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In this paper, a novel prediction method  for low carbon steel is proposed based on an improved twin support vec-
tor regression algorithm. 300 qualified samples are collected by the sublance measurements from the real plant. The 
simulation results show that the prediction models can achieve a hit rate of 96 % for carbon content within the error 
bound of 0,005 % and 94 % for temperature within the error bound of 15 °C. The double hit rate reaches to 90 %. It 
indicates that the proposed method can provide a significant reference for real BOF applications, and also it can be 
extended to the prediction of other metallurgical industries.
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INTR ODUCTION

In recent years, some significant developments of ba-
sic oxygen furnace (BOF) prediction modeling have been 
achieved [1]-[4]. These achievements are based on the 
statistical and the intelligent methods. As an intelligent 
method, Jayadeva  proposed a twin support vector ma-
chine (TSVM) algorithm in 2007 for the classification 
applications [5]. In 2010, Peng proposed a twin support 
vector machine for regression (TSVR) [6], which can be 
used to establish the prediction model for industrial data. 
After that, some improved TSVR methods were pro-
posed [7]-[11], the advantages of the algorithm has been 
proved in these literatures. Therefore, it is a new ap-
proach to establish the BOF prediction model.

In this paper, a novel BOF prediction modeling 
method is firstly proposed based on an improved TSVR 
algorithm. The proposed model can provide a guiding 
significance for real BOF production. It is also helpful 
to other metallurgy preidction and control applications. 
The improvement of TSVR algorithm enhances the per-
formance and efficiency of the model. The contribu-
tions of this work are including: (1) It is the first attempt 
to predict the end-point information of BOF by using 
TSVR algorithm. (2) The proposed algorithm is an ex-
tension of TSVR algorithm, which is more flexible and 
accurate to establish a prediction model. (3) The pro-
posed modeling method is also appropriate for the pre-
diction models of other metallurgical applications, such 
as blast furnace iron making, continuous casting pro-
cess and so on.
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BACKG ROUND

Descr iption of BOF steelmaking 

According to the requirements of the ingredients, 
the scrap steel is loaded into the furnace and then 
poured into the molten iron. The right amount of slag-
ging materials should be added. Then, the oxygen 
spray gun is inserted into the furnace from the top of 
the furnace and blows the oxygen so that it can react 
with the hot metal directly and remove the impurities. 
After removing most of the sulfur and phosphorus, if 
the composition and temperature of the molten steel 
meet the requirements, then stop blowing, raise the 
spray gun, and prepare the tapping. When the steel is 
tapping, the furnace body is tilted, the molten steel is 
injected into the molten ladle from the tapping hole, 
and the deoxidizer is added to deoxidize and adjust the 
components. After the steel is qualified, it can be 
poured into steel castings or ingots, and the ingot can 
be rolled into various steels. 

Recently, the BOF steelmaking process with the 
sublance measurement is a popular technology in the 
steel plants. There are two periods for the oxygen blow-
ing process of BOF. In main-blow period, the calcula-
tions of the total oxygen volume and the weight of the 
auxiliary materials can be determined by the static BOF 
model. However, the relative calculations are not accu-
rate enough due to the compelx process of BOF. In end-
blow period, the sublance is adopted to measure the 
sample information. Because the physical and chemical 
reactions tend to be stable in this period. Hence, a BOF 
dynamic model can be used to improve the accuracy of 
the calculations. The end-point carbon content and tem-
perature can be reached into a satisfactory region. 
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Impro ved twin support vector regression 

algorithm

Based on the concept of TSVR, an improved TSVR 
algorithm is firstly proposed in this paper. Assume that 
there exists a sample with an n-dimensional vector, and 
the number of the samples is l, which can be expressed 
as (x1, y1),···, (xl, yl), and then let A = [x1,···, xl,]

T ∈ Rln  
be the input data set of training samples, y = [y1,···, yl]

T 

∈ Rl be the corresponding output, and e = [1,···, 1]T be 
the ones vector with appropriate dimensions. Assume  
K(.,.) denotes a nonlinear kernel function. Let K (A, AT) 
be the kernel matrix with order l. The quadratic pro-
gramming problems (QPPs) are defined as follows:

 (1)
and

 
(2)

where  c1, c2, c3, c4, ε1, ε2   0 are the regulating pa-
rameters, D is a diagonal matrix with the order of ll  
and determined by the following formular:

 
 (3)

where wi denotes the weight coefficient and σ∗ is the 
width of the Gaussion function. di denotes the distance 
from the training samples to the denoising samples. In 
the proposed algorithm, the matrix D can be expressed 
as D = diag (w1, w2, ···, wl).

The first term in the objective function of (1) or (2) 
is used to minimize the sums of squared Euclidean dis-
tances from the estimated function  f1 (x) or f2 (x) to the 
training points, and defined as follows:

  

(4)

where K (xT, AT) = (K (x, x1), (K (x, x2), ···, (K (x, xl)).
The matrix D gives different weights for each Euclid-

ean distance. The second term is the regularization term to 
avoid the over-fitting problem. The third term minimizes 
the slack vector ξ or ξ∗. To solve the problem in (1) and 
(2), the traditional TSVR adopts the Lagrange multiplier 
to obtain the dual problems of (1) and (2). In order to im-
prove the computatonal speed, the problems  can be 
solved in the original solution space instead of dual space 

by converting the constrained QPPs into a pair of un-
strained QPPs. By introducing the plus function, an equiv-
alent unconstrained QPPs can be derived as follows:

  (5)

and

  (6)

where  and 

From the terms  and  it is easy to see 

that the above problems are strongly convex. Therefore, 
there exists a global unique solution for the problem (5) 
or (6). However, the plus function in the optimization 
problem is not differentiable. Hence, a smooth function  
s (·) can be used to approximate the plus function, which 
is defined as

  (7)

Then, the problem (4) and (5) are modified as fol-
lows:

  (8)

and

  (9)

The solutions of problem (8) and (9) can be obtained 
by using Newton-Armijo method. Then, the final re-
gression function can be obtained by
 f (x) = f1 (x) + f2 (x) (10)

DYNAMIC PREDICTION MODEL

FOR BASIC OXYGEN FU RNANCE

In order to control the carbon content and tempera-
ture to meet the requirements of high quality steel, the 
dynamic prediction model is the foundation of the rela-
tive control model. By collecting the historical BOF 
samples, the prediction model for carbon content (C_
Model) and for temperature (T_Model) can be esta-
bilshed. Note that the numbers of the input variables of 
C_Model and T_Model are different. Because the cool-
ant additions only affect the end-point temperature. It 
means there are three input variables for C_Model and 
four input variables for T_Model. The output variable 
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and which of T_model is set to 15 °C. The performance 
of each model can be determined by the hit rate within 
its relative error bound. Normally, a hit rate of 90 % is a 
good result for real production. Therefore, 200 heats 
samples are taken as the train samples and 100 heats 
samples are taken as the test samples. The parameters of 
the prediction models should be regulated for each run 
of training 200 samples and testing 100 samples until the 
evaluation criteria is satisfied. The evaluation criteria are 
including root mean square error RMSE, mean absolute 
deviation MAE, error sum of squares/total sum of 
squares SSE / SST, regression sum of squares/total sum 
of squares SSR / SST and hit rate HR. The smaller values 
of RMSE and SSE / SST, and the larger values of SSR / 
SST and hit rate are preferred, it shows the model has a 
better performance. Note that the parameter selection 
can be determined by the following rules: SSR / SST > 
0,5 and HR >85 with the smallest SSE / SST. Especially, 
the double hit rate DHR  should be greater than 85 or 
higher. Based on 300 qualified samples, the parameters 
of the proposed models are specified and shown in Table 
1. c1, c2, c3, c4, ε1, ε2 are described before. The Gaussion 
function is chosen for the kernel function in this paper, 
and σ is the width of Gaussion function. σ∗ is the param-
eter in (3) to determine the matrix D.
Table 1 Specified parameters of models

Prediction 
Model c1 c2 c3 c4 ε1 ε2 σ σ*

C_Model 0,002 0,002 0,001 0,001 1 1 10 0,3
T_Model 0,003 0,003 0,002 0,002 0,1 0,1 1 0,25

The proposed models can be established by the 
specified parameters. In order to evaluate the perfor-
mance of the proposed models, the results are compared 
with traditional TSVR [6] and v-TSVR [7]. Figure 1 
shows the performance of the proposed C_model with 
50 heats samples, the solid line denotes the trend chang-
es of actual samples, and the dash line denotes the trend 
changes of predicted samples. It shows that these two 
sets of samples have a good fitness.The comparison re-
sults of the carbon content prediction are listed in Table 
2. It is easy to see that the proposed C_Model achieves 
a best hit rate (CHR) of 96 %. The results of RMSE, 
MAE and SSE / SST are all smaller than those of other 
two existing methods. Also, the result of SSR SST is the 
second best, and the CPU time is the fastest. It verifies 
that the proposed C_Model has the best fitting behav-
iour for carbon content prediction.

Figure 2 shows the performance of the proposed T_
model. The comparisons of the temperature prediction are 
also listed in Table 2. The T_Model can reach the best hit 
rate (THR) of 94 %. The best results of RMSE, MAE and 
SSE / SST are obtained. The execution speed of the pro-
posed T_Model is also the fastest. In addition, the double 
hit rate of the proposed method can reach to 90 %, which 
is the best result and satisfies the requirements of real ap-
plications. Therefore, the proposed T_Model is more ef-
ficient to provide a reference for the real applications. 

of the relative model is the end-point carbon content or 
the end-point temperature.

According to the prepared samples of BOF, the re-
gression function fC/T (x) can be given by:

 fC/T (x) = f1(x) + f2(x) (11)

where fC/T (x) denotes the estimation function of C_
model or T_model.

The process of C_model and T_model can be de-
scribed as follows:

Step 1: Initialize the parameters of the prediction 
model, and normalize the prepared training samples 
from its original range to the range [-1 1] by mapmin-
max function in Matlab.

Step 2: Denoise the end-point carbon content or the 
temperature  in the training samples by using the wave-
let transform algorithm[12]. Then, the denoised samples 
and can be obtained.

Step 3: By selecting an appropriate parameter σ∗ in 
(3), determine weighted matrix D.

Step 4: Select appropriate values of c1, c2, c3, c4, ε1, 
ε2.

Step 5: Solve the optimization problems in (8) and 
(9) by Newton-Armijo method and return the optimal 
vector μ1 and μ2.

Step 6: Substitute μ1 = [ω1b1]
T and μ1 = [ω2b2]

T  into 
(10) to obtain the function  fC/T (x) .

Step 7: Normalize the test samples and substitute 
them into (10) to obtain the estimated samples, then cal-
culate the relative criteria of the model, which will be 
described in details later.

Step 8: If the relative criteria are satisfactory, then 
the C_Model or T_Model is established. Otherwise, re-
turn to Steps from 4 to 7.

RESULTS AND DISCUSSION

In order to verify the effective ness of the proposed 
model, real heats samples were collected by the sublance 
from some steel plant in Anshan, P.R. China. The type is 
low carbon steel of 260 tons BOF. Firstly, the samples 
should be processed because there are a number of ab-
normal sampels, which means the unexpected informa-
tion should be deleted, for example, the steel informa-
tion exceeds the range of the actual value due to the 
wrong sampling operation. After the preprocessing of 
the samples, 300 qualified heats samples are obtained. 
Then, the relative analysis on samples is carried out. 
Generally, the end-point carbon content and temperature 
are mainly determined by the carbon content and the 
temperature measured by the sublance, the end-blow 
oxygen volume and the end-blow coolant additions. 
Therefore, other information in the sampels should be 
removed, including the heat number, the date of the 
steelmaking and so on. After that, the samples are ready 
to establish the BOF prediction models (C_Model and 
T_Model) described before. By considering the real pro-
duction, the error bound for C_model is set to 0.005 % 
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From the above analysis, it can be concluded that the 
proposed models are effective and feasible, and the hit 
rate can meet the requirements of the real productions 
for low carbon steel. For other kinds of steels, the pro-
posed model is still suitable for use. Firstly, the specific 
samples of the heats should be measured, and the analy-
sis of the influence factors on the specific steel should 
be carried out. Secondly, the criteria of the model should 
be selected. Then, the model parameters can be regu-
lated to achieve the best criteria. Finally, the BOF mod-
el for the specific kind of steels can be established to 
guide the real production in the plant. 

CONCL USIONS

In this paper, a BOF prediction method has been pro-
posed based on the improved TSVR algorithm. The sim-
ulation results have shown that the proposed models are 
effective and feasible. The prediction model within the 
error bound of 0,005 % in carbon content and 15 °C in 
temperature can achieve a hit rate of 96 % and 94 %, re-
spectively. In addition, the double hit rate of 90 % is the 
best result by comparing with other existing methods. 
Therefore, the proposed method can provide a significant 
reference for real BOF applications. For the further 
work,, an end-point control model could be established 
based on the proposed prediction models to realize the 
control of the end-point carbon content and temperature.
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Figure 1 Performance of proposed C_model Figure 2 Performance of proposed T_model

Table 2. Comparisons of three prediction methods

Model Criteria Proposed Method v-TSVR TSVR
C_model

(±0,005 %)
RMSE
MAE

SSE/SST
SSR/SST
CHR, %
Time, s

0,0026
0,0020
0,2189
0,9703

96
1,55

0,0030
0,0025
0,3026
1,2267

92
1,75

0,0032
0,0024
0,3363
0,9418

88
1,86

T_model
(±15 oC)

RMSE
MAE

SSE/SST
SSR/SST
THR, %
Time, s

8,7359
6,9493
0,3467
0,7257

94
1,52

9,3769
7,4821
0,3995
0,8093

89
1,79

13,2920
10,1886
0,8027
1,0800

82
1,87

DHR, % 90 82 74


