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Abstract. We study the generalized minimal residual (GMRES)
method for solving tridiagonal block Toeplitz linear system Ax = b with
m × m diagonal blocks. For m = 1, these systems becomes tridiago-
nal Toeplitz linear systems, and for m > 1, A becomes an m-tridiagonal
Toeplitz matrix. Our first main goal is to find the exact expressions for the
GMRES residuals for b = (B1, 0, . . . , 0)T , b = (0, . . . , 0, BN )T , where B1

and BN are m-vectors. The upper and lower bounds for the GMRES resid-
uals were established to explain numerical behavior. The upper bounds for
the GMRES residuals on tridiagonal block Toeplitz linear systems has been
studied previously in [1]. Also, in this paper, we consider the normal tridi-
agonal block Toeplitz linear systems. The second main goal is to find the
lower bounds for the GMRES residuals for these systems.

1. Introduction

Iterative methods are used to solve large sparse systems of linear equations
Ax = b. The Generalized Minimal Residual (GMRES) method is such an
algorithm and is often used to solve a linear system

(1.1) Ax = b.

The GMRES method starts with an initial approximation x0, then computes
the initial residual r0 = b − Ax0 and a sequence of approximate solutions
x1, x2, . . ., so that the kth residual rk = b−Axk satisfies ([6])

(1.2) ‖rk‖2 = min
x∈x0+Kk(A,r0)

‖b−Ax‖2,
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where the Krylov subspace Kk(A, r0) is defined as

(1.3) Kk(A, r0) = span{r0, Ar0, ..., Ak−1r0},
and ‖.‖2 denotes the l2 norm.

Consider the tridiagonal block Toeplitz matrix A with Toeplitz structure
as the form

(1.4) A =




A1 A2

A3
. . .

. . .

. . .
. . . A2

A3 A1




N×N

,

where the blocks of A are m×m diagonal matrices, such as

(1.5) A1 =




λ 0
. . .

0 λ


, A2 =




µ 0
. . .

0 µ


, A3 =




ν 0
. . .

0 ν


,

with nonzero parameters λ, µ and ν. Also, let

(1.6) b =
(
B1, B2, . . . , BN

)T
,

and

Bl =
(
b(1,l), b(2,l), . . . , b(m,l)

)T
.

For m = 1, the matrix A becomes an N ×N tridiagonal Toeplitz matrix

(1.7) A =




λ µ

ν
. . .

. . .

. . .
. . . µ
ν λ




,

and form > 1,A becomes anm-tridiagonal Toeplitz matrixA(m) = (ai,j)
mN
i,j=1

as

(1.8) A(m) =




λ 0 . . . 0 µ 0 . . . 0

0 λ 0
... 0 µ

. . .
...

... 0
. . . 0

...
. . .

. . . 0

0
...

. . . λ
. . .

...
. . . µ

ν 0
...

. . .
. . .

. . .
... 0

0 ν
. . .

... 0
. . . 0

...
...

. . . . . . 0
... 0 λ 0

0 . . . 0 ν 0 . . . 0 λ




,
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where ai,i+m = µ, ai+m,i = ν for 1 ≤ i ≤ mN −m.
Tridiagonal block Toeplitz linear systems appear in a variety of applica-

tions in mathematics, scientific computing, and engineering, such as image
processing, numerical differential equations and integral equations, boundary
value problems, time series analysis, control theory, etc.

In this paper, we consider the GMRES method on the tridiagonal block
Toeplitz linear system Ax = b, where A is defined as (1.4). For case m = 1,
i.e, the tridiagonal Toeplitz linear systems, this problem has been studied
previously in [2–5] and the references therein. For m > 1, A becomes an
m-tridiagonal Toeplitz matrix, and we obtained the upper bounds for the
GMRES residuals on linear system Ax = b ([1, Theorem 2.5]). Also, in [1],
we showed that the GMRES method on mN × mN linear system Ax = b
computes the exact solution in at most N steps. This paper continues our
recent work [1], and the first main goal is to find the exact expressions for
the GMRES residuals on the tridiagonal block Toeplitz linear system Ax = b,
with special right hand side vector

(1.9) b =
(
B1, 0, . . . , 0

)T
, b =

(
0, . . . , 0, BN

)T
,

where B1 and BN are any m-vectors. In fact, we show that the exact ex-
pressions for the GMRES residuals for case m = 1 obtained by [5], are also
satisfied for the case m ≥ 1. The upper and lower bounds for the GMRES
residuals were established to explain numerical behavior. The second main
goal in this paper, is to find the lower bounds for the GMRES residuals when
solving the tridiagonal block Toeplitz linear system Ax = b, in case of normal
matrix A. We start in analogous way as in [1], and use Chebyshev polynomi-
als of the second kind instead of Chebyshev polynomials of the first kind in
[1], to achieve these goals.

Throughout this paper, we denote the n × n identity matrix by In, and
ej is its jth column. The superscript ·T denotes transpose of a matrix, and
the superscript ·∗ denotes conjugate-transpose of a matrix. For a vector u
and a matrix X , u(j) is jth entry of u, X(:,j) is jth column of X , and X(:,i:j)

consists of intersection of all rows and columns i to j, also diag(u) is the
diagonal matrix with (diag(u))(j,j) = u(j). The Kronecker product of the
matrices A and B is given by A⊗B = [A(i,j)B]. Finally, Πk denotes the set
of polynomials of degree at most k.

2. Basic concepts

In this section, we start in analogous way as in [1], and major difference
between this paper and [1], is in using Chebyshev polynomials of the second
kind instead of Chebyshev polynomials of the first kind.

Let the tridiagonal block Toeplitz matrix A be given as (1.4). The next
theorem shows that the matrix A is diagonalizable when µ 6= 0 and ν 6= 0,
and was proven in [1].
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Theorem 2.1. The coefficient matrix A defined as (1.4) can be block
diagonalized as

(2.1) A = X̃ΛX̃−1, X̃ = XN ⊗ Im, Λ = diag(Λ1, . . . ,ΛN),

where

(2.2) Λj = λjIm, λj = λ− 2
√
µν tj , tj = cos θj , θj =

jπ

N + 1
,

(2.3) XN = SZ, S = diag(1, ξ−1 . . . , ξ−N+1), ξ = −
√
µν

ν
,

(2.4) Z(:,j) =

√
2

N + 1
(sin jθ1, . . . , sin jθN )T .

It can be verified that ZTZ = IN , and ZT = Z. Set

(2.5) ω = −2√µν, τ =
λ

2
√
µν

.

By (2.2), we have

(2.6) λj = ω(tj − τ), 1 ≤ j ≤ N.

The next corollary was proven in [1].

Corollary 2.2. For linear system Ax = b, where mN ×mN matrix A

defined as (1.4), the GMRES method computes the exact solution in at most
N steps.

Hence, in this paper, we restrict k < N at all times, where k is the
GMRES iteration. From [1, eq. 25], kth GMRES residual rk satisfies

(2.7) ‖rk‖2 = min
u(1)=1

‖X̃ diag(X̃−1b)Vu‖2,

where

V =




VT
1

VT
2
...
VT
N


 ,

and Vj are (k + 1)×m Vandermonde matrices as the form

Vj =




1 1 . . . 1
λj λj . . . λj

...
...

. . .
...

λk
j λk

j . . . λk
j


 .

Different from [1], we use Chebyshev polynomials of the second kind instead
of Chebyshev polynomials of the first kind, to simplify (2.7).
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The Chebyshev polynomials of the second kind of degree n are defined by

(2.8) Um(t) =





sin((m+1) arccos t)
sin(arccos t) for real t and |t| ≤ 1,

(t+
√
t2−1)m+1−(t−

√
t2−1)m+1

2
√
t2−1

otherwise.

Also, we define the nth Translated Chebyshev polynomial in z of degree n as

(2.9) Un(z;ω, τ)
def
= Un(

z

ω
+ τ) = annz

n + an−1nz
n−1 + ...+ a1nz + a0n,

where ajn are functions of ω and τ . Let

(2.10) Rn =




a00 a01 . . . a0n−1

a11 . . . a1n−1

. . .
...

an−1n−1


 ,

where jth column of Rn contains the coefficients of Uj−1(z;ω, τ).
It can be verified that (see also [1, eq. 39])

(2.11) ‖rk‖2 = min
u(1)=1

‖X̃ diag(X̃−1b)Υ(:,1:k+1)R
−1
k+1u‖2,

where

Υ =




Υ1

Υ2

...
ΥN


 , Υi =




U0(ti) U1(ti) . . . UN−1(ti)
...

...
. . .

...
U0(ti) U1(ti) . . . UN−1(ti)




m×N

.

Let the right-hand side vector b is defined as (1.6). Thus

(2.12) X̃ diag(X̃−1b)Υ =

N∑

l=1

ξl−1
(
SZ diag(Z(:,l))⊗ diag(Bl)

)
Υ.

We now turn to simplify (2.12). Let P be a permutation matrix as

P =




P1

P2

...
Pm


 , Pi =




eTi
eTm+i
...

eT(N−1)m+i


 ,

hence

(2.13) P
(
SZ diag(Z(:,l))⊗ diag(Bl)

)
Υ =




H1

H2

...
Hm


 ,



442 R. DOOSTAKI

where

(Hi)(p,q) =
2b(i,l)

N + 1

N∑

k=1

ξ−p+1 sin kθp sin lθkUq−1(tk), p, q = 1, . . . , N.

It can be verified that

(2.14) Hi = b(i,l)SZ diag(Z(:,l))U,

where

U =




U0(t1) U1(t1) . . . UN−1(t1)
U0(t2) U1(t2) . . . UN−1(t2)

...
...

. . .
...

U0(tN ) U1(tN ) . . . UN−1(tN )




N×N

.

Thus, the equations (2.13) and (2.14) yield

(2.15)

P
(
SZ diag(Z(:,l))⊗ diag(Bl)

)
Υ(:,1:k+1)

=




b(1,l)SZ diag(Z(:,l))U(:,1:k+1)

b(2,l)SZ diag(Z(:,l))U(:,1:k+1)

...
b(m,l)SZ diag(Z(:,l))U(:,1:k+1)


 ,

and from (2.12) and (2.15) we can write

(2.16)

PX̃ diag(X̃−1b)Υ(:,1:k+1)

=

N∑

l=1

ξl−1




b(1,l)SZ diag(Z(:,l))U(:,1:k+1)

b(2,l)SZ diag(Z(:,l))U(:,1:k+1)

...
b(m,l)SZ diag(Z(:,l))U(:,1:k+1)


 .

Moreover, the structure of Chebyshev polynomials of the second kind yields

(2.17) Z diag(Z(:,l))U = ZDlZ
T ,

where

Dl =




sin(lθ1)
sin(θ1)

sin(lθ2)
sin(θ2)

. . .
sin(lθN )
sin(θN )




.

Hence, by combining (2.16) and (2.17), we have

(2.18) PX̃ diag(X̃−1b)Υ(:,1:k+1) =

N∑

l=1

ξl−1




b(1,l)S(ZDlZ
T )(:,1:k+1)

b(2,l)S(ZDlZ
T )(:,1:k+1)

...
b(m,l)S(ZDlZ

T )(:,1:k+1)


 .



GMRES ON TRIDIAGONAL BLOCK TOEPLITZ LINEAR SYSTEMS 443

3. The exact expression for the GMRES residuals

The next theorem gives the exact expression for the GMRES residuals
when solving the tridiagonal block Toeplitz linear systems Ax = b, where
A and b are defined as (1.4) and (1.9), respectively, and it was proven in
[5, Theorem 2.1] only for m = 1. But in this paper, we show that this
theorem is established for general case m ≥ 1.

Theorem 3.1. Consider the tridiagonal block Toeplitz linear system
Ax = b, where mN×mN matrix A is defined as (1.4). Then, for 1 ≤ k < N ,
the kth GMRES residual rk satisfies

(3.1) ‖rk‖2 = ‖b‖2




k∑

j=0

|ξ|2j |Uj(τ)|2



−1/2

, for b = (B1, 0, . . . , 0)
T ,

(3.2) ‖rk‖2 = ‖b‖2




k∑

j=0

|ξ−1|2j |Uj(τ)|2


−1/2

, for b = (0, . . . , 0, BN)T ,

where B1 and BN are m-vectors, and Uj is the jth Chebyshev polynomial of
the second kind.

Proof. Let b = (B1, 0, . . . , 0)
T and Bl = (b(1,l), b(2,l), . . . , b(m,l)). Equa-

tion (2.18) yields

PX̃ diag(X̃−1b)Υ(:,1:k+1)R
−1
k+1 =




b(1,1)Sk+1R
−1
k+1

b(2,1)Sk+1R
−1
k+1

...
b(m,1)Sk+1R

−1
k+1


 ,

where Sk+1 = S(:,1,k+1). Then by (2.11), we have

(3.3)

‖rk‖2 = min
u(1)=1

‖PX̃ diag(X̃−1b)Υ(:,1:k+1)R
−1
k+1u‖2

= ‖B1‖2 min
u(1)=1

‖Sk+1R
−1
k+1u‖2.

From [4, Lemma 3.1]

(3.4) min
u(1)=1

‖Sk+1R
−1
k+1u‖2 =




k∑

j=0

|ξ|2j |Uj(τ)|2


−1/2

.

Thus for b = (B1, 0, . . . , 0)
T , equations (3.3) and (3.4) yield

‖rk‖2 = ‖B1‖2




k∑

j=0

|ξ|2j |Uj(τ)|2


−1/2

.
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From [4, Sect. 2.2], any result for the GMRES residuals for Ax = b leads to

one for AT y = ΠT b after performing the following substitutions

(3.5) µ←− ν, ν ←− µ, ξ ←− ξ−1, b←− ΠT b,

where Π = (emN , . . . , e2, e1). Hence for b = (0, . . . , 0, BN)T , we can write

‖rk‖2 = ‖BN‖2




k∑

j=0

|ξ−1|2j |Uj(τ)|2



−1/2

.

The next theorem gives the asymptotic speed of ‖rk‖2 among all possible
r0 for the GMRES residuals on solving the tridiagonal block Toeplitz linear
systems Ax = b, where A and b are defined as (1.4) and (1.9), respectively.

Theorem 3.2. Under the conditions of the Theorem 3.1, the asymptotic
speed of ‖rk‖2 is

(3.6)
lim

k−→∞
inf
N>k

[
sup
r0

‖rk‖2
‖r0‖2

]1/k
= lim

k−→∞
sup
N>k

[
sup
r0

‖rk‖2
‖r0‖2

]1/k

= min{(|ξ|ρ)−1, 1},
for r0 = (B1, 0, . . . , 0)

T . Also, for r0 = (0, . . . , 0, BN)T , the asymptotic speed
is

(3.7)
lim

k−→∞
inf
N>k

[
sup
r0

‖rk‖2
‖r0‖2

]1/k
= lim

k−→∞
sup
N>k

[
sup
r0

‖rk‖2
‖r0‖2

]1/k

= min{(|ξ|−1ρ)−1, 1},

where ρ = max{|τ +
√
t2 − 1|, |τ −

√
t2 − 1|}.

Proof. From Theorem 3.1, we have

(3.8)
‖rk‖2
‖r0‖2

=




k∑

j=0

|ξ|2j |Uj(τ)|2


−1/2

, for r0 = (B1, 0, . . . , 0)
T ,

and

(3.9)
‖rk‖2
‖r0‖2

=




k∑

j=0

|ξ−1|2j |Uj(τ)|2



−1/2

, for r0 = (0, . . . , 0, BN )T .

For m = 1, equations (3.6) and (3.7) was proven for the worst asymptotic
speed of ‖rk‖2 in [5, Theorem 2.2]. Also, the expressions for ‖rk‖2/‖r0‖2
in equations (3.8) and (3.9), are equal to the expressions for ‖rk‖2 in [5,
Theorem 2.2]. Thus, equations (3.6) and (3.7) are established for ‖rk‖2/‖r0‖2,
and this completes the proof.
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4. GMRES on normal tridiagonal block Toeplitz linear systems

In this section, let A be normal. In fact |µ| = |ν| is a sufficient and
necessary condition for A to be normal. The upper bounds for the GMRES
residuals on tridiagonal block Toeplitz linear systems has been studied previ-
ously in [1]. In the next Theorem, we obtain the lower bounds for the GMRES
residuals on linear system Ax = b.

Theorem 4.1. Let A be the tridiagonal block Toeplitz matrix as in (1.4).
Also, let A be normal, then the kth GMRES residual rk satisfies for 1 ≤ k < N

(4.1) ‖rk‖2 ≥ min
i
|D(i)|




k∑

j=0

|Uj(τ)|2


−1/2

,

where D = (ZS−1 ⊗ Im)b.

Proof. To prove the theorem, we first let rk and r̃k be the kth GMRES
residuals for normal tridiagonal block Toeplitz linear systems Ax = b and

Ax = b̃, respectively. Because A is normal, then |ξ| = 1 and

(4.2) (XN ⊗ Im)(XN ⊗ Im)∗ = (XN ⊗ Im)∗(XN ⊗ Im) = ImN ,

i.e., (XN ⊗ Im) is unitary matrix. Hence ‖(XN ⊗ Im)‖2 = 1. Thus equation
(2.7) yields

(4.3)

‖r̃k‖2 = min
u(1)=1

‖ diag((XN ⊗ Im)−1b̃)Vu‖2,

= min
u(1)=1

‖ diag((XN ⊗ Im)−1b̃)

[
diag((XN ⊗ Im)−1b)

]−1 [
diag((XN ⊗ Im)−1b)

]
Vu‖2.

Thus, we can write

(4.4) ‖r̃k‖2 ≤ ‖ diag((XN ⊗ Im)−1b̃)‖2 ‖
[
diag((XN ⊗ Im)−1b)

]−1 ‖2 ‖rk‖2.

Set b̃ = e1, then by Theorem 3.1, we have

(4.5) ‖r̃k‖2 =




k∑

j=0

|Uj(τ)|2



−1/2

.

Also, it can be verified that

(4.6)
‖ diag((XN ⊗ Im)−1b̃)‖2 =

√
2

N + 1
max(sin θi), i = 1, . . . , N,

≤ 1.
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Thus, equations (4.4), (4.5) and (4.6) yield

(4.7) ‖rk‖2 ≥ σmin

(
diag((XN ⊗ Im)−1b)

)



k∑

j=0

|Uj(τ)|2



−1/2

,

and this complete the proof.

4.1. Numerical Examples. We give numerical examples which show the
lower bounds by Theorem 4.1. All the tests are performed by MATLAB 7.8.
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(a) N = 50, m = 2, λ = 2, µ = 0.51,
ν = −0.51
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(b) N = 100, m = 5, λ = 4, µ = 3,
ν = −3
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(c) N = 50,m = 2,λ = i,µ = 0.25i,
ν = −0.25i
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(d) N = 100, m = 10, λ = 1, µ = 2i,
ν = −2

Figure 1. GMRES residuals, and their lower bounds by
Theorem 4.1 for Example 4.2.
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Example 4.2. Consider the tridiagonal block Toeplitz linear system
A=b, where

A =




A1 A2

A3
. . .

. . .

. . .
. . . A2

A3 A1




n×n

, A1 = λIm, A2 = µIm, A3 = νIm,

and each of b’s entries being uniformly random in [−1, 1]. Figure 1 plots
the GMRES residuals on Ax = b and their lower bounds (dashed lines) by
Theorem 4.1 for given parameters λ, µ and ν. Also i is the imaginary unit. As
mentioned in [1, Cor. 2.3], the GMRES method on mN ×mN linear system
Ax = b, computes the exaxt solution in at most N steps. For this reason, in
each of the subfigures, we set maximum of the iterations equal to N .
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