CCA-407

538.24:546.161-2:546.39:546.831 Preliminary Note

Preliminary NMR Data of Ammonium Heptafluorozirconate

G. Lahajnar, M. Pintar, and J. Slivnik

Institute »Jožef Stefan«, Ljubljana, Yugoslavia

Received February 4, 1966

Some time ago, Pauling and Hampson¹ investigated the room temperature crystal structure of ammonium heptafluorozirconate and found that the substance contained the ion $(ZrF_7)^{3^-}$ and not $(ZrF_6)^{2^-}$ and F^- ions as suggested earlier.² However, they were not able to assign all the atoms to definite positions in the unit cell and had to assume some disorder in the orientation of the ZrF_7 complexes. In an attempt to provide evidence for molecular disorder in this crystal as well as to determine whether the structure is statically or dynamically disordered, we undertook a proton and fluorine magnetic resonance study of polycrystalline $(NH_4)_3ZrF_7$ over the temperature range 80^{0} — -300^{0} K.

The sample was prepared by adding $100^{0/0}$ excess ammonium fluoride (as a $30^{0/0}$ solution) to a solution of ZrO_2 in aqueous hydrofluoric acid, from which excess acid had been driven off by repeated dilution and heating.³ The composition of the sample was confirmed from its chemical analysis and X-ray powder diagrams.

Over the whole temperature range investigated the ¹⁹F magnetic resonance absorption spectra exhibit a single absorption peak with no fine structure. Its room temperature second moment of about 1.5 Gauss² indicates that the ZrF_7 ions rotate at this temperature. The room temperature structure should be thus dynamically rather than statically disordered. The occurrence of

Fig. 1. Temperature dependence of ¹⁹F NMR absorption second moment.

dynamical disorder and molecular reorientation at room temperature is directly confirmed by the temperature dependence of the ¹⁹F magnetic resonance spectra (Fig. 1.). Between 290° and 100° K a broad, but distinct line width transition is found. Also the NH4 group protons undergo an NMR line width transition in approximately the same temperature interval. The second moments of the proton spectra change from 3 Gauss² at room temperature to 33.5 Gauss² at 77º K. This observation suggests that the NH₄ groups reorient almost isotropically at room temperature. However, the fluorine and proton NMR data suggest dynamical disorder in the studied substance.

A more detailed report, including the Van Vleck sums for the Pauling model, and both fluorine and proton spin-lattice relaxation data, is being prepared.

REFERENCES

 G. C. Hampson, L. Pauling, J. Am. Chem. Soc. 60 (1938) 2702.
O. Hassel, H. Mark, Z. Physik, 27 (1924) 89.
H. M. Haendler, C. M. Wheeler, D. W. Robinson, J. Am. Chem. Soc. 74 (1952) 2352.

IZVLEČEK

Preliminarni NMR podatki o amonijevem heptafluorocirkonatu

Merjena je bila NMR absorpcija ¹⁹F in H jeder v (NH₄)₃ZrF₇ v temperaturnem območju med 80 in 300º K. Majhna vrednost drugega momenta obeh magnetnih jeder pri sobni temperaturi dokazuje, da ioni ZrF7 in NH4 skoraj izotropno rotirajo pri tej temperaturi. Meritev potrjuje dinamični strukturni model,

NUKLEARNI INSTITUT »JOŽEF STEFAN« LJUBLJANA

Sprejeto 4. februara 1966.