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ABSTRACT
The cubature Kalman filter (CKF) has been widely used in solving nonlinear state estimation
problems because of many advantages such as satisfactory filtering accuracy and easy
implementation compared to extended Kalman filter and unscented Kalman filter. However,
the performance of CKF may degrade due to the uncertainty of the nonlinear dynamic system
model. To solve this problem, a neural-cubature Kalman filter (NCKF) algorithm containing a
multilayer feed-forward neural network (MFNN) in CKF is proposed to further improve the
estimation accuracy and enhance the robustness of CKF. In the proposed NCKF algorithm, the
MFNN was used to modify the nonlinear state estimation of CKF as the measurements were
processed, and the CKF was used as both a state estimator and an online training paradigm
simultaneously. The experimental results show that the estimation accuracy and robustness of
the proposed method are better than those of the CKF, square-root CKF and particle filter.
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1. Introduction

Over the past several decades, extended Kalman filter
(EKF) has been used as the core of nonlinear state esti-
mation problems [1–4]. However, the use of EKF results
in a poor performance if the process or measurement
model is highly nonlinear [5]. In addition, the computa-
tion of Jacobian matrices is also a heavy computational
burden in practical situations [6]. As a better alternative
to EKF, unscented Kalman filter (UKF) has been pro-
posed to solve highly nonlinear state estimation prob-
lems [7]. UKF avoids the computation of Jacobian
matrices and uses a deterministic sampling approach to
determine the mean and covariances with sigma points
[8–10]. In general, UKF performs better than EKF in
nonlinear state estimation problems. However, the
unscented transformation of UKF is potentially unstable
due to the possible negative weight on the centre point
in practical applications [11]. Although some other non-
linear filters such as particle filter (PF) [12] and Gauss-
ian PF [13] are more accurate and stable than UKF,
they suffer from the “curse of dimensionality” when
applied to high-dimensional systems [14].

Recently, owing to satisfactory filtering accuracy,
cubature Kalman filter (CKF) based on the spherical–
radial cubature rule has received much attention in
solving nonlinear state estimation problems
[6,11,14,15]. However, for nonlinear dynamic systems
with large uncertainties such as target tracking and
long-term orbit uncertainty propagation [16,17], the
performance of CKF may degrade due to the uncer-
tainty of system mode. To make the CKF robust, a
neural-CKF (NCKF) algorithm is proposed in this

study. In the proposed NCKF, a multilayer feed-for-
ward neural network (MFNN) was used as a regulator
to approximate the difference between the prior model
used in the prediction steps of the CKF and the actual
model dynamics, and the CKF was used to train the
neural network (NN) as well as to estimate the states
and weights of NN. The simulation results show that
the proposed method has a higher estimation accuracy
and robustness than the CKF.

The rest of this manuscript is organized as follows.
The NN points are described in Section 2. The pro-
posed NCKF algorithm is described in Section 3. The
performances of NCKF, CKF SCKF and PF are com-
pared in Section 4. The conclusions and future work
are provided in Section 5.

2. NN points

Although both radial basis function NN (RBFNN) and
MFNN can approximate any continuous functional
relationship to any degree of accuracy, given enough
neurons, RBFNN requires more neurons/basis func-
tions than MFNN if trained in a sequential mode. This
may severely limit its application in solving a complex
estimation problem. In contrast, MFNN can avoid the
change in the architecture of the overall network when
the NNs are trained, because its architecture can be
fixed before through empirical experiments [18–23].
Therefore, MFNN is more suitable for sequential
online applications.

In general, weight links, adders and activation func-
tions are the three major components in a basic model
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of neurons. The weight links are used to link the input
layer, hidden layer and output layer. The adders are
used to add the input signals that are weighted by the
respective synapses of the neuron, and the activation
functions are used to limit the amplitude of neuron
output and the final output [20,21]. Then, the outputs
of hidden and output layers of a neuron can be
expressed as follows:

outhidden ¼ af wi;j’i

� �þ b1
outoutput ¼ AF Wj;mouthidden

� �þ b2
(1)

where ’i is the input signal; wi;j and Wj;m are the input
and output weights, respectively; b1 and b2 are the
biases of the hidden layer and output layer, respec-
tively; af �ð Þ and AF �ð Þ are the activation functions for
hidden neurons and output neurons, respectively.

A simple MFNN is shown in Figure 1. If the biases
b1; b2ð Þ are interpreted as the weights acting on the
inputs clamped to 1, the weights and biases can be rep-
resented as joint description “weights.” Then, the
mathematical formula of MFNN can be expressed as
follows:

ym tð Þ ¼ AFm
Xnh
j¼1

Wj;mafj
Xn’
i¼1

wi;j’i þ wj;0

 !
þWm;0

" #

(2)

where n’ is the number of input signals, nh is the num-
ber of hidden neurons, wj;0 is the bias of input weights
and Wm;0 is the bias of output weights. Note that two
or three hidden layers are enough, and the nonlinear
hyperbolic tangent sigmoid function is used as the acti-
vation function. This enhances the approximation
capabilities of NN and reduces the impact of noise
[20–23].

3. Proposed NCKF algorithm

In this study, the filtering problem of nonlinear
dynamic systems was considered; its state-space model

can be expressed by a pair of difference equations in
discrete time [15]:

xk ¼ f xk�1ð Þ þ nk�1 (3)

zk ¼ h xkð Þ þ ‘k (4)

where xk and zk are the states and measurements at
time k; f �ð Þ and h �ð Þ are the nonlinear functions for
the dynamic and measurement models, respectively;nk
is the processed Gaussian noise with zero mean and
covariance qk; similarly, ‘k is the measured Gaussian
noise with zero mean and covariance rk.

Then, the error between the true model and priori
model can be expressed as follows:

ek ¼ ftrue xkð Þ � fpriori xkð Þ (5)

Equation (5) shows that the true model can be
obtained from an accurate ek. However, the ek cannot
be measured directly. As stated in Section 2, the
MFNN can approximate the functional relationship;
therefore, the ek can be well approximated using the
MFNN as follows:

NN xk; hk; λkð Þ � ekð Þ! 0 (6)

where hk is the joint description “weights” of the input
weight wi;j and bias wj;0, and λk is the joint description
“weights” of the output weightWj;m and biasWm;0.

According to Equation (6), a new error ek can be
expressed as follows:

ek ¼ ftrue xkð Þ � fpriori xkð Þ � NN xk;hk; λk
� �

(7)

where kekk � kekk.
From the above analysis, a more accurate dynamic

system model can be expressed as follows:

xkþ1 ¼ f xkð Þ þNN xk; hk; λkð Þ þ ~nk (8)

where ~nk is the process Gaussian noise with zero mean
and covariance ~Qk.

Then, the generic NCKF algorithm can be summa-
rized in the following steps:

Step 1: State augment

~xk ¼
xk
hk
λk

2
4

3
5 (9)

Suppose that the number of xk is u0. Therefore, the
dimension of hk is n’ � u0

� �� 1, and the dimension
of λk is n’ � nh

� �� 1. Note that, the augmented state
vector of NCKF contains both the state estimates and
weights (input and output) of the NN. The states xk
are considered as the input to the NN; the weights of
NN are the “parameters” of function approximator

Figure 1. A simple MFNN containing input signals, a hidden
layer and an output layer.
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that can be used to model something in the noise
[21–23].

Step 2: Initialization
Set ~̂x0 ¼ E ~x0½ �, ~P0 ¼ cov ~x0½ �, and generate the

cubature points xl; l ¼ 1; 2; . . . ; 2mð Þ. Note that m ¼
nf � u0 þ nf � nh
� �� 1 is the dimension of ~xk.

Step 2: Time update

~Pk�1 ¼ Sk�1S
T
k�1 (10)

~̂xk j k�1 ¼ 1
2m

Xm
l¼1

 
f Sk�1xl þ ~̂xk�1

� �

þ
NN x̂k�1; ĥk�1; λ̂k�1

� �
0

2
4

3
5! (11)

~Pk j k�1 ¼ 1
2m

f Sk�1xl þ ~̂xk�1

� �
f Sk�1xl þ ~̂xk�1

� �T
� ~̂xk j k�1~̂x

T
k j k�1 þ ~Qk

(12)

Step 3: Measurement update

~Pk j k�1 ¼ Sk j k�1S
T
k j k�1 (13)

ẑ k j k�1 ¼ 1
2m

Xm
l¼1

h Sk j k�1xl þ ~̂xk j k�1

� � !
(14)

~P~xz ¼ 1
2m

Sk j k�1xl þ ~̂xk j k�1

� �
h Sk j k�1xl þ ~̂xk j k�1

� �T
� ~̂xk j k�1ẑk j k�1T

(15)

~Pzz ¼ 1
2m

h Sk j k�1xl þ ~̂xk j k�1

� �
h Sk j k�1xl þ ~̂xk j k�1

� �T
� ẑk j k�1ẑk j k�1T þ rk

(16)

~Kk ¼ ~P~xz~P
�1
zz (17)

~̂xk ¼ ~̂xk j k�1 þ ~Kk zk � ẑ k j k�1ð Þ (18)

~Pk ¼ ~Pk j k�1 � ~Kk~Pzz ~K
T
k (19)

Equations (9) and (18) show that the weights of the
MFNN are updated by the CKF. Furthermore, Equa-
tion (11) shows that the MFNN can adaptively approx-
imate the errors between the true model and priori
model in the prediction steps of the CKF.

4. Simulations

In this section, three numerical examples were used to
evaluate the estimation accuracy and robustness of the
proposed NCKF.

4.1. Bearings-only tracking

In this subsection, the NCKF was compared with the
CKF, square-root CKF (SCKF) and PF in bearings-

only tracking example; this has been widely analysed
owing to its practical application potential [24,25]. The
nonlinear system model of bearings-only tracking can
be expressed as follows:

xk ¼ 0:99 0

0 1

� �
xk�1 þ wk�1 (20)

zk ¼ tan�1 x2;k � sin kð Þ
x1;k � cos kð Þ
� 	

þ nk (21)

where xk ¼ x1;k; x2;k
� �T ¼ s; tð ÞT is the position in the

s–t plane. Note that the function tan�1 �ð Þ can be imple-
mented using the command atan2ð � Þ in MATLAB
2012a.

Although the actual output and estimated output
along with estimated states can be used to show the
estimation accuracy of the proposed method, the results
of single simulation cannot fully reflect the trends. To
quantitatively evaluate the filtering performance, the
simulation results are based on 200 Monte Carlo runs.
The process noise qk »N 0;Qkð Þ with
Qk ¼ diagð 10�5 10�5½ �Þ, the measurement noise rk »
N 0;Rkð Þ with Rk ¼ 0:05, the initial state x0 ¼ 20 5½ �T
and x0, P0, Q0 and R0 are its associated covariance
P0 ¼ diag 400 25½ �ð Þ. To implement the NCKF algo-
rithm, the state xk, the associated covariance ~Pk and pro-
cess noise variance ~Qk should be augmented as follows:

~xk ¼ xk hk λk½ �T (22)

~Pk ¼
Pk 0

0 Inum�weights

� �
(23)

~Qk ¼
Qk 0

0 Inum�weights

� �
(24)

where the values of hk and λk are initialized between
0 and 1, respectively.

Data analysis criterion: the root-mean-square error
(RMSE) was used as the benchmark to compare the
performances of NCKF, CKF, SCKF and PF. The
RMSEs at time k for x1 and x2 are defined as follows:

RMSEx1 kð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Nmc

XNmc

m¼1

xm1;k � x̂u
1;k

� �2vuut (25)

RMSEx2 kð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Nmc

XNmc

m¼1

xm2;k � x̂u
2;k

� �2vuut (26)

where xm1;k; x̂1;km are the true and estimated x1;k at the
mth Monte Carlo run, respectively; xm2;k; x̂2;km are the
true and estimated x2;k at the mthMonte Carlo run,
respectively

The simulation results of the RMSEs for x1 and x2
are shown in Figures 2 and 3, respectively. Further-
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more, the corresponding statistics of RMSEs for the
four filters are shown in Table 1.

Figures 2 and 3 show that the NCKF performs better
than the CKF, SCKF and PF. This is because the CKF
was used as an estimator and a training paradigm in the
NCKF. As an estimator, the CKF estimates the states
and the input and output weights of NN. As a training
paradigm, it is driven by the same residuals as the state
estimator and ensures that the residuals are as small as
possible; it approximates the difference between the prior
model used in the prediction steps of the estimator and
the actual model dynamics. Therefore, NCKF can
improve the performance by estimating the weights of
NN, which in turn is used to modify the state estimate
predictions of the filter as the measurements are proc-
essed. In addition, although the sequential importance
sample PF uses 500 particles, its performance is not as
good as the CKF. Although the PF can be improved by
increasing the number of particles or using some
advanced techniques [26,27], the computational com-
plexity will significantly increase. The PF was not studied
further, because it is out of the scope of this study. A
comparison of standard deviation (Std) and mean value
shown in Table 1 provides the same conclusion: the
NCKF is superior to the other three filters in this test.

The tracking algorithms were coded with MATLAB,
and the simulations were run on an Intel Core Duo

CPU processor at 2.00 GHz. Table 1 shows that the
NCKF needs more time than the CKF and NCK,
because its state vector contains both the state estimates
and the weights (input and output) of the NN. Table 1
shows that the PF has a large computational burden
because it needs particle resampling in each step.

4.2. Manoeuvring target tracking

In this section, the NCKF was compared with the CKF,
SCKF and PF in a manoeuvring target tracking appli-
cation; this has been used as a benchmark problem to
evaluate the performance of CKF algorithm [11,15].
The dynamic equation of the target tracking can be
modelled as follows:

ξk
_ξk
&k
_&k
ck

2
666664

3
777775 ¼

1
sin ck�1Tð Þ

ck�1
0

cos ck�1Tð Þ � 1
ck�1

0

0 cos ck�1Tð Þ � 1 0 �sin ck�1Tð Þ 0

0
1� cos ck�1Tð Þ

ck�1
1

sin ck�1Tð Þ
ck�1

0

0 sin ck�1Tð Þ 0 cos ck�1Tð Þ 0

0 0 0 0 1

2
6666666664

3
7777777775

�

ξk�1
_ξk�1

&k�1

_&k�1

ck�1

2
666664

3
777775þ nk�1 (27)

where ξk and _ξk are the position and velocity in
Xdirection, respectively; &k and _&k are the position and
velocity in Ydirection, respectively; Dtrepresents the
sampling interval; ck represents the unknown turn
rate; vk�1 is the white Gaussian noise with zero mean
and covariance Qk�1:

qk�1 ¼

a1Dt3

3
a1Dt2

2
0 0 0

a1Dt2

2
a1Dt 0 0 0

0 0
a1Dt3

3
a1Dt2

2
0

0 0
a1Dt2

2
a1Dt 0

0 0 0 0 a2Dt

2
6666666666664

3
7777777777775
(28)

where a1 ¼ 0:1; Dt ¼ 1s; and a2 ¼ 1:75� 10�4.
The measurement equation with two sensors can be

expressed as follows:
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Figure 2. RMSEs of x1 for CKF, SCKF, NCKF and PF.
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Figure 3. RMSEs of x2 for CKF, SCKF, NCKF and PF.

Table 1. Statistics of RMSEs for CKF, SCKF, NCKF and PF.
Items CKF SCKF NCKF PF

x1 (m) Mean 6.962 6.586 4.727 9.708
Std 2.137 2.007 1.907 2.768

x2 (m) Mean 2.615 2.468 1.436 2.404
Std 0.378 0.353 0.204 0.488

Computational time (s) 8.143 9.581 25.57 428.4
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uk;d ¼ tan�1 & � &ref ;d

ξ � ξref ;d

� 	
þ ‘k;d d ¼ 1; 2: (29)

where d is the sensor index; ‘k;1 and ‘k;2 are the white
Gaussian measurement noise with zero mean and
covariance Rk;1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
30mrad

p� �2
and

Rk;2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
40mrad

p� �2
, respectively; the locations of the

two sensors ξ ref ;d; &ref ;d
� �

are assumed as follows:

ξref ;1 ¼ �10; 000m; zref ;1 ¼ �10; 000m (30)

ξ ref ;2 ¼ 10; 000m; zref ;2 ¼ 10; 000m (31)

For a fair comparison, the simulation results are
based on 200 Monte Carlo runs. In each Monte Carlo
run, the initial estimate value was generated randomly
from N x̂0 j x0;P0ð Þ. The initial state x0 and the associ-
ated covariance P0 were assumed as follows:

x0 ¼ 1000m 300m=s 1000m 0m=s �3 B =s½ �T

(32)

P0 ¼ diagð½ 100m2 10m2=s2 100m2 10m2=s2 100mrad2=s2 �Þ

(33)

To implement the NCKF algorithm, the state x0, the
associated covariance ~P0 and process noise variance ~Q0

should be augmented as Equations (22)–(24). The
RMSE at time k for position was defined as follows:

RMSEpos kð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Nmc

XNmc

g¼1

ξgk � ξ̂
g

k

� �2
þ &

g
k � &̂

g
k

� �2� 	vuut
(34)

where ξgk; &
g
k

� �
and ξ̂

g
k; &̂kg

� �
are the true and esti-

mated positions at the gth Monte Carlo run, respec-
tively. Then, the RMSE in velocity and turn rate can be
formulated using Equation (34).

The simulation results of the RMSEs in position,
velocity and turn rate are shown in Figures 4–6,
respectively. Furthermore, the corresponding statistics
of RMSEs for CKF, SCKF, NCKF and PF are shown in
Table 2.

Figures 4–6 show that the CKF, SCKF and NCKF
can track the position, velocity and turn rate. However,
the accuracy of NCKF outperforms that of the CKF
and SCKF, especially in the position tracking and veloc-
ity tracking. This is because the NCKF can improve the
performance by estimating the weights of NN, which in
turn is used to modify the state estimate as the meas-
urements are processed. Furthermore, a comparison of
the Std and mean value shown in Table 2 provides the
same conclusion: the NCKF is better than the CKF and
SCKF under the Gaussian conditions. Figures 4–6 also
show that the PF with 500 particles does not perform a
good estimation for this application. Note that NaN
represents Not-a-Number in MATLAB.

To test the robustness of NCKF algorithm, the mea-
surement noise ‘k;d was deliberately converted to a
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Figure 4. RMSEs of the position for CKF, SCKF, NCKF and PF.
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Figure 5. RMSEs of the velocity for CKF, SCKF, NCKF and PF.
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Figure 6. RMSEs of the turn rate for CKF, SCKF, NCKF and PF.

Table 2. Statistics of RMSEs for CKF, SCKF, NCKF and PF.
Items CKF SCKF NCKF PF

Position (m) Mean 122.4 113.4 105.1 NaN
Std 32.46 28.64 27.05 NaN

Velocity (m/s) Mean 36.65 34.23 31.72 NaN
Std 7.181 6.754 6.293 NaN

Turn rate (deg/s) Mean 1.835 1.828 1.809 NaN
Std 0.184 0.183 0.1822 NaN

Computational time (s) 12.06 12.38 55.32 582.68
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non-Gaussian form as follows:

0:5N 0; 10� 10�5
� �þ 0:5N 0; 5� 10�5

� �
(35)

Previous literature [28,29] shows the PF diverges in
non-Gaussian measurement noise assumption. There-
fore, the proposed NCKF was only compared to CKF
and SCKF in this robustness test. The RMSEs of
the positions, velocity and turn rate are shown in
Figures 7–9, respectively.

Equation (35) shows that the equivalent measure-
ment noise variance Rk of the above Gaussian mixture
model was used in filters. Therefore, a mismatching
exists between the true measurement variance and the
assumed variance. Figures 7–9 show that the perform-
ances of CKF, SCKF and NCKF degrade in this situa-
tion. Moreover, the CKF diverges in position, velocity
and turn rate estimation due to a mismatch between
the true measurement noise and the non-Gaussian
assumption. However, the NCKF can maintain a satis-
factory performance in this scenario; it uses the
MFNN to approximate the error caused by the mis-
match mentioned above and modify the state estima-
tion accordingly. Thus, the robustness of NCKF is
better than those of the CKF and SCKF.

5. Conclusions

In this study, a NCKF algorithm was proposed to
enhance the accuracy and robustness of CKF. In the
proposed method, a MFNN was used to modify
the state estimates and approximate the uncertainty of
the system model; and the CKF was used to estimate the
states and the weights of MFNN. The performance of
the proposed method was compared with CKF, SCKF
and PF via three numerical examples. The simulation
results show that the accuracy and robustness of the
NCKF is better than those of the CKF, SCKF and PF.

The success of the proposed method shows an
encouraging direction for online estimation with
NCKF algorithm. Although, the proposed method per-
forms well in this study, the computational burden of
NCKF is larger than CKF and SCKF. Therefore, the
low computational burden of NCKF, and the perfor-
mance between the NCKF and the robust filters will be
studied in the future.
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