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Abstract 
 

Background: Since high-frequency data have become available, an unbiased 

volatility estimator, i.e. realized variance (RV) can be computed. Commonly used 

models for RV forecasting suffer from strong persistence with a high sensitivity to the 

returns distribution assumption and they use only daily returns. Objectives: The main 

objective is measurement and forecasting of RV. Two approaches are compared: 

Heterogeneous AutoRegressive model (HAR-RV) and Feedforward Neural Networks 

(FNNs). Even though HAR-RV-type models describe RV stylized facts very well, they 

ignore its nonlinear behaviour. Therefore, FNN-HAR-type models are developed. 

Methods/Approach: Firstly, an optimal sampling frequency with application to the 

DAX index is chosen. Secondly, in and out of sample predictions within HAR models 

and FNNs are compared using RMSE, AIC, the Wald test and the DM test. Weights of 

FNN-HAR-type models are estimated using the BP algorithm. Results: The optimal 

sampling frequency of RV is 10 minutes. Within HAR-type models, HAR-RV-J has 

better, but not significant, forecasting performances, while FNN-HAR-J and FNN-

LHAR-J have significantly better predictive accuracy in comparison to the FNN-HAR 

model. Conclusions: Compared to the traditional ones, FNN-HAR-type models are 

better in capturing nonlinear behaviour of RV. FNN-HAR-type models have better 

accuracy compared to traditional HAR-type models, but only on the sample data, 

whereas their out-of-sample predictive accuracy is approximately equal. 
 

Keywords: high-frequency data, realized variance, nonlinearity, long memory, jumps, 

leverage, feedforward neural networks, Heterogeneous AutoRegressive model 

JEL classification: C13, C14, C22, C53, G17 

Paper type: Research article 
 

Received: Jan 29, 2018 

Accepted: Apr 21, 2018 
 

Citation: Arnerić, J., Poklepović, T., Wen Teai, J. (2018), “Neural Network Approach in 

Forecasting Realized Variance Using High-Frequency Data”, Business Systems 

Research, Vol. 9, No. 2, pp. 18-34. 

DOI: 10.2478/bsrj-2018-0016 
 

Acknowledgments: This work has been fully supported by the Croatian Science 

Foundation under the project “Volatility measurement, modelling and forecasting” 

(5199). 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

https://core.ac.uk/display/212472271?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


  

 

 

19 

 

Business Systems Research | Vol. 9 No. 2 |2018 

Introduction 
Volatility is most important variable in asset pricing, portfolio management and risk 

estimation since it is an indicator of financial disturbances. Volatility is usually 

measured by variance of price returns, i.e. as a constant parameter. Nowadays it is 

accepted as a time-varying unobservable variable. Therefore, both researchers and 

practitioners are interested in modelling and forecasting volatility. It poses a 

challenge to both financial modellers and economists due to financial time series 

features that volatility models have to take into account: strong persistence, i.e. the 

autocorrelation of the squared and absolute returns; not normally distributed returns 

and slowly converging to the normal distribution as the time scale increases (Corsi, 

2009); heteroscedasticity; and volatility clustering. 

 There are five types of volatility estimators (Degiannakis et al., 2015): historical 

volatility measure (HV); implied volatility (IV); AutoRegressive Conditional 

Heteroscedasticity (ARCH) model; stochastic volatility (SV) model and realized 

volatility (RV) which uses intra-daily (high-frequency) data to estimate ex-post 

volatility using different sub-sampling methods. According to the theory of quadratic 

variation of semi-martingales, the integrated volatility (true but unknown parameter) 

can be consistently estimated by the realized variance (Barndorff-Nielsen et al., 

2002a, b). This is unrealistic, as prices are not continuously observed in practice and 

leads to the biased estimates of true volatility and to the market microstructure noise, 

which makes RV less accurate (Degiannakis et al., 2015).  

 Theoretically speaking, for a very short time interval there is an “infinite” number of 

intra-daily returns, but high-frequency data is not available for all stocks and markets. 

Only for most liquid markets, one can assume that the stock prices evolve nearly 

continuously during the trading day. In practice, RV estimator becomes biased with 

the increase of sampling frequency (Bandi et al., 2008; 2011). The bias is caused by 

non-synchronous trading, discrete price observations and bid-ask bounce. Market 

microstructure noise in high-frequency data exhibits serial correlation (Aït-Sahalia et 

al., 2005; Hansen et al., 2005; 2006). The broad opinion in practical implications is not 

to sample too often, i.e. sparsely sampling is recommended from 5 to 30 minutes. 

Therefore, it is important to choose appropriate sampling frequency, i.e. RV should 

be adjusted and sampling frequency should be selected based on a trade-off 

between accuracy and potential biases.  

 Moreover, RV shows few features (Corsi et al., 2012): long-range dependencies, 

i.e. hourly, daily, weekly and monthly RV displays significant autocorrelation at very 

long lags which is known as long-memory data generating process; leverage effects, 

i.e. returns are negatively correlated with volatility, where volatility bursts are 

associated with negative past returns; and jumps from previous period that have 

strong impact on future volatility (Zhang et al., 2005; Bandi et al., 2008). Additionally, 

empirical studies argue that daily RV estimates based on high-frequency data 

provide volatility forecasts that are superior to forecasts constructed from daily 

returns.  

 Based on daily log-returns, among the others, ARCH model proposed by Engle 

(1982) and its generalized version (GARCH), proposed by Bollerslev (1986), are widely 

used in empirical researches. The empirical results strongly suggest that simple 

models of RV outperform the popular GARCH model in out-of-sample forecasting 

(Andersen et al., 2003).  

 Corsi (2003) proposes an additive cascade model of different volatility 

components. Market participants with different time horizons, i.e. different trading 

frequencies, react to and cause different types of volatility components: short-term 

traders with daily or intra-daily trading (such as dealers and intra-day speculators); 
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the medium-term agents who rebalance their positions weekly; and the long-term 

investors with less frequent trading, i.e. one or more months. This idea led to a simple 

AR-type model in the RV which considers volatilities over different time horizons, i.e. 

Heterogeneous AutoRegressive model of Realized Volatility (HAR-RV). Although 

rather simple, this model is able to reproduce the dynamics and stylized facts of RV. 

HAR-RV model used on USD/HF data showed good out-of-sample forecasting 

performances which outperformed standard models. Therefore, HAR-RV is broadly 

applied (Andersen et al., 2007a; Corsi, 2003; 2009) due to its simplicity in estimation 

and prediction. Corsi (2009) uses three data sets of RVs (USD/CHF, S&P500 and T-

Bond futures) at the frequency of ten-ticks return. Results show that HAR-RV model 

has good properties in modelling the long-memory behaviour of volatility and good 

forecasting performance compared to the short-memory (AR-type) models at all-

time horizons. Recent empirical studies suggested the importance of jumps (J) in 

modelling RV (Andersen et al., 2007a; Corsi et al., 2012; Huang et al., 2013; Clements 

et al., 2013). Therefore, the extension of HAR-RV model, i.e. HAR-RV-J, is analysed. 

Andersen et al. (2007a) use a bipower variation measure and jump tests. The analysis 

uses a decade of five-minute high-frequency returns for the DM/USD spot market, 

S&P500 and 30-year US Treasury yield futures. They demonstrate that important gains 

are obtained in volatility forecast accuracy by incorporating jumps into HAR-RV 

model.  

 Junior and Pereira (2011) consider HAR-RV and Mixed Data Sampling (MIDAS-RV) 

model, using intra-daily data for the most liquid stocks on the São Paulo Stock 

Market. The sample includes 3 years of high-frequency data using 5-minute interval 

as the best among the others with lower frequency. Firstly, they estimate daily 

volatilities using different GARCH-type models and RV. Further, they augment the 

research by filtering the RV to correct for microstructure problems and estimate the 

two models for time horizons of 1, 5, 10, 15 and 20 days. They compare in- and out-

of-sample forecasts and conclude that better results are obtained with MIDAS-RV 

model for in-the-sample. For out-of-sample forecasts, there is no significant 

difference between models. They contributed to the literature of RV for emerging 

countries. Huang et al. (2013) combine HAR model with continuous volatility and 

jumps (HAR-CJ), and use the influence of momentum (M) to develop a new model 

called HAR-CJ-M. It is compared to two models, HAR-ARV and HAR-CJ. The 

application of these models to Chinese stock market index using 5 years of 5-minutes 

high-frequency data shows that continuous sample path variation, momentum 

effect and ARV (adjusted RV) have a good forecasting performance on the future 

ARV. Moreover, the HAR-CJ-M model shows better forecasting performance than 

the other two models.  

 Through the literature, HAR-RV model for RV forecasting is inevitable starting point 

since it outperforms the short-memory models and is comparable to long-memory 

models. However, some authors argue that inclusion of jump component into 

models for RV forecasting significantly improves the predictive accuracy. Therefore, 

the HAR-RV-J model with and without leverage (L) effects is also considered. 

 Furthermore, nonlinear dependence of financial time series is usually present. 

Moreover, empirical research found that dynamics of the volatility is also nonlinear 

(Corsi et al., 2012; Rosa et al., 2014), however, it is not addressed appropriately. 

Several authors showed that RVs are subject to structural breaks and regime 

switches driven by shocks (Corsi et al., 2012). To capture nonlinearity logarithms or 

the square root of RV are used in most research (Andersen, 2007a; Clements et al., 

2013). However, to account for nonlinearity, recently the attention is given to Neural 

Networks (NNs). NNs are a valuable method for modelling and forecasting time 
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series in general. Empirical studies show that NNs are appropriate in forecasting 

extremely volatile time series such as exchange rates (Zhang, 2003; Chaudhuri et al., 

2016), interest rates (Dedi et al., 2011; Aljinović et al., 2013), stocks (Zekić-Sušac et al., 

2002; Medeiros et al., 2006; Wang et al., 2016), inflation (Teräsvirta et al., 2005; Binner 

et al., 2006; Choudhary et al., 2008; Al-Maqaleh et al., 2016), GDP growth (Gonzales, 

2000; Teräsvirta et al., 2005; Aminian et al., 2006; Teräsvirta et al., 2008) and volatility 

in general (Bildirici et al., 2009; 2012; 2014; Bektipratiwi et al., 2011; Mantri et al., 2010; 

2012; Arnerić et al., 2014; 2016). Unlike traditional models NNs are assumption free, 

i.e. do not require any distributional assumption or functional form between inputs 

and outputs. However, they require an enormous amount of data, i.e. sufficiently 

enough data for training, validation and testing set. These requirements can easily 

be meet using high-frequency data. The Feedforward Neural Networks (FNNs), i.e. 

multilayer perceptrons, are most commonly used (Teräsvirta et al., 2008; Bildirici et al., 

2009; 2012; 2014; Mantri et al., 2010; 2012; Bektipratiwi et al., 2011). However, there 

are only few papers dealing with NNs in forecasting RV (Jurkovič, 2013; Rosa et al., 

2014; Baruník et al., 2016). Jurkovič (2013) use NNs to forecast daily RV of the 

EUR/USD, GBP/USD and USD/CHF based on 5-minute data. Their performance is 

benchmarked against HAR-RV and traditional ARIMA models. A simple 

enhancement to HAR model, named HARD, is introduced. NNs are used as 

nonparametric estimation technique where the whole set of NNs is estimated, from 

the simplest network (28 parameters) to more complex network (600 parameters). He 

demonstrates that NNs surpass other models in both disciplines, better fit in-the-

sample and better forecasting performance. Some of them do so statistically 

significant, as shown by Diebold–Mariano (DM) test. However, this type of NN 

modelling through “black-box” is neither suitable nor appropriate from an 

econometric perspective. Moreover, up to two hidden layers are used, which leads 

to overfitting. Therefore, only one hidden layer should be considered to benefit from 

the econometric interpretation of the estimated parameters. Rosa et al. (2014) 

suggest a hybrid fuzzy NN (eHFN) approach for RV forecasting with jumps, which is 

nonlinear and time varying. They simultaneously choose the number of neurons and 

weights. The performance of eHFN is compared to FNN, linear regression and 

evolving fuzzy models using data for S&P500, Nasdaq, FTSE, DAX, IBEX and IBOVESPA 

with 4 years of 1-minute quotations. The results show that eHFN describes time 

varying RV with jumps very well, while FNN performed slightly worse. However, it is not 

defined how the inputs and hidden neurons are selected. Baruník and Křehlík (2016) 

compare HAR, ARFIMA and HAR-FNN models for prediction of energy prices volatility. 

They use different RV estimators and conclude that high-frequency models 

outperform standard GARCH model. Moreover, FNN model gives less precise short-

term forecasts in crisis period, but it reduces overfitting. However, FNN 

prespecification is not done correctly since they use all 22 lags of volatility as inputs 

and either 7 or 15 hidden neurons. This paper, as most of the papers regarding NNs, 

uses them as nonparametric estimation methods, relying on trial-and-error technique 

in search of the appropriate architecture and neglecting the interpretability of 

parameters. Therefore, it is extremely important to understand the structure of RV to 

build a well-designed NN. Although there is no universal input variable selection in 

NN modelling, this paper relies on input variables that describe stylized facts of RV 

such as long memory, jumps and leverage effect. The overfitting problem due to the 

excessive hidden units is also considered and solved in this paper. 

 The main objective of this paper is RV forecasting using high-frequency data. 

Because of recent methodological developments, two approaches are compared: 

HAR-RV and FNN approach. Namely, a parsimonious FNN model as an extension to 
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HAR-RV model is developed that captures the nonlinear behaviour of RV along with 

other stylized facts. Few questions arise. What sampling frequency is low enough to 

avoid the bias when obtaining RV? Which number of hidden units is optimal in RV 

modelling? Which diagnostic statistics can be used in testing FNN and HAR-type 

models’ goodness of fit? Which model yields the most accurate RV forecasts: FNNs 

or HAR-type models? In that context, the present paper contributes to the existing 

literature in a several ways. Firstly, through the selection of the optimal sampling 

frequency to compute RV, which is free of market microstructure noise. Secondly, 

finding the appropriate NN model that gives the most accurate RV forecasts of DAX 

index, where the structure specification of NN models that is comparable to the 

HAR-RV-type models is given a priori. From this perspective, suggestions about NN 

settings in achieving most accurate RV prediction are given. These settings include 

selection of input variables and optimal sampling frequency, choosing the number 

of hidden neurons, type of optimization technique and specifying starting values of 

the initial weights. Thirdly, this paper contributes by comparing FNNs against HAR-

type models in context of in- and out-of-sample forecasting performance.  

 The remainder of the paper is organized as follows. Section 2 describes the data 

and methodology. Section 3 presents empirical findings. Discussion is given in Section 

4. Concluding remarks and directions for future research are provided in the last 

section. 

 

Methodology 
The dataset of intra-daily price observations of the DAX index for each trading day 

covers the period from 04.01.2010 to 16.09.2016. It is provided by Thomson Reuters 

Tick History service at high-frequency of 1-minute interval, containing in total 894647 

high-frequency data. The empirical analysis starts with the choice of the appropriate 

sampling frequency for computing the least biased RV, which should be selected 

based on a trade-off between accuracy and potential biases due to market 

microstructure frictions (Degiannakis et al., 2015). Namely, market friction is a source 

of additional noise in the volatility estimate. A 1-second sampling frequency would 

result with many gaps in transaction data, lots of zero prices and thus poor quality of 

intra-daily observations. Contrary, Andersen et al. (2003) prove that the 30-minute 

returns ensure stable volatility, but this leaves few daily observations at hand. In this 

paper the optimal sampling frequency is not chosen randomly, as in many 

researches, but based on minimization of the mean squared error (MSE) of RV 

estimator considering equidistant sampling interval (Zhang et al., 2005). Many studies 

propose a sampling frequency of 5 or 30 minutes. However, in this paper the prices 

observed every 10 minutes are the most appropriate, since as much information as 

possible is kept and they are free of market microstructure noise. Before further 

analysis, the stylized facts of DAX indexes’ RV based on 10-minute prices are 

illustrated in Figure 1. The differences between non-robust and robust RV are given in 

panels in the first row. Robust RV is obtained as a bipower variation (BPV) (Barndorff-

Nielsen et al., 2004). BPV is widely applied as an efficient estimator of integrated 

variance that is robust to jumps and microstructure noise. The difference between RV 

and BPV is used to perform ABD test for detecting significant jumps (Anderson at al., 

2007b). The significant jumps according to the ABD test (left bottom panel) are later 

used as input variable in extended HAR-RV model, i.e. HAR-RV-J model. 

Autocorrelation function (ACF) of RV computed on 10-minute returns of DAX index is 

given on the right bottom panel (thin line). ACF of RV proves the existence of long 

memory as it takes a long time to die out and decays very slowly. Lagged jumps also 

seem to have positive effect on RV as all cross-correlation coefficients are positive 
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even with lower values compared to autocorrelation coefficients (dotted line). 

Cross-correlation coefficients between lagged negative daily returns and RV 

(dashed line) suggest the existence of leverage effect, i.e. past negative returns are 

positively correlated with current RV and highly persistent. This confirms the existence 

of a heterogeneous structure that can be described by a cascade of 

heterogeneous volatility components aggregated at different time horizons, i.e. HAR-

RV model.  

 

Figure 1 

Stylized Facts of DAX Indexes’ RV 
 

 
Source: Authors’ work 

 

 After choosing the optimal sampling frequency, the sample is divided into two 

subsamples, i.e. from 04.01.2010 to 30.12.2015 and from 04.01.2016 to 16.09.2016. as in 

and out of sample periods respectively. The number of 10-minute intra-daily returns 

in-the-sample is 80698 which correspond to the first 1504 trading days. Out-of-sample 

data set (9640 intra-daily returns, i.e. the last 181 trading days) is kept for forecasting 

accuracy comparisons between HAR-type and FNN models. 

 The main advantage of the HAR-RV model is its simplicity and easiness to estimate 

by least squares as a special type of linear model. The standard HAR model 

proposed by Corsi (2009) is as a linear function of the lagged RV over daily, weekly 

and monthly horizons, since the agents with different time horizons perceive different 

types of volatility components. Three components are usually used with length 11 h  

(daily), 52 h  (weekly), 223 h  (monthly). Thus HAR-RV model for Tt ...,,2,1  trading 

days is: 

 

 0 1 5 22 0 1t D t W t M t t tRV RV RV RV , where i.i.d. ,           
. (1) 
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 HAR-RV-J model that explicitly considers jumps is extension of standard HAR-RV 

model, aggregated at the same horizons is: 

 

.225122510 tt

J

Mt

J

Wt

J

DtMtWtDt JJJRVRVRVRV     (2) 

  

 Variables that describe the jumps are estimated by  max , 0t t tJ RV BPV  . Only 

significant jumps are retained as inputs according to the ABD z-statistic (Andersen et 

al., 2007a). Otherwise, the value of the jump component is replaced with zero, as 

small and non-significant jumps cause measurement errors. 

 HAR-RV-J model is extended with leverage (L) components aggregated on daily, 

weekly and monthly basis. It is well known that volatility increases more after a 

negative shock than after a positive shock of the same magnitude. Therefore, it is 

assumed that RV reacts asymmetrically not only to previous daily returns but also to 

previous weekly and monthly returns: 
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(3) 

 Variables that describe the leverage effects in equation (3) are estimated by 

 min , 0t tL r  where tr  is aggregated daily return on certain horizon. The model (3) is 

labelled as LHAR-RV-J. 

 To account for possible nonlinearity in the RV dynamics, variables are usually 

transformed into logs or taking the square root. An alternative solution is to use NNs. 

Specifically in this paper, an extension of HAR-RV, HAR-RV-J and LHAR-RV-J models 

within NN architecture is proposed. The most commonly used type of NN is feed-

forward neural network (FNN).  

 The FNN consists of an input layer, one (or more) hidden layers and an output 

layer that are connected by weights and activation functions. The method used for 

weight estimation in a FNN is called backpropagation (BP) learning algorithm. It is 

based on a gradient descent approach, which iteratively updates the network 

weights with the aim to minimize the objective function. Mean squared error (MSE), 

defined as mean of squared differences between the observed and fitted values of 

time series, is most commonly used objective function in a FNN. During learning, input 

patterns are fed forward through the network, layer by layer, until the expected 

(fitted) value of output is calculated. Expected output is then compared to the 

observed (or target) output based on which the error value is calculated. The errors 

are used as inputs in a reverse propagation where the weights are corrected 

backward layer by layer in iterative manner. This process is repeated until the total 

error converges to a minimum or until the maximum number of iterations is reached. 

Three-layer FNN in most general form is (Adhikari et al., 2013): 

 

,xgfy t
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(4) 

where ty  is the output vector of a time series presenting dependent variable, tx  is 

the input matrix with p time series as input variables p,....,,i 21 , while  f  and  g  

are linear and logistic activation functions. Weights co  and ch  are the constant 

terms of an output and hidden neurons (where q...,,,h 21 ) in one hidden layer 
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respectively. Weight ih  is the connection between p-inputs and h-hidden neurons, 

ho  denotes the connection between h-hidden neurons and one output, while t  is 

an error term. FNN containing p inputs, h neurons in one hidden layer and 1 output is 

denoted as FNN(p,h,1).  

 In the context of nonlinear HAR-RV model, FNN-HAR model is proposed by 

replacing the output vector ty  with daily RV based on 10-minute intra-daily returns of 

DAX index and replacing input matrix tx  by RVs aggregated on daily, weekly and 

monthly basis. When a set of input variables includes RVs with the lags 1t  , 5t   and 

22t   then FNN(3,h,1) is applied. The number of hidden neurons h should be 

determined in a single hidden layer to avoid the overfitting. Reducing the number of 

hidden layers, in general, as well as neurons of hidden layers helps in avoiding local 

minima. Overfitting occurs due to the inclusion of excessive hidden layers and/or 

neurons, which, with existing number of inputs, increases the number of parameters 

to estimate (Franses et al., 2003). In majority of empirical research, the number of 

hidden neurons is determined by trial and errors. However, there are different 

methods developed for hidden neurons selection (Angus, 1991; Zapranis et al., 1999; 

Kaashoek et al., 2001; Franses et al., 2003; Medeiros et al., 2006). The first approach, 

backward or pruning, in which a model with a large number of hidden units is 

estimated first, and the size of the model is subsequently reduced by a cross-

validation which gradually eliminate neurons that do not significantly contribute to 

the NN (Zhang et al.,1998; Kaashoek et al., 2001). The second approach, forward or 

cascading, starts from the smallest NN to larger ones, which implies adding neurons 

until the improvement of information criteria is achieved (Franses et al., 2003; 

Medeiros et al., 2006). In this paper, the second approach is used as discussed in Li et 

al. (1995) and since Medeiros et al. (2006) argue that suitable statistical conclusions 

cannot exist if the choice of NN architecture goes from larger to smaller models, i.e. 

from general to specific. Moreover, some research recommended as a rule of 

thumb in a single hidden layer to use the number of neurons equal or less than the 

number of inputs (Hagiwara, 1994; Keeni et al., 1999; Moshiri et al., 2000; Doukim et 

al., 2010). This recommendation is incorporated in this paper along with cascading 

approach. 

 

Results 
Firstly, the optimal sampling frequency for RV modelling is selected. It is not chosen 

randomly but based on minimization of the MSE of RV estimator considering 

equidistant sampling interval. The optimal sampling frequency is 10-minutes. After the 

sampling frequency is selected, the estimation and comparison of HAR-type and 

FNN models is performed. Three sets of inputs are considered in both types of 

models. First set of inputs describes long-memory (RVs aggregated on the daily, 

weekly and monthly basis), the second set of inputs is extended for the jumps (J), 

and the third set of inputs includes leverage (L) effects (all aggregated at the same 

horizon levels). According to three sets of inputs, HAR-type models given by 

equations (1)-(3) are estimated using least squares method. The same data in-the-

sample is used as in FNNs’ training and validation set, while the out-of-sample data is 

used for forecasting accuracy comparison.  

  As well-designed NN depends on many configuration settings, more attention is 

given to NN modelling. Specifically, three types of FNNs are estimated, i.e. FNN-HAR 

(Feedforward Neural Network-Heterogeneous AutoRegressive), FNN-HAR-J (FNN-

HAR-Jump) and FNN-LHAR-J (FNN-Leverage HAR-Jump) model, using BP algorithm 
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with small learning rate (0.001) and large number of iterations (1000). BP is 

comparable to the gradient descent technique as a special case of the Newton-

Raphson method where the Hessian matrix is replaced by learning rate. Learning 

rate is the step size that controls the length of the search while the negative of the 

gradient determines the direction of the search. Too high learning rate will cause 

divergence. Therefore, smaller learning rate is applied with large number of iterations 

at the cost of slow convergence. Furthermore, output and input variables for training 

and validation are normalized to assure convergence in the iterative optimization 

process. As recommended in the literature 70% of in-the-sample data is split for 

training and 30% for validation. Even there is no general rule for specifying starting 

values for initial weights, interval [0,1] is selected due to variance positivity. Logistic 

and linear activation functions are applied to input-to-hidden and hidden-to-output 

layer respectively. Logistic activation function seems convenient when transforming 

normalized inputs to a [0,1] interval. FNN are criticized in the literature for large 

number of parameters to estimate and their sensitivity to overfitting. Hence, in this 

paper most settings of FNNs are defined in advance to benefit from parsimonious 

model with sufficiently small number of hidden neurons in order to avoid overfitting 

and at the same time to obtain most accurate RV forecasts. All results are obtained 

using the “R” package. 

 

Figure 2 

FNN-type models architecture 
 

Source: Authors’ work 

 

 Adopting the cascading approach 15 FNNs are estimated for three different sets 

of inputs, based on a rule of thumb recommended in the literature, each time 

adding an additional neuron in a single hidden layer and computing RMSE in-the-

sample until the improvement in RMSE is achieved. Therefore, the optimal number of 

hidden units is defined for all models with the minimum RMSE in-the-sample. The 

results showed that 2 neurons for FNN-HAR, 4 for FNN-HAR-J and 4 for FNN-LHAR-J is 

the optimal number of hidden neurons. Thus, it is confirmed that the number of 

hidden neurons in a three-layered FNN with one output is less than the number of 

input variables. This is in accordance with the parsimony principle as expected due 

to the valid selection of input variables. A small number of hidden neurons reduce 

dimensionality and overfitting. Architectures of FNN-type models are presented in 

Figure 2. Line thickness of connections is proportional to the magnitude of each 

weight. Nodes of inputs, hidden neurons and output are labelled with capital I, H 

and O respectively. Bias nodes connected to hidden and output neurons are 
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omitted due to reduction of the number of parameters. The optimal results with the 

in-the-sample diagnostics for both HAR- and FNN-type models are given in Table 1. 

 

Table 1 

HAR-RV- and FNN-type Models Performance and Goodness-of-fit in-the sample 
 

a)   HAR-RV-type models 

 HAR-RV HAR-RV-J LHAR-RV-J 

Inputs 3 6 9 

RMSE 0.000164 0.000159 0.000152a 

AIC -26198.67 -26289.06 -26430.66a 

Wald test HAR-RV 33.027*** 43.856*** 

HAR-RV-J - 51.352*** 

b)   FNN-type models 

 FNN-HAR FNN-HAR-J FNN-LHAR-J 

Neurons 2 4 4 

Weights 8 28 40 

RMSE 0.000147a 0.000149 0.000148 

AIC -26512.5a -26446.36 -26434.69 

Wald test FNN-HAR 1271 0.418 

FNN-HAR-J - 1004 

Note: a represent the smallest RMSE and AIC within each type of model. *, **, *** represent 

significance at the 10%, 5% and 1% level of Wald test. 

Source: Authors’ work 

 

 Since each diagnostic test has its unique properties, it is necessary to use more 

than one measure in comparing different types of models. The most commonly used 

measure for model comparison is MSE or RMSE (Gonzales, 2000; Moshiri et al., 2000; 

Zhang, 2003; Teräsvirta et al., 2005; Binner et al., 2006; Medeiros et al., 2006; 

Choudhary et al., 2008; Bildirici et al., 2012; 2014; Chaudhuri et al., 2016; Al-Maqaleh 

et al., 2016; Wang et al., 2016). It measures the mean squared deviations of the 

observed from the expected (or predicted) values. In this case, errors of the opposite 

sign are not cancelled and therefore (R)MSE provides a good measure of estimated 

error. However, it does not take into account the principle of parsimony. In order to 

select a suitable model, it is necessary to use an indicator that takes into account 

the number of parameters, MSE and sample size, i.e. measure as Akaike information 

criteria – AIC. This paper also uses a Wald test (Buse, 1982) to test the zero restriction 

on weights for comparison purpose. It is appropriate diagnostic statistics in testing 

goodness-of-fit of the models. In addition to the selected indicators that can be 

calculated in-the-sample and out-of-sample, to test the predictive accuracy of HAR-

type, as well as FNN-type models, Diebold-Mariano (DM) test (Diebold et al., 1995) is 

used. The models are tested in pairs. DM test is adopted to MSE loss function. It is 

assumed by the null hypothesis that unconditional expectation of loss function 

differential between two models is zero. If null hypothesis is rejected in favour of one 

sided alternative it is concluded that model j  has significantly better predictive 

accuracy than model i . DM test is computed between models with the lowest value 

of MSE against other models using one sided alternative. Thus, a negative DM 

statistics can be shown in Table 2. Performance and goodness-of-fit measures out-of-

sample are computed, along with HAR-type models in Table 2. 
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Table 2 

HAR-RV- and FNN-type Models Performance and Goodness-of-fit out-of-sample 
 

a)   HAR-RV-type models 

 HAR-RV HAR-RV-J LHAR-RV-J 

RMSE 0.000193 0.000188a 0.000189 

AIC -3088.40 -3091.19a -3083.92 

DM test HAR-RV -0.729 -0.705 

HAR-RV-J - -0.099 

b)   FNN-type models 

 FNN-HAR FNN-HAR-J FNN-LHAR-J 

RMSE 0.000203 0.000192a 0.000194 

AIC -3062.58a -3041.81 -3014.60 

DM test FNN-HAR -2.7150*** -1.365* 

FNN-HAR-J - -0.442 

Note: a represent the smallest RMSE and AIC within each type of model. *, **, *** represent 

significance at the 10%, 5% and 1% level of Diebold-Mariano (DM) test. 

Source: Authors’ work 

 

 Out-of-sample forecasting results are compared and presented via plots of fitted 

values of each model alongside the RV in Figure 3 for HAR and FNN pure models, in 

Figure 4 for HAR and FNN models with jumps and in Figure 5 for HAR and FNN models 

with jumps and leverage effects. Forecasting horizon includes 181 trading days, from 

04.01.2016 to 16.09.2016. 

 

Figure 3 

Out-of-sample comparison of actual RV against RV forecasts with pure HAR and FNN 
 

 
Source: Authors’ work 
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Figure 4 

Out-of-sample comparison of actual RV against RV forecasts with HAR and FNN 

including jumps 

 

 Source: Authors’ work 

 

Figure 5 

Out-of-sample comparison of actual RV against RV forecasts with HAR and FNN 

including jumps and leverage effects 

 

 Source: Authors’ work 

 

Discussion 
Within HAR-type models evaluation of RMSE in-the-sample shows significant 

superiority of HAR-RV model that includes both jump and leverage effects. However, 

the out-of-sample forecasts show better, but insignificant, performances of HAR-RV-J 

compared to HAR-RV and LHAR-RV-J. This is also confirmed via Akaike information 

criteria. The null hypothesis of DM test cannot be rejected when comparing HAR-

type models, i.e. they have similar predictive accuracy. Therefore, within HAR-type 



  

 

 

30 

 

Business Systems Research | Vol. 9 No. 2 |2018 

models it is important to include either jump or both jump and leverage component 

in modelling and forecasting RV.  

 Nevertheless, when nonlinearity is included for modelling and forecasting RV using 

one-layered FNN, the best in-the-sample fit is obtained with more parsimonious 

model, i.e. FNN-HAR model. However, Wald test shows that there is no significant 

difference in in-the sample performances between FNN-type models. When 

comparing forecasting performances of FNN-type models the null hypothesis can be 

rejected, i.e. according to DM test FNN-HAR-J and FNN-LHAR-J models have 

significantly lower MSE than FNN-HAR model at 1% and 10% significance level 

respectively. However, FNN-HAR-J and FNN-LHAR-J models do not differ significantly 

in their forecasting performances. Therefore, if more parsimonious model is to be 

selected, that simultaneously has good in-the-sample properties and good out-of-

sample forecasting performances, which captures nonlinearity and does not lead to 

overfitting, than the best-fit model for RV is the FNN-HAR-J model. 

 

Conclusion 
As high-frequency data becomes available big amount of information can be used 

to estimate true unknown volatility more precisely. Traditional approaches to 

modelling and forecasting volatility mostly rely on close-to-close returns, i.e. close 

price observed at given trading day. Less traditional models use not only close 

prices, but open, high and low prices. Regardless, commonly used models for 

measuring volatility are parametric and therefore suffer from misspecification 

problem as well as unfulfilled assumptions. Unlike traditional models NNs are 

assumption free, i.e. do not require any distributional assumption or functional form 

between inputs and outputs. NN requires an enormous amount of data, i.e. 

sufficiently enough data for train, validation and test set, which can easily be meet 

with high-frequency data. Using high-frequency data an unbiased estimator of true 

volatility can be found, i.e. RV which is free of market microstructure noise. In that 

context sampling frequency should be selected based on a trade-off between 

accuracy and potential biases. In this paper the optimal sampling frequency is not 

chosen randomly, but based on minimization of the MSE of RV estimator considering 

equidistant sampling interval. The optimal sampling frequency is 10-minutes. After 

choosing the optimal sampling frequency the RV is computed with its components 

aggregated on the daily, weekly and monthly basis. A cascade of heterogeneous 

RV components aggregated at different time horizons can be successfully described 

by HAR-RV model. HAR-type extensions are used to take into account not only long-

memory, but also jumps and leverage effect. Therefore, the focus of the paper is the 

RV forecasting using traditional HAR-type as well as FNN-type models. More attention 

is given to development of a parsimonious FNN to capture the main stylized facts of 

RV including nonlinear dependence. From this perspective, suggestions about FNN 

settings in achieving most accurate RV prediction are given. These settings include 

selection of input variables and optimal sampling frequency, the number of hidden 

neurons, type of optimization technique and specifying starting values of the initial 

weights. RMSE is minimized to find appropriate number of hidden neurons within 

every FNN. It is confirmed that the number of hidden neurons in a three-layered FNN 

with one output is less than the number of input variables. This is in accordance with 

the parsimony principle as expected due to the valid selection of input variables. 

Moreover, a relatively small number of hidden neurons reduce dimensionality 

problem and overfitting. Therefore, the appropriate FNN-HAR-type models for 

modelling and forecasting of RV are determined. Finally, out-of-sample forecasts 

between HAR-RV- and FNN-type models are compared to determine their predictive 
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accuracy with application to DAX index. According to pairwise DM test, there is no 

statistically significant difference in predictive accuracy between HAR-type models. 

Nevertheless, the null hypothesis of DM test can be rejected when FNN-type models 

are compared, i.e. FNN-HAR-J and FNN-LHAR-J models have significantly lower MSE 

than FNN-HAR model at 1% and 10% significance level respectively. However, FNN-

HAR-J and FNN-LHAR-J models do not differ significantly in their forecasting 

performances. According to AIC information criteria, FNN model with less hidden 

neurons is preferred in-the-sample. However, Wald test shows that there is no 

significant difference in performance between FNN-type models in-the sample. 

Compared to the traditional ones, FNN-HAR-type models are better in capturing 

nonlinear behaviour of RV. In-the-sample, FNN-HAR-type models fit better against 

traditional HAR-type models, whereas their out-of-sample predictive accuracy is 

approximately the same. Results of this paper do not provide clear superiority of FNN 

versus HAR-type models. They provide better in-the-sample results, but not out-of-

sample performances, although forecasting performances are as good as those of 

HAR-type models are. FNN models are selected based on the best model only 

according to in-the-sample performances, which is the limitation of this study. 

Namely, other approach, which consists of finding the most appropriate NN 

architecture, based on train and validation set within in-the-sample diagnostics 

should be used in further research. If more parsimonious model is to be selected, that 

simultaneously has good in-the-sample properties and good out-of-sample 

forecasting performances, that captures nonlinearity and does not lead to 

overfitting, then the best-fit model for RV is the FNN-HAR-J model. This way the 

investors can benefit from applying the proposed FNN model to accurately model 

and predict the RV for their potential investments. However, the improvement in 

performances of NNs in forecasting RV and time series in general should be further 

investigated. Specifically, implementation of different algorithms and/or other NN 

architectures in this context opens space for future research. Directions for further 

studies include modelling and forecasting RV using recurrent NNs to investigate their 

forecasting performances compared to the FNNs and HAR-type models. Namely, 

other types of recurrent NNs are developed, whose results are insufficiently analysed 

in economic time series modelling, such as deep NNs, Long Short Term Memory and 

Convolutional NNs with a large number of hidden layers, which are proven to be 

more efficient than classical NNs. The proposed methodology should be additionally 

tested in this field by conducting the research for different markets to verify the 

robustness of the obtained results. 
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