000101 1 + 3290z12 + 40565z14 + · · ·
1011110 0000110 0011011 1111111 1 + 3388z12 + 39879z14 + · · ·
1001111 0111011 0011000 0101000 1 + 3395z12 + 39830z14 + · · ·
0000100 0100100 1000101 1001110 1 + 3402z12 + 39783z14 + · · ·
0001001 1101111 1000101 1110011 1 + 3437z12 + 39536z14 + · · ·
0111111 0100000 0111001 1001111 1 + 3437z12 + 39482z14 + · · ·
0011100 1010000 0011111 0011110 1 + 3500z12 + 39097z14 + · · ·
1001100 0110000 0000101 1001100 1 + 3500z12 + 39095z14 + · · ·
1000110 0011110 1011111 1001100 1 + 3507z12 + 38990z14 + · · ·
1111001 1010000 1010100 0011110 1 + 3542z12 + 38803z14 + · · ·
1001011 1010010 1000111 0111011 1 + 3563z12 + 38600z14 + · · ·
1110011 1001110 0000110 0000001 1 + 3591z12 + 38402z14 + · · ·
0101100 0101000 1111010 1001011 1 + 3598z12 + 38411z14 + · · ·
0011000 0100110 0110110 0111000 1 + 3619z12 + 38208z14 + · · ·
1100001 0101000 1010001 1000001 1 + 3640z12 + 38061z14 + · · ·
1101110 1000100 0101100 0101101 1 + 3668z12 + 37921z14 + · · ·
0101100 0010011 0111001 0011110 1 + 3703z12 + 37674z14 + · · ·
1110101 1100101 0110111 0111010 1 + 3745z12 + 37382z14 + · · ·
0001010 1000000 1000011 1101010 1 + 3766z12 + 37177z14 + · · ·
1010111 1010001 1010011 0110110 1 + 3850z12 + 36589z14 + · · ·

Table 7: Binary [58, 29, 12]b FSD codes as bordered 4-block circulant codes over F2 with a = 1 = b

r1 r2 r3 r4 r5 Partial weight distribution
1000111 0101010 0100110 0100001 0111001 1+910z13+5880z14+· · ·
1110011 0001000 1000110 0100110 0000011 1+1120z13+5740z14+· · ·
1101101 0101000 0011010 0100010 1100110 1+1155z13+6405z14+· · ·
0110111 1001110 0001000 0001000 0110100 1+1295z13+5810z14+· · ·
0010101 1111000 1001100 1111001 1001001 1+1295z13+5635z14+· · ·
1100100 1110010 0001110 0110001 1010111 1+1400z13+6020z14+· · ·
0111100 0111101 1110100 1010101 1001100 1+1435z13+5565z14+· · ·
1010011 0010010 1001100 1100010 0010111 1+1505z13+5670z14+· · ·
1001111 0010110 1000000 0100110 0101110 1+1505z13+6125z14+· · ·
0010111 1001111 0011011 0100110 1111000 1+1540z13+5530z14+· · ·

Table 8: Binary [70, 35, 13] FSD codes as 5-block circulant codes over F2
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n m r1, . . . , rn Partial weight distribution
4 9 101000100, 101111100, 010001001, 011100100 1 + 6681z14 + 98703z16 + · · ·
4 9 100001110, 110100110, 000011001, 001000010 1 + 6714z14 + 98538z16 + · · ·
4 9 100111101, 111010111, 101000000, 101100110 1 + 6723z14 + 98673z16 + · · ·
4 9 111011010, 010010001, 111001000, 110100000 1 + 6876z14 + 97980z16 + · · ·
4 9 000111101, 001011001, 011100111, 111011000 1 + 7272z14 + 95568z16 + · · ·
3 12 001011000110, 101011001001, 000100000000 1 + 6078z14 + 102177z16 + · · ·
3 12 000100001111, 100101010110, 111000101011 1 + 6222z14 + 102177z16 + · · ·
3 12 111101000001, 110110100101, 010100100011 1 + 6270z14 + 100497z16 + · · ·
3 12 001001100101, 000000100110, 010111110101 1 + 6618z14 + 99189z16 + · · ·
3 12 000100011101, 010010001100, 101101010110 1 + 7374z14 + 95553z16 + · · ·
2 18 101001111011011100, 010110010001101110 1 + 6390z14 + 100446z16 + · · ·
2 18 101000100111110001, 010110011100111011 1 + 6552z14 + 99906z16 + · · ·
2 18 100011101000011000, 011111010001010010 1 + 6732z14 + 98538z16 + · · ·
2 18 010111001111100011, 011010100101111000 1 + 6930z14 + 98088z16 + · · ·
2 18 001101101010011100, 110111011100101100 1 + 6957z14 + 97035z16 + · · ·

Table 9: Bordered n-block circulant [74, 37, 14]b FSD codes over F2 with a = 1 = b

n m r1, . . . , rn a, b Partial weight distribution
2 9 (u03033u00) , (01100u131) 3, 1 1 + 4518z14 + 80364z16 + · · ·
2 9 (u10013303) , (u00111uu0) 1, 1 1 + 4554z14 + 81072z16 + · · ·
2 9 (3u1011111) , (u3u331010) 3, 1 1 + 4740z14 + 79836z16 + · · ·
2 9 (0u03013u3) , (1uu33311u) 1, 3 1 + 5202z14 + 77610z16 + · · ·
2 9 (133uu0310) , (3u310u101) 3, 1 1 + 5208z14 + 77916z16 + · · ·
2 9 (uuu003131) , (0010uuuu1) 1, 1 1 + 5262z14 + 77232z16 + · · ·
2 9 (03u110100) , (111113033) 3, 1 1 + 5340z14 + 77526z16 + · · ·
3 6 (11303u) , (30u3u3) , (330131) 3, 1 1 + 4206z14 + 82047z16 + · · ·
3 6 (uu0133) , (u31u10) , (00u0u0) 3, 3 1 + 4716z14 + 80295z16 + · · ·
3 6 (103uu3) , (31u1u0) , (1101u3) 1, 1 1 + 4842z14 + 78663z16 + · · ·
3 6 (331033) , (31u010) , (03u113) 3, 3 1 + 4866z14 + 79239z16 + · · ·
3 6 (111313) , (u033u1) , (0u311u) 1, 1 1 + 4866z14 + 79455z16 + · · ·
3 6 (111300) , (1001u3) , (u1303u) 1, 3 1 + 5778z14 + 75711z16 + · · ·

Table 10: Binary [76, 38, 14]b FSD codes as Gray images of bordered n-block circulant codes over
R1
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