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ABSTRACT. We study the generalized minimal residual (GMRES)
method for solving tridiagonal block Toeplitz linear system Az = b with
m X m diagonal blocks. For m = 1, these systems becomes tridiago-
nal Toeplitz linear systems, and for m > 1, A becomes an m-tridiagonal
Toeplitz matrix. Our first main goal is to find the exact expressions for the
GMRES residuals for b = (B1,0,...,0)7, b= (0,...,0,Bx)T, where By
and By are m-vectors. The upper and lower bounds for the GMRES resid-
uals were established to explain numerical behavior. The upper bounds for
the GMRES residuals on tridiagonal block Toeplitz linear systems has been
studied previously in [1]. Also, in this paper, we consider the normal tridi-
agonal block Toeplitz linear systems. The second main goal is to find the
lower bounds for the GMRES residuals for these systems.

1. INTRODUCTION

Iterative methods are used to solve large sparse systems of linear equations
Az = b. The Generalized Minimal Residual (GMRES) method is such an
algorithm and is often used to solve a linear system

(1.1) Ar =b.

The GMRES method starts with an initial approximation z(, then computes
the initial residual rg = b — Axy and a sequence of approximate solutions
X1,T2,..., so that the kth residual r, = b — Axy, satisfies ([6])

(1.2) el = min ~[|b— Az,
z€xo+Kk(A,r0)
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where the Krylov subspace Ky (A, 7o) is defined as
(1.3) Ki(A, 7o) = span{rg, Arg, ..., AF " 1rg},

and ||.||2 denotes the I3 norm.
Consider the tridiagonal block Toeplitz matrix A with Toeplitz structure
as the form

A1 A
(1.4) A=| A ,
. Ay
Az Ar ) yew
where the blocks of A are m x m diagonal matrices, such as
A 0 I 0 v 0
(1.5) 4 = , Ay = , Az = ) ,
0 A 0 I 0 v
with nonzero parameters A, ;4 and v. Also, let
(1.6) b=( Bi,Ba,....Bx ),
and

T
By = ( b(lal)’ b(2,l)7 RN b(m,l) ) .
For m = 1, the matrix A becomes an N x N tridiagonal Toeplitz matrix
Ap
. -
VoA

mN

and for m > 1, A becomes an m-tridiagonal Toeplitz matrix A(™) = (aij); pa

as

A0 0 pu 0 0
0O X 0 0 u
0o . 0 0
(1.8) At | 0T A e
v 0 : : . . S0
0 v 0 0
0 1 0 A 0
0 0 v 0 0 A
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where a; j4m = 4, QGitm, =V for 1 <i <mN —m.

Tridiagonal block Toeplitz linear systems appear in a variety of applica-
tions in mathematics, scientific computing, and engineering, such as image
processing, numerical differential equations and integral equations, boundary
value problems, time series analysis, control theory, etc.

In this paper, we consider the GMRES method on the tridiagonal block
Toeplitz linear system Az = b, where A is defined as (1.4). For case m = 1,
i.e, the tridiagonal Toeplitz linear systems, this problem has been studied
previously in [2-5] and the references therein. For m > 1, A becomes an
m-tridiagonal Toeplitz matrix, and we obtained the upper bounds for the
GMRES residuals on linear system Az = b ([1, Theorem 2.5]). Also, in [1],
we showed that the GMRES method on mN x mN linear system Az = b
computes the exact solution in at most IV steps. This paper continues our
recent work [1], and the first main goal is to find the exact expressions for
the GMRES residuals on the tridiagonal block Toeplitz linear system Az = b,
with special right hand side vector

(1.9) b=( B1,0,...,0)", b=(0,...,0,Bx )",

where By and By are any m-vectors. In fact, we show that the exact ex-
pressions for the GMRES residuals for case m = 1 obtained by [5], are also
satisfied for the case m > 1. The upper and lower bounds for the GMRES
residuals were established to explain numerical behavior. The second main
goal in this paper, is to find the lower bounds for the GMRES residuals when
solving the tridiagonal block Toeplitz linear system Az = b, in case of normal
matrix A. We start in analogous way as in [1], and use Chebyshev polynomi-
als of the second kind instead of Chebyshev polynomials of the first kind in
[1], to achieve these goals.

Throughout this paper, we denote the n x n identity matrix by I,,, and
e; is its jth column. The superscript T denotes transpose of a matrix, and
the superscript -* denotes conjugate-transpose of a matrix. For a vector u
and a matrix X, u(; is jth entry of u, X, ;) is jth column of X, and X ;.
consists of intersection of all rows and columns i to j, also diag(u) is the
diagonal matrix with (diag(u))(;,;) = wu(j). The Kronecker product of the
matrices A and B is given by A ® B = [A(; j)B]. Finally, II;, denotes the set
of polynomials of degree at most k.

2. BASIC CONCEPTS

In this section, we start in analogous way as in [1], and major difference
between this paper and [1], is in using Chebyshev polynomials of the second
kind instead of Chebyshev polynomials of the first kind.

Let the tridiagonal block Toeplitz matrix A be given as (1.4). The next
theorem shows that the matrix A is diagonalizable when p # 0 and v # 0,
and was proven in [1].
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THEOREM 2.1. The coefficient matriz A defined as (1.4) can be block
diagonalized as

(2.1) A=XAX"', X=Xy®IL, A=dagAy,...,Ay),

where
g

(22) A]':)\jIm, )\j:)\72\/‘ul/ tj, tj:COSHj, Hj: N—f—l’
(2.3) Xy =SZ, § = diag(1,€ .., €M), g =~ Y2,

. . T
(2.4) Z.j) = N+1(sm391,...,sm]9N) .

It can be verified that Z7Z = I, and ZT = Z. Set
A

2.5 w==2/uv, T= .
(2.5) V NI
By (2.2), we have
(26) )\j:w(tjf'r), 1§j§N

The next corollary was proven in [1].

COROLLARY 2.2. For linear system Ax = b, where mN x mN matrix A
defined as (1.4), the GMRES method computes the exact solution in at most
N steps.

Hence, in this paper, we restrict £ < N at all times, where k is the
GMRES iteration. From [1, eq. 25], kth GMRES residual r satisfies

(2.7) Irells = min || X diag(X~"6)Vul».
U=
where
Vi
VT
v=| |,
Vi
and V; are (k + 1) x m Vandermonde matrices as the form
11 ... 1
AT AT A

Different from [1], we use Chebyshev polynomials of the second kind instead
of Chebyshev polynomials of the first kind, to simplify (2.7).
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The Chebyshev polynomials of the second kind of degree n are defined by

sin((m+1) arccos t)
W for real ¢ and [t] < 1,

(2.8) Up(t) =
(t+VE2—1)™m T —(t—/t2—1)m 1L
2Vt2—1

Also, we define the nth Translated Chebyshev polynomial in z of degree n as

otherwise.

f z _
(2.9) Up(zw,T) def Un(; +7) = annz" + an-1n2" L ainz + aon,

where a;,, are functions of w and 7. Let

aopo aopr - -- agn—1
air ... a1n—1
(2.10) R, = . . )
Ap—1n—1

where jth column of R,, contains the coefficients of U;_1(z;w, 7).
It can be verified that (see also [1, eq. 39])

(2.11) Irella = i, |1 ding(X0)Y e Ryl
where

Ty

1, Uo(t;) Ui(ti) ... Un—1(t:)

T.N Uo(ti) Ui(ti) ... Un-1(ti) ), .~
Let the right-hand side vector b is defined as (1.6). Thus

N

(2.12) X diag(X 1)Y= Y ¢! (52 diag(Z(.)) ® diag(By)) .

=1

We now turn to simplify (2.12). Let P be a permutation matrix as

P1 EZT
P, eﬁ i
P= ,  PB= R
Pm e{Nfl)eri
hence
Hi
Ho
(2.13) P (57 diag(Z.;)) ® diag(B;)) T = |
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where
2b(i,

(Hi)(l’aQ) = N+ 1

N
> &P sinkb, sinl6Uy 1 (t), pg=1,...,N.
k=1

It can be verified that

(214) ,Hz = b(i,l)SZ diag(Z(:J))U,
where
Uo(t1) Ui(tr) ... Un_1(t1)
Uo(ts) Ui(ta) ... Un_1(ts)
U= . . .
Uslty) Uiltn) .o Un-altn) ) yon

Thus, the equations (2.13) and (2.14) yield
P (SZ diag(Z(.;y) ® diag(B1)) T 1:641)

ba,ySZ diag(Z (1)U 1:k+1)
(2.15) bo,SZ diag(Z..1y) U 1:k41)

b,y SZ diag(Z 1)) U 1:k41)
and from (2.12) and (2.15) we can write
PX diag(X '0)Y (. 1:k41)

b,y SZ diag(Z(.1))U(: 1:k41)

(2.16) be,ySZ diag(Z(. 1)) U 1:k41)

N
Sy
=1 o
bim,ySZ diag(Z(. 1)U 1:k+1)

Moreover, the structure of Chebyshev polynomials of the second kind yields

(2.17) Z diag(Z(.;))U = 2D, Z",
where
sin(101)
sin(01)
si'n(léz)
D[ _ sin(62)
sin(10n)
sin(On)

Hence, by combining (2.16) and (2.17), we have

N b(l,l)S(ZDlZ?(:,lzkH)
v o benS(ZDiZ7) 1kt
(2.18) PX diag(X "0)Y (. 1.441) = 255—1 |
=1 :
b(m,l)S(ZDlZT)(:,1:k+1)
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3. THE EXACT EXPRESSION FOR THE GMRES RESIDUALS

The next theorem gives the exact expression for the GMRES residuals
when solving the tridiagonal block Toeplitz linear systems Ax = b, where
A and b are defined as (1.4) and (1.9), respectively, and it was proven in
[5, Theorem 2.1] only for m = 1. But in this paper, we show that this
theorem is established for general case m > 1.

THEOREM 3.1. Consider the tridiagonal block Toeplitz linear system
Az =b, where mN x mN matriz A is defined as (1.4). Then, for 1 <k < N,
the kth GMRES residual 7y, satisfies

~1/2

k

B rellz = lblle | Y 1€171U5(r) . for b= (B1,0,...,0)",
§=0
. —-1/2

(3:2) Nrellz = lIbll2 | D 1677 U5(m) , for b=1(0,...,0,Bn)",
§=0

where By and By are m-vectors, and Uj is the jth Chebyshev polynomial of
the second kind.

PROOF. Let b = (Bl, 0,..., O)T and B; = (b(lJ), b(2,l); ceey b(m,l))~ Equa-
tion (2.18) yields
b(1,1)5k+1R;;_;1
N . b2,1)Skt+1 R4y
PX diag(X™'0) T 141 Biyy = .
b, 1)Skr1 By
where S11 = S(:1,k41)- Then by (2.11), we have
Irell2 = min, | PX diag(X™"0)Y . voesn) Bty

(3.3) ) .
= || B1ll2 uin, [ Skt1 Ry yull2-

From [4, Lemma 3.1]

—1/2
i /

(3.4) Juin (1S Riyullz = | 3 €210 ()
=0
Thus for b = (Bi,0,...,0)T, equations (3.3) and (3.4) yield
—1/2

k
Irclle = 1Bill2 | Y 1€1%1U; ()

J=0
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From [4, Sect. 2.2], any result for the GMRES residuals for Az = b leads to
one for ATy = 7' after performing the following substitutions

(3.5) pi—v, vi—p, E+—E1 b«—TT,
where IT = (eyn, - - -, €2, e1). Hence for b= (0,...,0, By)T, we can write
—1/2

k
lrillz = 1 Ballz | D167 |U; (7)1

j=0
O

The next theorem gives the asymptotic speed of ||rt||2 among all possible
ro for the GMRES residuals on solving the tridiagonal block Toeplitz linear
systems Az = b, where A and b are defined as (1.4) and (1.9), respectively.

THEOREM 3.2. Under the conditions of the Theorem 3.1, the asymptotic
speed of ||rk||2 is

)27 Ire)l2 1"
= sup |[sup
k—o0 N>k | o ||T0]l2

= min{(|¢[p) ", 1},

for ro = (B1,0,...,0)T. Also, for ro = (0,...,0,Bx)T, the asymptotic speed
18

lim inf |su
(3.6) hﬁwww[JWmm

1/k
lim inf [sup ||7’k||2} =

Hmhr“
(3.7) k—s00 N>k | rg |I70]l2

ro [7oll2
= min{(|{|'p) 7", 1},
where p = max{|T + Vt? — 1|, |7 — V12 — 1]}.

ProOOF. From Theorem 3.1, we have

—1/2
k
TEk .
(38) ||T0||z - Z|€|2J|Uj(7)|2 ’ fO’I" TO:(BLO7"-;O)T7
j=0
and
—1/2
k
||7“kH2 o —1(2j 2 _ T
(3.9) rols ~ z_:o|§ [“|U;(7)] , for ro=(0,...,0,Bn)".

For m = 1, equations (3.6) and (3.7) was proven for the worst asymptotic
speed of ||rg|2 in [5, Theorem 2.2]. Also, the expressions for ||rg|l2/]7ol|2
in equations (3.8) and (3.9), are equal to the expressions for ||7x|2 in [5,
Theorem 2.2]. Thus, equations (3.6) and (3.7) are established for ||7%||2/]|70]|2,
and this completes the proof. O
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4. GMRES ON NORMAL TRIDIAGONAL BLOCK TOEPLITZ LINEAR SYSTEMS

In this section, let A be normal. In fact |u| = |v| is a sufficient and
necessary condition for A to be normal. The upper bounds for the GMRES
residuals on tridiagonal block Toeplitz linear systems has been studied previ-
ously in [1]. In the next Theorem, we obtain the lower bounds for the GMRES
residuals on linear system Az = b.

THEOREM 4.1. Let A be the tridiagonal block Toeplitz matriz as in (1.4).
Also, let A be normal, then the kth GMRES residual vy satisfies for1 <k < N

—-1/2
x /

(4.1) [7kll2 = min D] > U ;

=0
where D = (ZS™ ® I,,,)b.

PROOF. To prove the theorem, we first let 7, and 7 be the kth GMRES
residuals for normal tridiagonal block Toeplitz linear systems Az = b and
Az = b, respectively. Because A is normal, then [{| =1 and

(4.2) (XN @ In) (XN @ LIn)* = (XN @ 1)) (XN @ Inpy) = L,

ie., (Xy ® I,,) is unitary matrix. Hence ||(Xy ® I,,)||2 = 1. Thus equation
(2.7) yields

min_ || diag((Xy ® Im)_lg)V“HQa
u()=1

min || diag((Xy ® In)~'0)

U=

[diag((Xn @ In)"'0)] " [diag((Xn @ L)~ 'b)] Vulla.

7|2

(4.3)

Thus, we can write
~ . 17 . 1,071
(44) [I7%]l2 < || diag((Xn © L) 7'0) 2 || [diag((Xn @ L) ~'0)] Iz sl

Set b = e1, then by Theorem 3.1, we have

—-1/2
i /

(4.5) I7ll = | > 1U;(7)I

J=0

Also, it can be verified that

~ 2
. -1 o . ) .
(4.6) | diag((Xn ® I,,,) " "b)||2 = 1/—1 max(sinf;), i=1,..., N,
<L
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Thus, equations (4.4), (4.5) and (4.6) yield

~1/2
(4.7) [7kll2 > omin (diag(Xn ® Ln)7'0)) | Y 1U; (7)) ,

i=0

E

and this complete the proof. O

4.1. Numerical Examples. We give numerical examples which show the
lower bounds by Theorem 4.1. All the tests are performed by MATLAB 7.8.

‘‘‘‘‘ lower bounds -
——— GMRES residuals

lower bounds
——— GMRES residuals

. IS
10 ~ '~
~, ~,
~ 20 ~
. 10
107 Nis =y
N N
s 25 ~,

107 hoN 10 ~
107 107

0 10 40 50 0 20 80 100

iteration

iteration

(a) N=50,m =2, A=2,u=051, (b)) N=100, m =5 A=4, p =3,
V=

v = —0.51 -3
10 10
‘‘‘‘‘ lower bounds -= =" lower bounds
—— GMRES residuals 10° GMRES residuals
107
10"
10"
N
B
107 ~ 10"
<
~,
107 Nig 107
N
N
107 S 1012
107 10
0 10 20 30 40 50 0 20 40 60 80 100
iteration iteration

(¢) N =50,m = 2\ = ¢,p = 0.25¢, (d) N =100, m =10, A =1, p = 21,
v =—0.25¢ v=-2

FicURE 1. GMRES residuals, and their lower bounds by
Theorem 4.1 for Example 4.2.
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ExXAMPLE 4.2. Consider the tridiagonal block Toeplitz linear system
A=Db, where

A1 A

A= | A

, A1 == )\Im7 A2 == /le, A3 = VIm7
. A2

A3 Al nxn
and each of b’s entries being uniformly random in [—1,1]. Figure 1 plots
the GMRES residuals on Az = b and their lower bounds (dashed lines) by
Theorem 4.1 for given parameters A\, p and v. Also 7 is the imaginary unit. As
mentioned in [1, Cor. 2.3], the GMRES method on mN x mN linear system
Ax = b, computes the exaxt solution in at most N steps. For this reason, in

each of the subfigures, we set maximum of the iterations equal to N.
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