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This paper is dedicated to modeling extreme TEC (Total Electron Content) 
values at the territory of Serbia. For the extreme TEC values, we consider the 
maximum values from the peak of the 11-year cycle of solar activity in the years 
2013, 2014 and 2015 for the days of the winter and summer solstice and autum-
nal and vernal equinox. The average TEC values between 10 and 12 UT (Uni-
versal Time) were treated. As the basic data for all processing, we used GNSS 
(Global Navigation Satellite System) observation obtained by three permanent 
stations located in the territory of Serbia. Those data, we accept as actual, i.e. as 
a “true TEC values”. The main objectives of this research were to examine the 
possibility to use two machine learning techniques: neural networks and support 
vector machine. In order to emphasize the quality of applied techniques, all re-
sults are adequately compared to the TEC values obtained by using Interna-
tional Reference Ionosphere global model. In addition, we separately analyzed 
the quality of techniques throughout temporal and spatial-temporal approach.
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1. Introduction

Global Navigation Satellite System (GNSS) techniques have been signifi-
cantly improved over the past two decades, however, several sources of errors 
still remain, which may limit the accuracy, practical operation and performances 
of precise positioning. The ionosphere is the major source of errors in the GNSS 
positioning (Hofmann-Wellenhof et al., 1992). In this region, ionizing radiation 
from the Sun causes the existence of electrons, in the quantities that influence 
radio-waves propagation (Kleusberg and Teunissen, 1996). The number of elec-
trons intercepted by the electro-magnetic waves traveling through ionosphere is 
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known as the Total Electron Content – TEC. It represents an integral of electron 
density per unit of volume, along the signal path between the satellite and the 
GNSS receiver. It is noted in TECU units, with 1 TECU being 1016 electrons per 
square meter of cylindrical cross-section.

The ionosphere is a very dynamic environment, and the electron density may 
significantly vary per minute at the given location, which leads to temporal and 
spatial variations in the Total Electron Content. The most significant changes 
occur due to the geomagnetic activity and the Earth’s revolution around the Sun 
in the period of the equinox and solstice (Wautelet and Warnant, 2014). Indica-
tors of these changes are primarily Solar flux (SF), Sunspot number (SSN), Index 
of geomagnetic activity (Ap index). Furthermore, the largest signal delay caused 
by the ionospheric influence occurs in the 10–14h local time interval (Radzi et 
al., 2013). The testing is conducted for the years 2013, 2014 and 2015 that are 
at the peak of the 11-year cycle of solar activity. In order to model and predict 
previously mentioned extreme TEC values, ML techniques were used.

Machine learning (ML) techniques are empiric modeling approaches that 
have the capability to extract information and reveal patterns by exploring un-
known relations between input and output variables (dependent and independent 
continuous and categorical variables). ML techniques itself include a great num-
ber of methods with different kinds of learning algorithms. However, two ML 
techniques most commonly used in order to model/predict TEC values are Neural 
Networks (NN) and Support Vector Machines (SVM) (Barrile et al., 2006; Huang 
et al., 2014; Habarulema and McKinnell, 2012; Okoh et al., 2016, Razin and 
Voosoghi, 2016). Therefore, the main objective of this research study is to examine 
the capability of those ML techniques to model and predict extreme TEC values. 
For that purpose, we separately examined and analyzed the capability of SVM 
and NN to model both temporal and spatial – temporal variation of TEC values.

In addition, we calculated the examined extreme TEC values using a global 
ionospheric model International Reference Ionosphere (IRI). It is the interna-
tional standard empirical model for the terrestrial ionosphere since 1999. The 
IRI model is one of the most frequently utilized models used for comparison of 
many different techniques and methods utilized for modeling TEC values, such 
as: Klobuchar (Klobuchar, 1986; Swamy et al., 2013), NN technique (Sur and 
Paul, 2013), Holt-Winter method (Elmunim et al., 2016). Therefore, we compared 
the differences between TEC values based on GNSS and the IRI model and dif-
ferences between TEC values based on GNSS and model outcomes obtained by 
ML techniques.

2. Methods

2.1. TEC based on GNSS observation
Ionosphere delay is nearly proportional to the Total Electron Content along 

the signal path and inversely proportional to the frequency squared. This disper-
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sion property of ionosphere provides for dual frequency GNSS receivers to com-
pensate for the errors of ionosphere delay and measure the TEC.

To compensate ionospheric delay, dual-frequency GNSS receivers use f1 
(1,575.42 MHz) and f2 (1,227.60 MHz) frequencies. Delay, Dt = t2 – t1 measure-
ment between f1 and f2 frequencies is used to calculate TEC along the signal path:
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where c is the speed of light in open space. Considering that using pseudo-
ranges provide absolute TEC while using phase differences improves the accu-
racy, GNSS data provides for the efficient method of estimating TEC values with 
greater spatial and temporal coverage (Davies and Hartmann, 1997; Igarashi et 
al., 2001). Having that the frequencies used by the GNSS system are sufficiently 
high, the signals are minimally influenced by ionospheric absorption and Earth’s 
magnetic field, both in the short and in the long-term changes in the ionosphere 
structure. Here, the values of slanted TEC were obtained as the sum of slanted 
TEC, hardware satellite delay bS and hardware receiver delay bR. Thus, vertical 
TEC (VTEC) may be expressed as follows:
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where STEC is slanted TEC, e is the elevation angle of satellites in degree, S(e) 
is the slant factor against the zenith angle z at the Ionospheric Pierce Point (IPP) 
and VTEC is vertical TEC in the IPP point (Fig. 1). The slant factor, S(e) (or the 
mapping function) is defined as (Langley et al., 2002):
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where Re is the average Earth’s radius in km, and hi is the (effective) height of 
ionosphere over the Earth’s surface.

2.2. TEC based on ML techniques
In this research, temporal and spatial temporal predictions of TEC are de-

rived using two ML techniques, SVM and NN. The prediction of both TEC mod-
els is engaged in the form of a supervised learning regression problem, where it 
is required to determine unknown functions that map attributes, such as Solar 
flux, Sunspot number, Index of geomagnetic activity or geographic coordinates, 
to particular TEC values based on the past data for the study area in the case of 
temporal prediction or based on the data from some other considering GNSS 
stations in the case of spatial temporal prediction of TEC. For that purpose, we 
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used well known SVM and Radial Basis Function (RBF) (Abe, 2010) as kernel 
function, and for NN we used Multi-layer Perceptron (MLP) (Rumelhart et al., 
1986), with softplus activation function, (Dugas et al., 2001).

The efficient application of most ML techniques including SVM and NN 
techniques requires selection of an optimal combination of function parameters. 
Therefore, in order to use these algorithms appropriately it was necessary to find 
the optimal combination of two parameters; γ of the RBF and penalty C for TEC 
SVM based models and the number of neurons in a hidden layer for TEC NN 
based models.

Furthermore, the standard procedure for ML base modelling require the 
adequate attribute selection (Kim et al., 2003). The main goal of attribute selec-
tion is to choose a subset of informative attributes by eliminating those with 
little or no information relevant to target values, which is in the case of this re-
search  attribute related to the TEC. For that purpose, we used Correlation-based 
Feature Subset (CFS) (Hall, 1999) selection method. The CFS method auto-
matically determines a subset of m relevant attributes (m < n, n is the number 
of all considering attributes), i.e. attribute that are highly correlated with the 
TEC but uncorrelated with each other.

2.3. TEC based on global ionospheric model

Because of the complicated nature of the ionosphere, there have been numer-
ous approaches to model the ionosphere. One of the models that are used to ob-

Figure 1. Trigonometric single-layer mapping function (Davies and Hartmann, 1997).
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tain TEC values is IRI model. It is a global standard empirical model of the 
ionosphere, which for a given location, time and date describes density, electron 
temperature and content, as well as the temperature and composition of the ions 
at an altitude of about 50 km to 2 000 km.

IRI is a project under the support of the Committee on Space Research (CO-
SPAR) and the International Union of Radio Science (URSI) (Bilitza, 2001). Since 
1978 (Rawer et al., 1978) when the model was implemented, there were few 
advanced versions. There is a huge number of reports where it is possible to find 
a detailed description of the model (Rawer et al., 1978; Rawer et al., 1981; Bil-
itza et al., 1990). Those reports contain the databases, algorithms, equations and 
applications. Their Fortran source codes are available on the IRI website (http://
irimodel.org/), together with a description of the model. IRI consists of a global 
model for D, E, F1 and F2 region of the ionosphere. A complete profile of the 
electron density is obtained by using mathematical functions and merging algo-
rithm for different regions.

Figure 2. Distribution of AGROS stations, SK, SS and SNP, within the territory of Serbia.
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Figure 3. VTEC value over the Serbia for day 22 September 2014.

3. Data
Data from three base stations have been taken over, in the form of 30-second 

RINEX (Receiver Independent Exchange Format) files. Examined stations 
Kanjiža (SK), Novi Pazar (SNP) and Šabac (SS), belong to the permanent GNSS 
network of the Republic of Serbia under the name AGROS (Active Geodetic 
Reference Base of Serbia) (Fig. 2). 

Collected data contain five-day observations from March, June, September 
and December of 2013, 2014 and 2015. The temporal series of TEC measure-
ments have been obtained using equation (2). GNSS TEC Analysis software, 
developed at Boston University, was used for processing (Seemala, 2014). Phase 
and code values on both frequencies have been used to eliminate clock and tro-
pospheric effect errors, in order to calculate relative values of slanted TEC 
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(Sardón and Zarraoa, 1997). Afterwards, absolute TEC values have been ob-
tained by removing hardware delays, i.e. differential code discrepancies between 
the satellite (produced by the Data Centre of the Bern University, Switzerland) 
and the receiver (obtained by minimizing the TEC value between 2:00 AM and 
6:00 AM – local time) (Seemala and Valladares, 2011). Trigonometric single-
layer mapping function (3) was used to convert TEC to VTEC at AGROS stations 
and at the IPP point at the altitude of 350 km. Elevation angle was limited to 
the value of 20 degrees to decrease a potential effect of multiple signal reflection 
during the tests. Data sampling was done for every 30 seconds.

Changes in TEC were investigated for all the days of interest during 2013, 
2014 and 2015. As it is evident on Fig. 3., the TEC reaches the maximum value 
in the period from 10 to 14 hours

Given that the ionosphere influence on GNSS observations is largest in the 
period from 10 to 14 h UT, the values of TEC are calculated and averaged for 
this time interval. Figure 4 shows TEC values for all three stations in the stud-
ied time interval. It can be concluded that TEC values for the same time intervals 
and for all stations vary in the 1 to 7 TECU range. Changes in TEC values dur-
ing different seasons are significant and vary from 10 to 55 TECU, where the 
lowest TEC variations are recorded in June and the highest in the March period 
for all considered years. 

Given that the SF, SSN and Ap index are factors that influence ionospheric 
variations, they are included into the model as attributes. Their values were 
downloaded from NASA’s Space Physics Data Facility (http://omniweb.gsfc.nasa.
gov/form /dx1.html), for all 12 periods of interest (Fig. 5).

Figure 4. Distribution of TEC values for examined time intervals based on observation from three 
stations, SK, SS and SNP.

http://omniweb.gsfc.nasa.gov/form%20/dx1.html
http://omniweb.gsfc.nasa.gov/form%20/dx1.html
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Figure 5. Distribution of SF, SSN and Ap index values for examined time intervals at year 2013, 
2014, and 2015.
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Beside TEC values obtained from GNSS and from ML techniques (SF, SSN 
and Ap index), TEC values for all examined time points and for all three stations 
obtained from the global IRI model were also used for this research. All necessary 
data for the global TEC calculation were provided by the official website of the 
global model IRI 2012: (http://omniweb.gsfc.nasa.gov/vitmo/iri2012_vitmo.html). 

4. Results and discussion

Two different research approaches are presented. The first one represents 
temporal prediction of the TEC values (Fig. 6a.) and the second one spatial – 
temporal prediction of the TEC (Fig. 6b.). The model for temporal prediction was 
created based on a data set of all three stations and time points from years 2013 
and 2014 and validated based on a data set of all three stations and time points 
from the year 2015. The model for spatial - temporal prediction was created based 
on data from stations SK, SS for all investigated time points and validated on data 
from station SNP.

In both mentioned approaches, we used Weka software (Hall et al., 2009) for 
implementation of CFS and ML techniques. The SOMreg algorithm was used to 
implement the SVM for regression algorithm and MLPreg algorithm to imple-
ment Neural Network.

Figure 6. a) Temporal prediction of the TEC and b) Spatial – temporal prediction of the TEC.
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4.1. Temporal prediction of TEC
In order to create and validate temporal ML TEC models, two independent 

data sets were created based on the values of TEC, Solar flux (SF), Sunspot 
number (SSN), Index of geomagnetic activity (Ap index), and geographic coordi-
nates (latitude-lat, longitude-long, height-h). Furthermore, in order to indicate 
the time intervals in which TEC value was obtained in regards to winter and 
summer solstice and autumnal and vernal equinox, the additional attribute was 
defined, labeled as Month. Each data set (labeled with t, where t can be equal 1 
or 2) contains TEC values for all three stations (SK, SNP and SS), represented as 
a row vector of attributes ait, i = 1, …, 7, including TEC values as the target at-
tribute. The training data set, labeled as TR1, contained the time points from years 
2013 and 2014 and the test data set, label TE1, contained the time points from 
year 2015, where the actual TEC (TEC based on GNSS observation – TECGNSS) 
at year 2015 was used for comparison with the predicted TEC values in the year 
2015. 

After the creation of data sets, attribute selection was performed on the 
training data set TR1. The CFS automatically determines a subset of four rele-
vant attributes, which are highly correlated with the TEC values and uncorre-
lated with each other: Month, SF, lat and long. All TEC models were therefore 
built and validated on training and test data sets that contain only selected at-
tributes, labelled as TE1CFS and TR1CFS, respectively. Using training data 
sets and 10 fold cross-validation, the optimal combination of parameters was 
found for both ML techniques.

Minimum, maximum, average, standard deviation (St.Dev.), root mean 
square error (RMSE) of differences of modeled and actual TEC values, as well 
as R squared metric (R2) are used as models quality control measures. The qual-
ity control measures for the best performing models based on SVM and NN and 
on global model IRI, are present in Tab. 1. Histograms of the differences for those 
models are presented in Fig. 7. The data in Fig. 7. are labelled as follows:

•   ∆SVM = TECSVM – TECGNSS, as differences between TEC obtained by  
TE1CFS/SVM model and actual TEC values,

•   ∆NN = TECNN – TECGNSS, as differences between TEC obtained by  
TE1CFS/NN model and actual TEC values,

•   ∆IRI = TECIRI – TECGNSS, as differences between TEC obtained by global 
IRI model and actual TEC values.

Considering the range of actual TEC, from 10 to 53 TECU, given the rela-
tively small time interval and small samples, and considering that the objective 
was to predict the extreme values of TEC, the obtained results indicate that in 
this research main goal is achieved (Tab. 1). The both techniques are more ca-
pable to “learn” and to model the extreme TEC values in the local area (Serbia), 
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comparing, for example, to the global IRI model. The obtained standard deviation 
and RMSE are equal or less than 4.1 TECU and mean values of differences be-
tween actual and modelled TEC values are 1.2 TECU (with a range from –7.7 
TECU to 9 TECU) and 0.0 TECU (with a range from –10.5 TECU to 8.3 TECU), 
for temporal TEC SVM and NN based model, respectively. The same conclusion 
can be given according to R2 values where TEC SVM and TEC NN are almost the 
same (0.94 and 0.95) while R2 obtained for the global model reach values of 0.86. 

When analyzing the distribution of actual and temporal modelled TEC dif-
ferences (Fig. 7), it can be noted that the results obtained from temporal TEC 
NN based model are closest to the normal distribution, which indicates that NN 
have slightly better performance in comparison with SVM. For differences, val-
ues of quality control measures gained by applying the IRI model are definitely 
biased. All differences have a negative sign with a minimum value of –18.6 
TECU, maximum of 0 TECU and with an average of –5.0 TECU. Their standard 
deviation is almost the same as the standard deviation of two other mentioned 

Table 1. Best performing temporal models by using TE1CFS data set.

Data sets / ML techniques
Quality controls measure

Min Max Mean St.Dev. RMSE R2

TE1CFS / SVM –7.7 9.0 1.2 3.8 4.0 0.94

TE1CFS / NN –10.5 8.3 0.0 4.1 4.1 0.95

Data sets / Model

TE1CFS / IRI2012 –18.6  –0.0  –5.0 4.0 6.4 0.86

Figure 7. Histograms of the differences between actual and modeled TEC values for best performing 
SVM and NN techniques and for global IRI model.
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sets, and that we can say the same for their range. On the other side, their RMSE 
is about 36% greater comparing to the RMSE of the two other sets. The men-
tioned characteristics of quality control measures are obvious for the histograms 
which are shown also in Fig. 7. Besides this, from the histogram of the IRI dif-
ferences, we can see that there is a gap in differences distributions (range be-
tween, approximately, 12 TECU and 17 TECU). 

Furthermore, due to the existence of maximum extreme values in 2015, the 
data from March 2015 were analyzed separately. The differences are presented 
in Tab. 2.

The maximum extreme values in March 2015 were gained at 22nd of March 
when the actual TEC values reached the values of about 33 TECU for each sta-
tion. Both ML techniques predicted those extreme values relatively well, with a 
maximum difference of –7.7 TECU. For the same stations on the same day, data 
gained by using the IRI model have significantly higher differences value of ap-
proximately about 18 TECU. This is also easy to note from the histograms shown 
in Fig. 6 (already mentioned lack of the IRI model data).

4.2. Spatial – temporal prediction of TEC
In order to create and validate spatial – temporal TEC ML models, addi-

tional two independent data sets were created. Each of two data sets (labelled 

Table 2. Quality control measures of models for each station on March 2015.

Date Station TECGNSS TECSVM TECNN TECIRI ∆SVM ∆NN ∆IRI

March 18, 
2015

SK 21.8 21.4 22.2 16.0 –0.4 0.4 –5.8
SS 21.6 23.8 21.9 15.7 2.2 0.3 –5.9

SNP 22.9 23.5 22.6 16.2 0.6 –0.3 –6.7

March 19, 
2015

SK 23.2 19.5 19.2 16.0 –3.6 –4.0 –7.2
SS 24.1 21.3 19.4 15.7 –2.8 –4.7 –8.4

SNP 25.9 21.3 19.9 16.2 –4.6 –6.0 –9.8

March 
20, 2015

SK 19.2 20.6 20.9 16.0 1.4 1.7 –3.2
SS 18.5 22.8 20.8 15.6 4.3 2.3 –2.9

SNP 19.7 22.6 21.5 16.1 2.9 1.7 –3.6

March 
21, 2015

SK 26.9 21.0 21.5 15.9 –6.0 –5.4 –11.0
SS 27.3 23.3 21.3 15.5 –4.0 –6.0 –11.8

SNP 27.1 23.0 22.0 16.1 –4.1 –5.1 –11.0

March 
22, 2015

SK 33.9 26.2 29.5 15.9 –7.7 –4.4 –18.0
SS 32.8 28.7 28.6 15.5 –4.2 –4.3 –17.3

SNP 34.7 28.4 29.6 16.1 –6.2 –5.0 –18.6
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with t, where t can be equal 1 or 2) is represented as a row vector of attributes 
ait, i = 1, …, 7, based on the values of TEC, SF, SSN, Ap index, lat, long, h, and 
Month and including TEC values as the target attribute. The first data set used 
for training, labelled as TR2, contained data from station SK, SNP for all investi-
gated time points. The second data set used for a validation, labelled as TE2, 
contained data from station SS. The actual TEC at each time point was used for 
comparison with modelled TEC values at station SS.

The attribute selection was performed on the training data set TR2 and the 
CFS automatically determines a subset of same four relevant attributes, Month, 
SF, lat and long, as in the case of previously derived selection on the training 
data set TR1. Two new training and test data sets that contain only four selected 
attributes were created, labelled as TR2CFS and TE2CFS, respectively. The optimal 
combination of parameters for training data set TR2CFS was found using 10 fold 
cross–validation and the best performing models are selected for both ML tech-
niques. In order to compare the successes of spatial–temporal best performing 
TEC ML models and the global IRI model, the same quality control measures 
are used as for temporal prediction TEC models. The derived values of models 
quality control measures are presented in Tab. 3. Additionally, the histograms 
of the differences are presented in Fig. 8. The data in the Fig. 8. are labelled as 
follows: 

•   ∆SVM = TECSVM – TECGNSS, as differences between TEC obtained by 
TE2CFS / SVM model and actual TEC values,

•   ∆NN = TECNN – TECGNSS, as differences between TEC obtained by  
TE2CFS / NN model and actual TEC values,

•   ∆IRI = TECIRI – TECGNSS, as differences between TEC obtained by global 
IRI model and actual TEC values.

The obtained standard deviation and RMSE are equal or less than 1.7 TECU 
and mean values of differences between actual and modelled TEC values are 
–0.4 TECU (with a range from –7.7 TECU to 2.2 TECU) and 0.2 TECU (with a 
range from –4.7 TECU to 3.7 TECU), for spatial-temporal TEC SVM and NN 
based model, respectively. Furthermore, considering that differences between 
actual TEC values per station vary from 1 to 10 TECU at the same time point, 
it can be concluded that the obtained results of spatial TEC are also satisfactory. 
Once again, the distribution of TEC differences (Fig. 8) indicates that NN have 
slightly better performance in comparison to SVM. Furthermore, it is evident 
that the results obtained from spatial TEC SVM based model contained grouped 
outliers. As in the case of solely temporal prediction, the results obtained by the 
IRI model displayed significantly larger values for the quality control measures 
compared to the same measures derived by SVM and NN techniques. The values 
of standard deviation and RMSE for IRI model are approximately ten times 
larger than values of other two derived models. The R2 values for TEC SVM and 
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TEC NN reach values of almost 1, while for the global model R2 is on the same 
level as in the case of temporal prediction of TEC. 

In addition, we further analyzed the results derived for the year 2014, consid-
ering the existence of the maximum extreme values in examined time points. The 
differences of the actual and modelled values of TEC are presented in Tab. 4.

Since those maximum extreme values occurred in March 2014, it can be 
expected that prediction of the IRI model derived maximum differences, ∆IRI 
values have ranged from –25.9 TECU to –35.9 TECU. Based on the results in 
Tab. 4., it is evident that the IRI model has significantly higher values of differ-
ences. The both ML techniques show that are capable to “learn” large variation 
in TEC values. It can be concluded that for the examined study area and used 
set of data, ML technique provides a solution with significantly less difference 
of spatial temporal prediction of TEC values compared to IRI model.

Comparing the results presented in Tab. 1 and Tab. 3, it can be concluded 
that both ML techniques define the trend of TEC values and its variations 

Table 3. Best performing spatial–temporal models by using TE1CFS data set.

Data sets / ML techniques
Quality controls measure

Min Max Mean St.Dev. RMSE R2

TE2CFS / SVM –7.7 2.2 –0.4 1.5 1.6 0.995

TE2CFS / NN –4.7 3.7 0.2 1.7 1.7 0.994

Data sets / Model

TE1CFS / IRI2012 –35.9 3.2 –6.8 8.3 10.7 0.864

Figure 8. Histograms of the differences between actual and modelled TEC values for best perform-
ing SVM and NN techniques and for global IRI model.



GEOFIZIKA, VOL. 34, NO. 2, 2017, 297–314 311

through space and time more efficiently than just through time. Those obtained 
results were expected due to the existence of larger variations of TEC values 
through time in comparison to the variations through space.

Conclusion

This research study examined the possibility of two most commonly used 
ML techniques, SVM and NN, in order to model extreme values of TEC. For that 
purpose, we used GNSS observation from three AGROS stations, distributed 
within the territory of Serbia. The largest variation of TEC follows the changes 
in solar activity (11–year cycle of Sun activity, winter and summer solstice and 
autumnal and vernal equinox). Therefore, the average values of TEC between 
10 and 12 UT, for five days period, for each season and for three years of interest 
(2013, 2014 and 2015) were calculated from GNSS observations from each station 
and used as samples for modelling. Two types of models were examined, the 
spatial–temporal and just temporal. Therefore, two pairs of appropriate inde-
pendent training and test data sets were created for each type of model. 

Table 4. Models quality control measures for station SNP at 2014.

Date TECGNSS TECSVM TECNN TECIRI ∆SVM ∆NN ∆IRI

March 18, 2014 49.0 48.1 48.1 16.8 0.6 –1.0 –32.2
March 19, 2014 42.7 41.0 43.0 16.8 1.2 0.3 –25.9
March 20, 2014 44.1 42.5 44.0 16.8 –0.1 –0.1 –27.4
March 21, 2014 52.6 51.0 50.6 16.7 0.4 –1.9 –35.9
March 22, 2014 43.2 42.2 41.5 16.7 0.1 –1.7 –26.5
June 18, 2014 21.5 21.9 21.7 12.3 0.5 0.2 –9.2
June 19, 2014 10.7 11.1 11.5 12.3 0.6 0.8 1.6
June 20, 2014 14.6 14.0 14.6 12.3 0.7 0.1 –2.3
September 18, 2014 22.3 20.8 22.6 14.0 –0.4 0.3 –8.3
September 19, 2014 22.1 23.0 22.4 14.1 0.3 0.3 –8.0
September 22, 2014 26.3 25.2 26.5 14.2 –2.4 0.2 –12.1
September 23, 2014 20.4 19.6 20.9 14.3 –0.3 0.6 –6.1
September 24, 2014 22.0 19.2 20.3 14.4 –1.6 –1.7 –7.5
December 22, 2014 31.2 29.9 31.5 16.1 –2.6 0.2 –15.1
December 23, 2014 23.7 23.0 24.2 16.0 0.4 0.5 –7.7

December 24, 2014 24.7 24.2 24.2 16.0 –0.6 –0.4 –8.6

December 25, 2014 19.1 18.5 21.7 16.0 –0.4 2.6 –3.1

December 26, 2014 29.2 28.2 26.3 16.0 –1.6 –2.9 –13.2
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The used factors (attributes) of TEC changes were Solar flux, Sunspot num-
ber, Index of geomagnetic activity, geographic coordinates of stations and one 
additional attribute (Month) generated in order to represent the time intervals. 
In order to remove uninformative attributes, CFS attribute selection method was 
performed and two new pairs of training and test data sets that contain only four 
attributes (Solar flux, Month, latitude and longitude) were created.

After performing attribute selection by CFS method and finding the appro-
priate and optimal combination of parameters for both ML techniques and types 
of models, the best performing models were analyzed. 

Furthermore, in order to examine the performance of each type of TEC mod-
el based on NN and SVM techniques we compared the differences between TEC 
values based on GNSS and the well–known global IRI model and the differences 
between TEC values based on GNSS and model outcomes obtained by ML tech-
niques. The obtained results for both types of models indicate that used ML 
techniques provided TEC values significantly closer to TEC vales obtained from 
GNSS observation, compared to TEC values derived from IRI model, especially 
from the spatial temporal model. Both ML techniques are capable to “learn” 
relationship between considering attributes and extreme TEC values and two 
derived TEC values with large variation through examining time intervals.

Generally, the differences between the results obtained based on SVM and 
NN almost identical, with slightly better values of quality control parameters 
obtained by NN. The values of quality control measures indicate that both tech-
niques are capable to adequately predict and spatially model extreme TEC val-
ues. Based on the results it can be concluded that both ML techniques define the 
trend of TEC values and its variations through space and time more efficiently 
than through time. Since that it can be expected that the model can be improved 
using a larger number of samples and time intervals, in future work our atten-
tion will be dedicated to extending the samples.
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SAŽETAK

Modeliranje ekstremnih vrijednosti ukupnog sadržaja elektrona 
na području Srbije

Miljana Todorović Drakul, Mileva Samardžić Petrović, Sanja Grekulović,  
Oleg Odalović i Dragan Blagojević

Ovaj rad je posvećen modeliranju ekstremnih TEC vrijednosti (Total Electron Content 
– ukupan sadržaj elektrona) na području Srbije. Pod ekstremnim TEC vrijednostima 
razmatrali smo one koje se javljaju u toku maksimuma Sunčeve aktivnosti koji se 
periodično ponavljaju svakih 11 godina i to za odabrane 2013., 2014. i 2015. godinu. U 
navedenim godinama razmatrane su srednje vrijednosti TEC-a tijekom ljetnje i jesenske 
ravnodnevnice i u dnevnom  razdoblju 10–12 UT (univerzalno vrijeme). Navedene sred-
nje vrijednosti TEC određivane su na osnovu GNSS opažanja (globalni navigacijski 
satelitski Sustavi) tri stanice trajno smještene na teritoriju Srbije. Podaci su u okviru ovih 
istraživanja tretirani kao ‘uvjetno točne’ vrijednosti. Osnovni cilj istraživanja bio je ispi-
tivanje mogućnosti korištenja dviju metoda strojnog učenja: neuronskih mreže i metode 
podržavajućih (potpornih) vektora. U cilju naglašavanja kvalitete primijenjenih tehnika 
svi rezultati su adekvatno uspoređivani sa TEC vrijednostima određenim Međunarodnim 
Referentnim Ionosfernim globalnim modelom (IRI). Pored navedenog posebno je anal-
izirana kvaliteta metoda kroz vremenski i prostorno-vremenski pristup. 

Ključne riječi: TEC, strojno učenje, ionosfera, GNSS, IRI
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