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CODES FROM ORBIT MATRICES OF STRONGLY
REGULAR GRAPHS

Dean Crnković, Marija Maksimović and Sanja Rukavina

Abstract. We show that under certain conditions submatrices of or-
bit matrices of strongly regular graphs span self-orthogonal codes. In order
to demonstrate this method of construction, we construct self-orthogonal
binary linear codes from orbit matrices of the triangular graphs T (2k) with
at most 120 vertices. Further, we obtain strongly regular graphs and block
designs from codewords of the constructed codes.

1. Introduction

We present a method for constructing self-orthogonal codes from subma-
trices of orbit matrices of strongly regular graphs. Applying this method we
construct self-orthogonal binary linear codes from orbit matrices of triangular
graphs T (2k), k = 3, 4, 5, 6, 7, 8. The method of constructing self-orthogonal
codes presented in this paper is a generalization of the method presented in
[8]. We use the constructed codes to obtain strongly regular graphs and block
designs. More precisely, the strongly regular graphs and block designs are
constructed from codewords of a given weight of the obtained binary linear
codes.

The paper is organized as follows: after a brief description of the termi-
nology and some background results in Section 2, in Section 3 we describe the
concept of orbit matrices of strongly regular graphs, based on results presented
in [2,8]. In Section 4 we present a method for construction of self-orthogonal
codes from orbit matrices of strongly regular graphs, and in Section 5 we ap-
ply this method to construct self-orthogonal codes from triangular graphs. In
Section 6 we construct strongly regular graphs and BIBDs from codewords of
the obtained codes.
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2. Background and terminology

We assume that the reader is familiar with basic notions from the theory
of finite groups. For basic definitions and properties of strongly regular graphs
we refer the reader to [3] or [16].

A graph is regular if all its vertices have the same valency; a simple regular
graph Γ = (V, E) is strongly regular with parameters (v, k, λ, µ) if it has |V| = v
vertices, valency k, and if any two adjacent vertices are together adjacent
to λ vertices, while any two nonadjacent vertices are together adjacent to
µ vertices. A strongly regular graph with parameters (v, k, λ, µ) is usually
denoted by SRG(v, k, λ, µ). An automorphism of a strongly regular graph Γ
is a permutation of vertices of Γ, such that every two vertices are adjacent if
and only if their images are adjacent.

The triangular graph T (n) is the line graph of the complete graph Kn.
Triangular graphs T (n) are strongly regular with parameters (v, k, λ, µ) =
(n(n− 1)/2, 2(n− 2), n− 2, 4).

An incidence structure D = (P,B, I), with point set P, block set B and
incidence I ⊆ P × B, is a 2-(v, b, r, k, λ) design, if |P| = v, |B| = b, every
block B ∈ B is incident with precisely k points, every 2 distinct points are
together incident with precisely λ blocks and every point is incident with
exactly r blocks. If b <

(
v
k

)
, then D is called a balanced incomplete block

design (BIBD).
A linear q-ary (n, k) code C over the finite field Fq of prime-power order

q is a k-dimensional subspace of the n-dimensional vector space over Fq. The
weight of a codeword is the number of its elements that are nonzero and
the distance between two codewords is the Hamming distance between them,
that is, the number of elements in which they differ. The minimum distance
between distinct codewords is denoted by d. The minimum distance of a linear
code is the minimum weight of its nonzero codewords. If a linear code C over
a field of order q is of length n, dimension k, and minimum distance d = d(C),
then we write [n, k, d]q to show this information. An [n, k] linear code C is
said to be a best known linear [n, k] code if C has the highest minimum weight
among all known [n, k] linear codes. An [n, k] linear code C is said to be an
optimal linear [n, k] code if the minimum weight of C achieves the theoretical
upper bound on the minimum weight of [n, k] linear codes, and near-optimal
if its minimum distance is at most 1 less than the largest possible value. The
dual code C⊥ is the orthogonal complement under the standard inner product
(· , ·), i.e. C⊥ = {v ∈ Fn|(v, c) = 0 for all c ∈ C}. If C ⊂ C⊥, then C is called
self-orthogonal.

The support of a nonzero codeword x = (x1, . . . , xn) is the set of indices
of its nonzero coordinates, i.e. supp(x) = {i | xi ̸= 0}. The support design of
a code of length n for a given nonzero weight w is the design with points the
n coordinate indices and blocks the supports of all codewords of weight w.
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3. Orbit matrices of strongly regular graphs

Orbit matrices of block designs have been frequently used for construction
of block designs with a presumed automorphism group, see e.g. [7] and [13].
In 2011 Behbahani and Lam introduced the concept of orbit matrices of SRGs
(see [2]). While Behbahani and Lam were mostly focused on orbit matrices of
strongly regular graphs admitting an automorphism of prime order, a general
definition of an orbit matrix of a strongly regular graph is given in [8].

Let Γ be a SRG(v, k, λ, µ) and A be its adjacency matrix. Suppose an
automorphism group G of Γ partitions the set of vertices V into b orbits
O1, . . . , Ob, with lengths n1, . . . , nb, respectively. The orbits divide A into
submatrices [Aij ], where Aij is the adjacency matrix of vertices in Oi versus
those in Oj . We define matrices C = [cij ] and R = [rij ], 1 ≤ i, j ≤ b, such
that

cij = column sum of Aij ,
rij = row sum of Aij .

The matrix R is related to C by

rijni = cijnj .

Since the adjacency matrix is symmetric, it follows that

R = CT .

The matrix R is the row orbit matrix of the graph Γ with respect to G, and
the matrix C is the column orbit matrix of the graph Γ with respect to G.
The matrices C = [cij ] and R = [rij ] satisfy the following conditions (see [8]):

b∑
s=1

ns

nj
ciscjs = δij(k − µ) + µni + (λ− µ)cij

and
b∑

s=1

ns

nj
rsirsj = δij(k − µ) + µni + (λ− µ)rji.

Let us assume that a group G acts as an automorphism group of a
SRG(v, k, λ, µ). In order to enable a construction of SRGs with presumed
automorphism group G, each matrix with the properties of a matrix R or
C will be called a row orbit matrix or a column orbit matrix, respectively,
for parameters (v, k, λ, µ) and a group G (see [2]). Therefore, the following
definition of orbit matrices of strongly regular graphs was introduced in [8].

Definition 3.1. A (b× b)-matrix R = [rij ] with entries satisfying condi-
tions:
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b∑
j=1

rij =
b∑

i=1

ni

nj
rij = k(3.1)

b∑
s=1

ns

nj
rsirsj = δij(k − µ) + µni + (λ− µ)rji(3.2)

where 0 ≤ rij ≤ nj, 0 ≤ rii ≤ ni − 1 and
∑b

i=1 ni = v, is called a row orbit
matrix for a strongly regular graph with parameters (v, k, λ, µ) and the orbit
lengths distribution (n1, . . . , nb).

Definition 3.2. A (b× b)-matrix C = [cij ] with entries satisfying condi-
tions:

b∑
i=1

cij =
b∑

j=1

nj

ni
cij = k(3.3)

b∑
s=1

ns

nj
ciscjs = δij(k − µ) + µni + (λ− µ)cij(3.4)

where 0 ≤ cij ≤ ni, 0 ≤ cii ≤ ni − 1 and
∑b

i=1 ni = v, is called a column
orbit matrix for a strongly regular graph with parameters (v, k, λ, µ) and the
orbit lengths distribution (n1, . . . , nb).

The submatrix of an orbit matrix corresponding to the fixed vertices is
called the fixed part of the orbit matrix, while the submatrix corresponding
to the orbits of lengths greater than 1 is called the nonfixed part of the orbit
matrix.

4. Self orthogonal codes from orbit matrices of strongly
regular graphs

In 2003 Harada and Tonchev introduced a method of constructing self-
orthogonal codes from orbit matrices of a design (see [12]). In [8] a method
for constructing self-orthogonal codes from orbit matrices of strongly regular
graphs admitting an automorphism group G which acts with all orbits of the
same length is described. These codes were defined over Fq, a finite field of
prime order q, such that q divides k, λ, µ. Here we generalize that result to a
construction of self-orthogonal codes from some submatrices of orbit matrices
of strongly regular graphs, allowing the automorphism group to act in orbits
that are not necessarily of the same length.

Theorem 4.1. Let Γ be a SRG(v, k, λ, µ) having an automorphism group
G which acts on the set of vertices of Γ with b orbits of lengths n1, . . . , nb,
respectively, with f fixed vertices, and the other b − f orbits of lengths
nf+1, . . . , nb divisible by p, where p is a prime dividing k, λ and µ. Let
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C be the column orbit matrix of the graph Γ with respect to G. If q is a prime
power such that q = pn, then the code spanned by the rows of the fixed part of
the matrix C is a self-orthogonal code of length f over Fq.

Proof. From the definition of an orbit matrix, for ith and jth rows of C
we have

(4.1)
b∑

s=1

ns

nj
cjscis = δij(k − µ) + µni + (λ− µ)cij .

Let us assume that ni = nj = 1. Then

b∑
s=1

ns

nj
cjscis =

f∑
s=1

ns

nj
cjscis +

b∑
s=f+1

ns

nj
cjscis =

f∑
s=1

cjscis +
b∑

s=f+1

nscjscis,

where p|ns for s = f + 1, . . . , b. It follows that:

(4.2)
b∑

s=1

ns

nj
cjscis −

b∑
s=f+1

nscjscis =
f∑

s=1
cjscis

From (4.1) and (4.2), it follows that
f∑

s=1
cjscis = δij(k − µ) + µni + (λ− µ)cij −

b∑
s=f+1

nscjscis

= δij(k − µ) + µ+ (λ− µ)cij −
b∑

s=f+1

nscjscis.

If i = j, then
f∑

s=1
cjscis = k + (λ− µ)cij −

b∑
s=f+1

nscjscis,

and if i ̸= j, then
f∑

s=1
cjscis = µ+ (λ− µ)cij −

b∑
s=f+1

nscjscis,

so the code spanned by the rows corresponding to the fixed part of the matrix
C is a self-orthogonal code of length f over Fq.

In the following theorem we give a similar result for a submatrix of the
nonfixed part of orbit matrices.
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Theorem 4.2. Let Γ be a SRG(v, k, λ, µ) having an automorphism group
G which acts on the set of vertices of Γ with b orbits of lengths n1, . . . , nb,
respectively, such that there are f fixed vertices, h orbits of length w, and
b− f − h orbits of lengths nf+h+1, . . . , nb. Further, let pw|ns if w < ns, and
pns|w if ns < w, for s = f + h+ 1, . . . , b, where p is a prime number dividing
k, λ, µ and w. Let C be the column orbit matrix of the graph Γ with respect
to G. If q is a prime power such that q = pn, then the code over Fq spanned
by the part of the matrix C (rows and columns) determined by the orbits of
length w is a self-orthogonal code of length h.

Proof. Let n1 = . . . = nf = 1 and nf+1 = . . . = nf+h = w. Further, let
us assume that ni = nj = w. Then

b∑
s=1

ns

nj
cjscis =

f∑
s=1

ns

nj
cjscis +

f+h∑
s=f+1

ns

nj
cjscis +

b∑
s=f+h+1

ns

nj
cjscis

=
f∑

s=1

1
w
cjscis +

f+h∑
s=f+1

cjscis +
b∑

s=f+h+1

ns

w
cjscis.

It follows that

(4.3)
b∑

s=1

ns

nj
cjscis −

1
w

f∑
s=1

cjscis −
b∑

s=f+h+1

ns

w
cjscis =

f+h∑
s=f+1

cjscis.

If s ∈ {1, 2, . . . , f}, then cjs, cis ∈ {0, w}, so

(4.4) cjscis ∈ {0, w2}.

From (4.1), (4.3) and (4.4) it follows that:
f+h∑

s=f+1

cjscis = δij(k − µ) + µni + (λ− µ)cij −
f − x
w
· w2 −

b∑
s=f+h+1

ns

w
cjscis

= δij(k − µ) + µni + (λ− µ)cij − w · (f − x)−
b∑

s=f+h+1

ns

w
cjscis,

where x = |{s ∈ {1, . . . , f} : cjscis = 0}|. If w < ns then p|ns

w . If ns < w

then p|ns

w cjscis, because cis = ris
ni

ns
= ris

w
ns

, cjs = rjs
nj

ns
= rjs

w
ns

, and p| w
ns

.
Hence

∑f+h
s=f+1 cjscis is congruent to zero modulo p.

In Theorem 4.3 we give another construction of self-orthogonal codes from
orbit matrices of strongly regular graphs.
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Theorem 4.3. Let Γ be a SRG(v, k, λ, µ) with an automorphism group
G which acts on the set of vertices of Γ with b orbits of lengths n1, . . . , nb,
respectively, and w = max{n1, . . . , nb}. Further, let p be a prime dividing k,
λ, µ and w, and let pns|w if ns ̸= w. Let C be the column orbit matrix of the
graph Γ with respect to G. If q is a prime power such that q = pn, then the
code over Fq spanned by the rows of C corresponding to the orbits of length
w is a self-orthogonal code of length b.

Proof. Let ni = nj = w. We have
b∑

s=1
cjscis =

∑
s,ns<w

cjscis +
∑

s,ns=w

cjscis.

Since cis = ris
ni

ns
= ris

w
ns

and cjs = rjs
nj

ns
= rjs

w
ns

, it follows that cjscis is
divisible by p if ns < w. Further, by Theorem 4.2,

∑
s,ns=w cjscis is divisible

by p. Hence, we conclude that
∑b

s=1 cjscis is congruent to zero modulo p.

Theorem 4.4. Let Γ be a SRG(v, k, λ, µ) with an automorphism group
G which acts on the set of vertices of Γ with b orbits of lengths n1, . . . , nb,
respectively, and w = min{n1, . . . , nb}. Further, let p be a prime dividing k,
λ, µ and w, and let pw|ns if ns ̸= w. Let R be the row orbit matrix of the
graph Γ with respect to G. If q is a prime power such that q = pn, then the
code over Fq spanned by the rows of R corresponding to the orbits of length w
is a self-orthogonal code of length b.

Proof. Let ni = nj = w. We have
b∑

s=1
rjsris =

∑
s,ns=w

rjsris +
∑

s,ns>w

rjsris

Since ris = cis
ns

w and rjs = cjs
ns

w , it follows that rjsris is divisible by p if
ns > w.

We have that∑
s,ns=w

rjsris =
∑

s,ns=w

cjs
ns

nj
cis
ns

ni
=

∑
s,ns=w

cjscis

and by Theorem 4.2,
∑

s,ns=w cjscis is divisible by p.
Hence, we conclude that

∑b
s=1 rjsris is congruent to zero modulo p.

5. Binary linear codes from orbit matrices of triangular
graphs on up to 120 vertices

Codes spanned by adjacency matrices of triangular graphs have been ex-
tensively studied, for example by Tonchev [16, p. 171], Haemers et al. [11,
Theorem 4.1] and Key et al. [14]. Results on codes from adjacency matrices
of triangular graphs can also be found in [1, 5, 6, 9].
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In this section we construct self-orthogonal codes from orbit matrices of
triangular graphs by applying theorems presented in Section 4. In order to
apply Theorems 4.1, 4.2, 4.3 and 4.4, we take into consideration triangular
graphs T (2k), having the parameter λ = 2k − 2 even. First we construct
orbit matrices for Z2 acting on triangular graphs T (2k), where 3 ≤ k ≤ 8.
For the construction of orbit matrices we were using programs written for
GAP([10]). Then we apply Theorem 4.1 and Theorem 4.2 to construct binary
self-orthogonal codes from the orbit matrices. After that we consider orbit
matrices with respect to Z4. The codes were analyzed using Magma [4].

5.1. Codes from orbit matrices with respect to Z2. In order to construct the
orbit matrices of involutions action on the triangular graphs T (n), for n ∈
{6, 8, 10, 12, 14, 16}, we have to determine the conjugacy classes of subgroups
of order two in the full automorphism groups of the triangular graphs. It
is known that the full automorphism group of the triangular graph T (n) is
isomorphic to Sn. The information on the subgroups of Sn of order two and
the number of their fixed points is given in Table 1. In Tables 2 and 3 we
present information on the obtained codes, omitting the trivial codes.

Table 1. Orbits of subgroups of Aut(T (n)), up to conjuga-
tion, isomorphic to Z2

T (n) # fixed points # subgroups T (n) # fixed points # subgroups
T (6) 3 2 T (14) 7 2
T (6) 7 1 T (14) 11 1
T (8) 4 2 T (14) 19 1
T (8) 8 1 T (14) 31 1
T (8) 16 1 T (14) 47 1
T (10) 5 2 T (14) 67 1
T (10) 9 1 T (16) 8 2
T (10) 17 1 T (16) 12 1
T (10) 29 1 T (16) 20 1
T (12) 6 2 T (16) 32 1
T (12) 10 1 T (16) 48 1
T (12) 18 1 T (16) 68 1
T (12) 30 1 T (16) 92 1
T (12) 46 1

Some of the constructed codes are optimal or near-optimal. Namely,
the codes with parameters [6,2,4], [7,2,4], [10,2,6], [12,2,8], [12,3,6], [16,4,8],
[17,4,8], [18,4,8] and [30,4,16] are optimal, and near-optimal codes are the
ones with parameters [8,2,4], [14,2,8], [19,4,8] and [29,6,12].

5.2. Codes from orbit matrices with respect to Z4. A group isomorphic to Z4
can act with orbits of lengths 1, 2 and 4. In Table 4 we give information on
orbit lengths distributions of subgroups of Aut(T (n)) isomorphic to Z4 and



CODES FROM ORBIT MATRICES OF SRGS 31

Table 2. Codes from the fixed parts of orbit matrices for
Z2 acting on T (2k), 3 ≤ k ≤ 8

T (2k) C |Aut(C)| Weight Distribution
3 ≤ k ≤ 8 [k + 4, 2, 4] 2· 4!(k-2)! [< 0, 1 >, < 4, 3 >]
4 ≤ k ≤ 8 [k + 12, 4, 8] 4·7!(k-3)! [< 0, 1 >, < 8, 15 >]
5 ≤ k ≤ 8 [k + 24, 6, 12] 8!(k-4)! [< 0, 1 >, < 12, 28 >, < 16, 35 >]
6 ≤ k ≤ 8 [k + 40, 8, 16] 10!(k-5)! [< 0, 1 >, < 16, 45 >, < 24, 210 >]
7 ≤ k ≤ 8 [k + 60, 10, 20] 12!(k-6)! [< 0, 1 >, < 20, 66 >, < 32, 495 >, < 36, 462 >]

k = 8 [k + 84, 12, 24] 14!(k-7)! [< 0, 1 >, < 24, 91 >, < 40, 1001 >, < 48, 3003 >]

Table 3. Codes from the nonfixed parts of orbit matrices
for Z2 acting on T (2k), 3 ≤ k ≤ 8

T (n) C |Aut(C)| WeightDistribution
T (6) [6,2,4] 243 [< 0, 1 >, < 4, 3 >]
T (8) [10,2,6] 2832 [< 0, 1 >, < 6, 2 >, < 8, 1 >]
T (8) [12,2,8] 21034 [< 0, 1 >, < 8, 3 >]
T (8) [12,3,6] 293 [< 0, 1 >, < 6, 4 >, < 8, 3 >]

T (10) [14,2,8] 2103452 [< 0, 1 >, < 8, 2 >, < 12, 1 >]
T (10) [18,3,8] 21334 [< 0, 1 >, < 8, 3 >, < 12, 4 >]
T (10) [20,4,8] 2133151 [< 0, 1 >, < 8, 5 >, < 12, 10 >]
T (12) [18,2,10] 216345272 [< 0, 1 >, < 10, 2 >, < 16, 1 >]
T (12) [24,3,10] 2163753 [< 0, 1 >, < 10, 3 >, < 16, 3 >, < 18, 1 >]
T (12) [28,4,10] 22135 [< 0, 1 >, < 10, 4 >, < 16, 7 >, < 18, 4 >]
T (12) [30,5,10] 2193251 [< 0, 1 >, < 10, 6 >, < 16, 15 >, < 18, 10 >]
T (12) [30,4,16] 221325171 [< 0, 1 >, < 16, 15 >]
T (14) [22,2,12] 218385472 [< 0, 1 >, < 12, 2 >, < 20, 1 >]
T (14) [30,3,12] 225375373 [< 0, 1 >, < 12, 3 >, < 20, 3 >, < 24, 1 >]
T (14) [36,4,12] 2253954 [< 0, 1 >, < 12, 4 >, < 20, 6 >, < 24, 5 >]
T (14) [40,5,12] 2283651 [< 0, 1 >, < 12, 5 >, < 20, 11 >, < 24, 15 >]
T (14) [42,6,12] 225325171 [< 0, 1 >, < 12, 7 >, < 20, 21 >, < 24, 35 >]
T (16) [26,2,14] 2223105472112 [< 0, 1 >, < 14, 2 >, < 24, 1 >]
T (16) [36,3,14] 2283135673 [< 0, 1 >, < 14, 3 >, < 24, 3 >, < 30, 1 >]
T (16) [44,4,14] 237395474 [< 0, 1 >, < 14, 4 >, < 24, 6 >, < 30, 4 >, < 32, 1 >]
T (16) [50,5,14] 23331156 [< 0, 1 >, < 14, 5 >, < 24, 10 >, < 30, 11 >, < 32, 5 >]
T (16) [54,6,14] 2373851 [< 0, 1 >, < 14, 6 >, < 24, 16 >, < 30, 26 >, < 32, 15 >]
T (16) [56,6,24] 235325171 [< 0, 1 >, < 24, 28 >, < 32, 35 >]
T (16) [56,7,14] 235325171 [< 0, 1 >, < 14, 8 >, < 24, 28 >, < 30, 56 >, < 32, 35 >]

their orbits on T (n), for n ∈ {6, 8, 10, 12, 14, 16}. Then we present information
on binary codes spanned by parts of orbit matrices, using results given in
Section 4. The codes obtained using Theorem 4.1 are presented in Table 5,
and the codes obtained applying Theorem 4.2 are given in Tables 6 and 7.

The codes with parameters [6,2,4], [7,2,4], [13,2,8], [15,4,8], [16,4,8],
[17,4,8], [18,4,8], [28,6,12] and [31,4,16] are optimal, and the codes with pa-
rameters [8,2,4], [11,2,6], [13,3,6], [14,2,8] and [29,6,12] are near-optimal.

The information on codes constructed from column orbit matrices for Z4
by applying Theorem 4.3 are given in Table 8. In that case binary codes
are spanned by the rows of orbit matrices that correspond to orbits of length
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Table 4. Orbits of subgroups of Aut(T (n)), up to conjuga-
tion, isomorphic to Z4

T (n) # subgroups # fixed # orbits of # orbits of
points length 2 length 4

T (6) 2 1 1 3
T (8) 1 0 2 6
T (8) 2 2 3 5
T (8) 1 6 1 5
T (10) 2 1 2 10
T (10) 2 3 7 7
T (10) 1 7 5 7
T (10) 1 15 1 7
T (12) 1 0 3 15
T (12) 2 2 4 14
T (12) 2 4 13 9
T (12) 1 6 2 14
T (12) 1 8 11 9
T (12) 1 16 7 9
T (12) 1 28 1 9
T (14) 2 1 3 21
T (14) 2 3 8 18
T (14) 2 5 21 11
T (14) 1 7 6 18
T (14) 1 9 19 11
T (14) 1 15 2 18
T (14) 1 17 15 11
T (14) 1 29 9 11
T (14) 1 45 1 11
T (16) 1 0 4 28
T (16) 2 2 5 27
T (16) 2 4 14 22
T (16) 2 6 31 13
T (16) 1 6 3 27
T (16) 1 8 12 22
T (16) 1 10 29 13
T (16) 1 16 8 22
T (16) 1 18 25 13
T (16) 1 28 2 22
T (16) 1 30 19 13
T (16) 1 46 11 13
T (16) 1 66 1 13

4. The codes obtained from parts of row orbit matrices for Z4 acting with-
out fixed vertices corresponding to the orbits of length 4, constructed using
Theorem 4.4, have dimension zero.
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Table 5. Codes from the fixed part of orbit matrices for Z4
acting on T (2k), 3 ≤ k ≤ 8

T (2k) C |Aut(C)| Weight Distribution
k = 4, 6, 8 [6,2,4] 2431 [< 0, 1 >, < 4, 3 >]
k = 5, 7 [7,2,4] 2431 [< 0, 1 >, < 4, 3 >]
k = 6, 8 [8,2,4] 2531 [< 0, 1 >, < 4, 3 >]
k = 7, 8 [k+2,2,4] 22k−932 [< 0, 1 >, < 4, 3 >]
k = 5, 7 [15,4,8] 26325171 [< 0, 1 >, < 8, 15 >]
k = 6, 8 [16,4,8] 26325171 [< 0, 1 >, < 8, 15 >]
k = 7, 8 [k+10,4,8] 273k−55171 [< 0, 1 >, < 8, 15 >]
k = 6, 8 [28,6,12] 27325171 [< 0, 1 >, < 12, 28 >, < 16, 35 >]
k = 7, 8 [k+22,6,12] 2k325171 [< 0, 1 >, < 12, 28 >, < 16, 35 >]
k = 7, 8 [k+38,8,16] 28345271 [< 0, 1 >, < 16, 45 >, < 24, 210 >]
k = 8 [66,10,20] 210355271111 [< 0, 1 >, < 20, 66 >, < 32, 495 >, < 36, 462 >]

Table 6. Codes from parts of orbit matrices for Z4 corre-
sponding to the orbits of length 2

T (n) C |Aut(C)| Weight Distribution
T (10) [7,2,4] 2431 [< 0, 1 >, < 4, 3 >]
T (12) [11,2,6] 2832 [< 0, 1 >, < 6, 2 >, < 8, 1 >]
T (12) [13,2,8] 21034 [< 0, 1 >, < 8, 3 >]
T (12) [13,3,6] 2931 [< 0, 1 >, < 6, 4 >, < 8, 3 >]
T (14) [8,2,4] 2531 [< 0, 1 >, < 4, 3 >]
T (14) [15,2,8] 2103452 [< 0, 1 >, < 8, 2 >, < 12, 1 >]
T (14) [19,3,8] 21334 [< 0, 1 >, < 8, 3 >, < 12, 4 >]
T (14) [21,4,8] 2133151 [< 0, 1 >, < 8, 5 >, < 12, 10 >]
T (16) [12,2,6] 2932 [< 0, 1 >, < 6, 2 >, < 8, 1 >]
T (16) [14,2,8] 21134 [< 0, 1 >, < 8, 3 >]
T (16) [14,3,6] 21031 [< 0, 1 >, < 6, 4 >, < 8, 3 >]
T (16) [19,2,10] 216345272 [< 0, 1 >, < 10, 2 >, < 16, 1 >]
T (16) [25,3,10] 2163753 [< 0, 1 >, < 10, 3 >, < 16, 3 >, < 18, 1 >]
T (16) [29,4,10] 22135 [< 0, 1 >, < 10, 4 >, < 16, 7 >, < 18, 4 >]
T (16) [31,4,16] 221325171 [< 0, 1 >, < 16, 15 >]
T (16) [31,5,10] 2193251 [< 0, 1 >, < 10, 6 >, < 16, 15 >, < 18, 10 >]

Table 7. Codes from parts of orbit matrices for Z4 corre-
sponding to the orbits of length 4

T (n) C |Aut(CCi
)| Weight Distribution

T (10) [10,2,4] 2731 [< 0, 1 >, < 4, 1 >, < 6, 2 >]
T (12) [14,2,8] 21134 [< 0, 1 >, < 8, 3 >]
T (12) [15,2,8] 21135 [< 0, 1 >, < 8, 3 >]
T (14) [18,2,10] 2133552 [< 0, 1 >, < 10, 2 >, < 12, 1 >]
T (14) [21,3,6] 21435 [< 0, 1 >, < 6, 1 >, < 10, 3 >, < 12, 3 >]
T (16) [22,2,12] 219355272 [< 0, 1 >, < 12, 2 >, < 16, 1 >]
T (16) [27,3,12] 22238 [< 0, 1 >, < 12, 4 >, < 16, 3 >]
T (16) [28,2,16] 225385373 [< 0, 1 >, < 16, 3 >]



34 D. CRNKOVIĆ, M. MAKSIMOVIĆ AND S. RUKAVINA

Table 8. Codes from orbit matrices for Z4, applying Theo-
rem 4.3

T (n) C |Aut(C)| WeightDistribution

T (10) [13,2,6] 293251 [< 0, 1 >, < 4, 1 >, < 6, 2 >]
T (12) [18,2,8] 2143651 [< 0, 1 >, < 8, 3 >]
T (12) [20,2,8] 217365171 [< 0, 1 >, < 8, 3 >]
T (12) [22,2,8] 218385271 [< 0, 1 >, < 8, 3 >]
T (14) [25,3,6] 217365171 [< 0, 1 >, < 6, 1 >, < 10, 3 >, < 12, 3 >]
T (14) [29,2,10] 2223105471111131 [< 0, 1 >, < 10, 2 >, < 12, 1 >]
T (14) [31,2,10] 2233115572111131 [< 0, 1 >, < 10, 2 >, < 12, 1 >]
T (14) [35,2,10] 2283135572111131171191 [< 0, 1 >, < 10, 2 >, < 12, 1 >]
T (16) [32,2,16] 229395474 [< 0, 1 >, < 16, 3 >]
T (16) [34,3,12] 2293115271 [< 0, 1 >, < 12, 4 >, < 16, 3 >]
T (16) [36,3,12] 2313125271111 [< 0, 1 >, < 12, 4 >, < 16, 3 >]
T (16) [40,2,12] 2363135674111131171191 [< 0, 1 >, < 12, 2 >, < 16, 1 >]
T (16) [42,2,12] 2373145675112131171191 [< 0, 1 >, < 12, 2 >, < 16, 1 >]
T (16) [46,2,12] 2413155875112132171191231 [< 0, 1 >, < 12, 2 >, < 16, 1 >]
T (16) [52,2,12] 2493195976112132171191231291311 [< 0, 1 >, < 12, 2 >, < 16, 1 >]

6. SRGs and BIBDs constructed from codes

In this section we use the codes constructed in Section 5 to obtain strongly
regular graphs and block designs. In order to construct strongly regular graphs
we consider a set of codewords of certain weight w and look at the pairwise
distances of the codewords. We identify the vertices of the graph by the
codewords of weight w and define adjacency with respect to the Hamming
distance of the codewords. In some cases the constructed graphs are strongly
regular. We observe the cases when the distances between two codewords take
two, three or four values.

If there are two possible values for a distance between two codewords,
denoted by d1 and d2, then we define two vertices x and y to be adjacent if
and only if d(x, y) = d1 (for the complementary graph we define that x and y
are adjacent if and only if d(x, y) = d2).

If there are three possible values for a distance between two codewords,
namely d1 and d2 and d3, we have more possibilities to define adjacency.
Firstly, we define two vertices x and y to be adjacent if and only if d(x, y) = d1,
Secondly, two vertices x and y are adjacent if and only if d(x, y) = d2, and
thirdly, two vertices x and y are adjacent if and only if d(x, y) = d3.

Let there be four values for a distance between two codewords, d1 and d2,
d3 and d4. Firstly, we define two vertices x and y to be adjacent if and only
if d(x, y) = d1, or d(x, y) = d2, secondly, two vertices x and y are adjacent
if and only if d(x, y) = d1 or d(x, y) = d3 and thirdly, two vertices x and y
are adjacent if and only if d(x, y) = d1 or d(x, y) = d4. Further, we define
adjacency taking into cosideration only one intersection (d1, d2, d3 or d4).

The construction is conducted using the GAP package Grape [15]. The
obtained strongly regular graphs are presented in Tables 9, 10, 11, 12, 13, 14
and 15.



CODES FROM ORBIT MATRICES OF SRGS 35

Table 9. SRGs from codes spanned by fixed parts of orbit
matrices for Z2, the case with two intersections of codewords

(v, k, λ, µ) |Aut(G)| From triangular graphs T (2k)
(28, 12, 6, 4) 8! 5 ≤ k ≤ 8
(35, 16, 6, 8) 8! 5 ≤ k ≤ 8
(45, 16, 8, 4) 10! 6 ≤ k ≤ 8
(66, 20, 10, 4) 12! 7 ≤ k ≤ 8
(91, 24, 12, 4) 14! k = 8

The constructed strongly regular graphs with parameters (28, 12, 6, 4),
(45, 16, 8, 4), (66, 20, 10, 4) and (91, 24, 12, 4) are the triangular graphs T (8),
T (10), T (12) and T (14), respectively. The constructed strongly regular graph
with parameters (35, 16, 6, 8) is the complement of the distance 2 graph in the
Johnson graph J(7, 4). The full automorphism group of that SRG(35, 16, 6, 8)
is isomorphic to S8.

Table 10. SRGs from codes spanned by fixed parts of orbit
matrices for Z2, the case with three intersections of code-
words

(v, k, λ, µ) |Aut(G)| From triangular graphs T (2k)
(495, 238, 109, 119) 22136527 · 11 · 17 7 ≤ k ≤ 8

The constructed SRG(495, 238, 109, 119) is the distance 2 or 4 graph in
the Johnson graph J(12, 4). Its full automorphism group is isomorphic to the
group O−

10(2) : Z2.

Table 11. SRGs from codes spanned by nonfixed parts of
orbit matrices for Z2, the case with two intersections of code-
words

(v, k, λ, µ) |Aut(G)| From triangular graphs T (2k)
(10, 3, 0, 1) 5! k = 5, 8
(15, 8, 4, 4) 6! 7 ≤ k ≤ 8
(21, 10, 5, 4) 7! k = 7
(28, 12, 6, 4) 8! k = 8
(35, 16, 6, 8) 8! k = 8

The strongly regular graph with parameters (10, 3, 0, 1) is the Petersen
graph, the unique SRG with these parameters. The constructed strongly
regular graphs with parameters (15, 8, 4, 4), (21, 10, 5, 4) and (28, 12, 6, 4) are
the triangular graphs T (6), T (7) and T (8), respectively. The SRG(35, 16, 6, 8)
is isomorphic to SRG with the same parameters constructed from the fixed
parts of orbit matrices.
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Table 12. SRGs from codes spanned by nonfixed parts of
orbit matrices for Z2, the case with three intersections of
codewords

(v, k, λ, µ) |Aut(G)| From triangular graphs T (2k)
(15, 8, 4, 4) 6! k = 7
(35, 16, 6, 8) 8! k = 7

The strongly regular graphs with parameters (15, 8, 4, 4) and (35, 16, 6, 8)
obtained from codes spanned by nonfixed parts of orbit matrices for Z2, in
the case with three possible intersections of codewords, are isomorphic to the
graphs with the same parameters obtained in the case with two intersections
of codewords.

In Tables 13, 14 and 15 we list SRGs constructed from codes spanned
by the fixed parts of orbit matrices for Z4. In cases when there are two
possible intersections of codewords the obtained SRGs are triangular graphs,
the complement of the distance 2 graph in the Johnson graph J(7, 4), or the
Petersen graph. Inspecting the case when there are three possible intersections
of codewords we obtained a SRG(495, 238, 109, 119) which is the distance 2
or 4 graph in the Johnson graph J(12, 4), i.e. the same graph as we obtained
from orbit matrices with respect to Z2.

Table 13. SRGs from codes spanned by fixed parts of orbit
matrices for Z4, the case with two intersections of codewords

(v, k, λ, µ) |Aut(G)| From triangular graphs T (2k)
(28, 12, 6, 4) 8! 6 ≤ k ≤ 8
(35, 16, 6, 8) 8! 6 ≤ k ≤ 8
(45, 16, 8, 4) 10! 7 ≤ k ≤ 8
(66, 20, 10, 4) 12! k = 8

Table 14. SRGs from codes spanned by fixed parts of orbit
matrices for Z4, the case with three intersections of code-
words

(v, k, λ, µ) |Aut(G)| From triangular graphs T (2k)
(495, 238, 109, 119) 22136527 · 11 · 17 k = 8

Table 15. SRGs from codes spanned by parts of orbit ma-
trices for Z4 corresponding to orbits of length 2, the case with
two intersections of codewords

(v, k, λ, µ) |Aut(G)| From triangular graphs T (2k)
(10, 3, 0, 1) 5! k = 7
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We also use the codes from Section 5 to construct BIBDs, taking into
consideration a set of codewords of certain weight. Identifying coordinate po-
sitions of the codes with the points, and codewords of a weight k with blocks,
we obtain an incidence structure having all blocks of size k. In other words,
we consider the support designs of the constructed codes. In some cases these
support designs are BIBDs. In Tables 16 and 17 we present information on
the obtained BIBDs. Note that we do not list symmetric designs constructed
from strongly regular graphs having λ = µ. The support designs obtained
from the codes of nonfixed parts of orbit matrices for Z2 acting on T (12)
are BIBDs with repeated blocks. In that case we also give parameters of the
corresponding simple designs.

Table 16. BIBDs from the codes of nonfixed parts of orbit
matrices for Z2 acting on T (12)

2-(v, b, r, k, λ) Simple design D |Aut(D)| Aut(D)
2-(7, 28, 16, 4, 8) 2-(7,7,4,4,2) 168 P SL(3, 2)
2-(15, 30, 16, 8, 8) 2-(15,15,8,8,4) 20160 A8
2-(10, 30, 18, 6, 10) 2-(10,15,9,6,5) 720 S6

Table 17. BIBDs from the codes of fixed parts of orbit ma-
trices for Z4 acting on T (10) and T (14)

2-(v, b, r, k, λ) |Aut(D)| Aut(D)
2-(15, 15, 8, 8, 4) 20160 A8
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Kodovi iz orbitnih matrica jako regularnih grafova
Dean Crnković, Marija Maksimović i Sanja Rukavina
Sažetak. U ovom članku pokazano je da uz odredene uvjete

podmatrice orbitnih matrica jako regularnih grafova razapinju
samoortogonalne kodove. U svrhu prikaza ove metode konstru-
irani su samoortogonalni binarni linearni kodovi iz orbitnih ma-
trica triangularnih grafova T (2k), k ≤ 8. Nadalje, pomoću riječi
konstruiranih kodova dobiveni su jako regularni grafovi i blokovni
dizajni.
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