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Missile fixed-structure i« controller design based on constrained PSO algorithm

Min Zhang, Zhenzhen Ma, Liang Chen and Xin Chen

College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China

ABSTRACT

This paper provides a method of fixed-structure w controller design with a novel particle swarm
optimization (PSO) technique. The structured synthesis problem based on optimization is
formulated and solved by a kind of constrained PSO algorithm which is relatively simple and
without any new parameters added in the objective function. The experimental results tested
on a set of 12 benchmark functions show that the proposed algorithm can outperform others
in most cases. What is more, an air-to-air missile longitudinal channel control structure based
on the proposed algorithm is studied and the simulation results are compared with other
algorithms. The final comparison results also show the superior performance improvement

over other algorithms.

1. Introduction

During the last decades, as one kind of robust
approaches, the H, control theory has been the most
widely employed technique in controller design for
system under uncertain and disturbed conditions [1,2].
However, H,, controller may lead to unnecessary con-
servatism since it usually ignores robust performance
design requirement and emphasizes on stability too
much. To solve this problem, 1 synthesis theory is pro-
posed, where structured uncertainty is considered so
that the controlled system can analyse “the worst dis-
turbance” without conservatism [3]. In comparison
with H,, control theory, u theory has distinct advan-
tages, which directly introduces the structured uncer-
tainty and simultaneously analyses robust stability and
robust performance [4,5].

On the other hand, it is well known that the control-
lers obtained either by H., or u theory have problems
when directly applied in practical control engineering
framework due to computer resources and on-site con-
troller tuning limitations [6,7]. Hence, controller order
reduction needs to be adopted as a systematic posterior
step, but it will also bring unwanted performance and
robustness degradation [8].

In order to overcome the problems above, fixed-
structure robust controller design method has been
proposed, which satisfies not only stability but also
robust specifications. In Hwang and Hsiao [9], a deriv-
ative gain should be chosen in advance by the designer.
Then, the maximum allowable proportional and inte-
gral gains are obtained. What is more, the choice of
good initial derivative gain is a crucial factor. Ho [10]
presented a synthesis of H,,-PID controllers based on
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the generalized Hermite Biehler theorem for complex
polynomials. Similarly, a suitable proportional gain
should be chosen in advance, which makes the reason-
able selections of proportional gain to be considerably
important. However, the works mentioned above only
tune fixed-structure controller manually, which is a
time-consuming task.

Contrary with the above deterministic approach,
Kennedy and Eberhart [11] proposed a particle swarm
optimization (PSO) algorithm. The PSO algorithm is a
swarm intelligence technique, which is one of the evo-
lutionary computation algorithms. It is suitable to
solve the design problem which is inherently NP hard.
However, it cannot handle the problem with rank con-
straints, which could be a serious barrier from practical
use. Michalewicz, Dasgupta, Riche and Schoenauer
[12] augmented the cost function with penalty func-
tions to handle the optimization problems subject to a
set of constraints. Soufiene Bouallegue, Joseph Haggege
and Mohamed Benrejeb [13] applied the above method
to fixed-structure H,, controller design. However, the
values of the penalty parameters are usually difficult to
choose. To overcome this, a great amount of time has
been made. Cai Hairan [14] proposed a new adaptive
penalty function method. This method adjusts the pen-
alty factor dynamically according to constraint particle
proportion at each iteration step, which has become a
widely adopted penalty function method and solved
the difficulty of selecting penalty factor. The deficiency
of the algorithm is that its convergence performance
has very strong dependence on the parameter o, which
is usually chosen according to engineering experience.
Sedlaczek and Eberhard [15] developed an augmented
Lagrangian PSO (ALPSO) algorithm. Kim, Maruta and
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Sugie [16] applied it to PID controller design. The
ALPSO algorithm is based on the assumption that the
objective function is differentiable and the algorithm
becomes complex when the augmented Lagrangian
parameters need to be determined. Maruta, Kim and
Sugie [17] proposed a modified PSO to simplify the
ALPSO, which is still complex to some extent.

In this paper, a new approach is proposed to design
fixed-structure controllers using . specifications, based
on a novel constrained PSO algorithm. In Section 2,
fixed-structure p synthesis problem is described. In
Section 3, we explain the basic framework of our pro-
posed algorithm. In Section 4, we describe 12 bench-
mark problems and the simulation results are
compared with other constrained optimization algo-
rithms. In Section 5, we apply our proposed algorithm
to the air-to-air missile control design progress. In Sec-
tion 6, we conclude our proposed algorithm.

2. Fixed-structure .. synthesis problem
2.1. Preliminaries

Structured singular value p is an effective tool for the
robust analysis of a system. It can analyse the robust sta-
bility and robust performance of the system simulta-
neously. For any multi-input linear feedback systems
with uncertainty, they can always be presented by
Figure 1,

M

Y

Figure 1. Standard feedback control structure.

where M denotes system transfer function matrix which
is made up of controller and generalized controlled
object. where A € BA™ denotes the model uncertainty,
indicating the deviation degree between actual controlled
object and the nominal of the mathematical model:

my my ms
E— djag(Al,...,Al A27...7A2 A3...,Ay,l7Am...7A”>
AjeChb 5(A) <8,8€R 8>0(=1,2,...,n)
(1)
BA={A€cA|o(A) <1} )

n n
n = g m; X 1j, 0y = g m; x kj, A € C"*™
j=1 j=1

and o(A) means the max singular value of A.

Suppose that the system uncertainty A conforms to
formula (2), and then define the structured singular
value of the system transfer function matrix M for
formula (3):
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M 0,VA € A, det(I — MA) #0
wM) = {min(5(A) | det, 5 (I - MA) = 0)}71,else
()

While solving u value by formula (3) directly is very
difficult and any precise mathematical analytic methods
is not available now. The value of 1 is usually obtained
by solving its upper and lower bounds, as long as the dif-
ference between which is small enough. This approximate
method is feasible and effective, which is called “D-K”
iterative algorithm and was put forward by Doyle [18].

2.2. Problem formulation

The general scheme of robust control problem is
shown in Figure 2:

A 4

Wi M 2l
—_—

Figure 2. Scheme for robust control.

where M(s) denotes the obtained generalized plant,
which represents the dynamic interactions between the
following signals: w; and z; denote the exogenous
inputs and the controlled output vector, w, and z,
denote the outputs and inputs of the model uncer-
tainty, respectively.

The feedback system of Figure 2 is denoted as
> (s, x), and can be described as

|:ZI:| _ [M“(s) M12(S)} [Wl] @)
2 Moi(s)  Max(s) | [ w2
And the optimization-based controller synthesis
problem considered in this paper can be stated as fol-
lows: given the objective function
f(x) = inf sup w(Z(jw)) (5)
K(jw.x) eR

subject to

Amax (Z(s, x)) <0 (6)

Let /;[Z(s,x)] denote the jth pole of the feedback
system 2(s, x) and Apmax(Z(s, x)) is the pole with maxi-
mum real part:

Amax (Z(s, x)) = max{Re(ij [Z(s, x)D,Vj} (7)

Then, a feedback system can be called robust stable
as long as Amax (X (s, x)) is less than 0.
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3. The PSO algorithm

In this section, the basic PSO algorithm proposed by
Kennedy and Eberhart and our modifications based on
PSO are described.

3.1. Basic PSO algorithm

Generally, an optimization problem is given by an
objective function f(x) to be optimized with respect to
the design variable x € R™, as follows:

1}1(161?f(x), F={xeR"} (8)

where the objective function f : R” — R, and the initial
search space D C R™, which is supposed to contain the
desired design parameters x;(i = 1,2, ...,m) given in
advance.

The basic PSO algorithm uses a swarm consisting of
n, particles (i.e. x', x?, ..., x"?), randomly distributed in
the considered initial search space D, to obtain an opti-
mal solution x* € R™.

At every iteration k, the position of the ith particle
and its velocity are denoted, respectively, as xf? =
(xﬁl,xﬁz, ...,xﬁm)T € R™ and Vf = (vifl,vffz, ...,vﬁm)T
€ R™ where (i,k) € [1,n,] x [1, kpax]. The values of
Xkand V¥ are modified based on the following update
rules:

k+1 ko kel
X7 =X 4V )

(10)

k1 _ ok k ((bestk Lk ko bestk _ k

Vi =wyptar; (xi - xi) +ary; (xsve\;rm - xi)
where the inertia factor w represents the particle
motion inertia, can be described as

(11)

W = Wnax — (Wmax - Wmin) k—
max

where Wiax and W, represent the maximum and mini-
mum inertia factor values, respectively, kpq. represents
the maximum iteration.

The cognitive scaling factor ¢; and the social scaling
factor ¢, given in advance, represent the influence of
individual behaviour and group behaviour on the parti-
cle, respectively. rlfvi and r%; are randomly uniformly dis-
tributed in [0, 1] and represent the stochastic
behaviours. In formula (10), x?eSt’k denotes the best pre-
viously obtained position of the ith particle and x>tk
denotes the best one in the entire swarm at the current
iteration k.

Then, the PSO algorithm consists of the following

steps:

Step [1]: Define all PSO algorithm parameters such
as swarm size n,, inertia factor w, cognitive ¢,
and social scaling factors ¢, etc.

Step [2]: Randomly initialize each particle’s position
within the search space D and calculate the
objective function . Set k = 0.

Step [3]: Determine x"***and x?%\X | If the termina-
tion criterion is satisfied, the algorithm termi-
nates with the solution x* := x2%Uk | otherwise,
go to Step [4].

Step [4]: Apply formulas (9) and (10) to all particles
and evaluate the corresponding objective func-
tional values at each position. Increase the itera-

tion number k and then go to Step [3].

3.2. Proposed PSO algorithm

It is crucial to handle the given constraint conditions in
optimization-based  controller ~design  problems.
Although there are a variety of effective approaches to
process the above constraints, the following two are
relatively representative. One augments the cost func-
tion with adaptive penalty functions, which is pro-
posed by Cai Hairan [14]. Another augmented
Lagrangian PSO (ALPSO) algorithm, which is devel-
oped by Sedlaczek and Eberhard. However, as men-
tioned in Section 1, these two methods have some
shortcomings. To overcome these shortcomings, in
this subsection, a novel way based on the PSO algo-
rithm is introduced.

The optimization problem subject to multiple con-
straints can be formulated as

min f (x) (12)
where F = {x € R" | h(x) <0}, h(x) := [h;(x), hy(x),
ceeey By (X))

The function h(x), (R™ — R") denotes the con-
straints and F represents the allowing region. It is
assumed that min,cgm f,(x) is not empty. In order to
simplify multiple constraints, we change the restric-
tions by taking the minimum one, which requires no
additional new parameters, and the new constraint can
be described as

min £, (x) (13)
with
T Poex(v)
(arctan(f(x)) + =+ 1) if Bpax(x) >0
ful) = 2
arctan(f (x)) — 5 otherwise
(14)

where f(x) is the original objective function, .y (x) :=
max|[h (x), hy(x), ..., h,(x)] denotes the maximum viola-
tion. It overcomes the disadvantage of the PSO with adap-
tive penalty functions, which considers all constrains all
time, and only part of constraints may not meet at some



iterations. We can see that the PSO algorithm with adap-
tive penalty functions needs more time to calculate, but in
fact it is less unnecessary. What is more, it is obviously
that all the constraint conditions will be satisfied if the
worst constraint has been satisfied, so it is convenient and
reasonable to take maximum violation instead of all the
constraints.

arctan(f (x)) is adopted to ensure that f,,(x) and f(x)
have the consistent characteristics of increase or
decrease. What is more, when the particles are out of the
feasible region (ie. hpma(x) > 0), we select an index
form to integrate the objective function and constraint
conditions, which enhances the ability of particle’s global
search ability, and improves the ability of finding
optimal solutions when time tends to end. The aim
of adding 5+ 1 to arctan(f(x)) is to guarantee that
all particles can be put in the feasible region,
which means if Hpma(x5"!) < hpax(6;F), we can get
Som (x*1) < Jom (x{). When all of the particles are in the
feasible region, namely hp.(x) <0, as all constrains
meet the requirements, we only take the original objec-
tive function f(x) into considers. 7 is subtracted to give
the new method the guarantee that each particle tries to

return to the feasible region due to the following impor-
k

tant feature: once x;moves into the feasible region, then
fim (xf‘) < 05 hence, if xf-‘ evolves according to (9) and (10)
and leads Ay (x511) > 0, namely f,, (x*™1) < 0. Because

Fu(xF) <0 <1 < f, (x5, x:’eSt"kHand xPetRHL remain
within the feasible region, as a result, each particle also
tends to return to the feasible region.

It is obvious that we can obtain a new solution of
the constrained optimization problem by replacing the
original f(x) to f,(x). What is more, it overcomes the
shortage of ALPSO. In the next section, we will test the

performance of our proposed algorithm.

4. Application to test functions

Since the nonlinear optimization algorithms cannot be
proved theoretically now, we can only compare the
experimental results with other algorithms. In order to
verify the performance of the proposed constrained
PSO algorithm, we chose 12 single objective optimiza-
tion problems with inequality constraints used in [19],
which are widely employed in the constraint optimiza-
tion problems. In addition to the two algorithms men-
tioned above, we also use a representative genetic
algorithm called rough penalty genetic algorithm
(RPGA) in [20] as a comparison.

All the four algorithms are implemented in Mat-
lab7.8 and the simulations are performed on a com-
puter with an Intel Core 15-4590 @ 3.3 GHz CPU and
4 GB of RAM in Windows 7 environment.

Each task runs 30 times, and the termination crite-
rion is based on the maximum number of iteration
which is chosen as K, = 1000. The maximum and

AUTOMATIKA 315

the minimum inertia factor values are chosen as
Winax = 0.9, Wiin = 0.4, respectively, swarm size is
fixed as 30. And the RPGA employs a stochastic uni-
versal selection and its crossover probability and muta-
tion probability are 0.95 and 0.05, respectively.

Test results are shown in Table 1. We can see that
the simple constrained PSO algorithm proposed in this
paper has superior performance than other algorithms.
What is more, the success ratio is significantly higher
than the standard penalty function PSO algorithm,
ALPSO algorithm and RPGA algorithm. Both the final
optimization results and distribution characteristics
are better than the other three algorithms.

The results of the execution are also shown in
Figures 3 and 4. Because the Adaptive PSO is not
applicable for G02 and ALPSO is the same for
G09, functions G02 and G09 have three compared
convergence curves, respectively. It is observed that
the simple constrained PSO algorithm proposed in
this paper performs better than other three algo-
rithms in both G02 and G09. What is more, it was
also noted that our proposed algorithm has a better
converge speed. The computation time of the pro-
posed algorithm is also presented, shown in
Table 2.

5. Application to an air-to-air missile control

In this section, a sample missile longitudinal Raytheon
control structure is introduced, we present the optimi-
zation results of three PSO versions and a RPGA ver-
sion, comparisons between the four algorithms are
provided. The final result also shows the superiority of
our proposed algorithm.

A sample missile’s longitudinal channel state space
model is chosen, which works under the following
states: 15,000 m altitude, 2.8 Mach and a 40 degree
angle of attack. The state equation can be described as

. 0.091 0.042 9.760 12.109
u u 0.299
K 0.203 0.588 92.06 0
w w 2.431
.| = 10.041 0.746 98.72 0 . e
q q 4.201
. 0.034 0.112 1.314 0
o o 0
0 0 0.121 2.513

The output equation can be formulated as

—1.276 —2.487
+{ 0 }.36

A [0.384 1.033 0
qg] | o 0 57295 0]

LN 3z o=

where u . w are the velocity components along the
body axes x;, z;, respectively, « is angle of attack, g is
pitch rate, A, is normal overload, 8, is equivalent eleva-
tor angle.
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Table 1. Test results of four kinds of constrained optimization algorithms.

No. Dimension Known extremum Test algorithm Success ratio (%) Optimal value Worst value Mean value Variance
GO1 13 —15.00 Adaptive PSO 100 —15 —15 —15 0
ALPSO 16 —14.933 —14.878 —14.89552 0.133243
RPGA 100 —15 —15 —15 0
Novel PSO 100 —15 —15 —15 0
G02 20 —0.804 Adaptive PSO 0 N/A N/A N/A N/A
ALPSO 96 —0.75214 —0.71495 —0.7397 0.000991
RPGA 100 —0.77384 —0.71895 —0.75185 0.003045
Novel PSO 100 —0.7851 —0.71678 —0.78327 0.001975
G04 5 —30,666 Adaptive PSO 0 N/A N/A N/A N/A
ALPSO 0 N/A N/A N/A N/A
RPGA 0 N/A N/A N/A N/A
Novel PSO 18 —28,337 —26,545 —27,510 0.016639
G06 2 —6962 Adaptive PSO 0 N/A N/A N/A N/A
ALPSO 0 N/A N/A N/A N/A
RPGA 0 N/A N/A N/A N/A
Novel PSO 63 —5734.17 —1966.06 —3500.69 1109.2
G07 10 24.31 Adaptive PSO 0 N/A N/A N/A N/A
ALPSO 11 24.2226 1713.201 1012.656 724
RPGA 15 24.3335 1921.731 1129.835 70.8
Novel PSO 62 24.4495 1517.915 817.776 38.6
G08 2 —0.096 Adaptive PSO 0 N/A N/A N/A N/A
ALPSO 0 N/A N/A N/A N/A
RPGA 0 N/A N/A N/A N/A
Novel PSO 19 —0.09571 —0.0785 —0.0898 0.35
G09 7 680.6 Adaptive PSO 100 680.6 680.6 680.6 0
ALPSO 0 N/A N/A N/A N/A
RPGA 100 680.6 680.6 680.6 0
Novel PSO 100 680.6 680.6 680.6 0
G10 8 7049 Adaptive PSO 0 N/A N/A N/A N/A
ALPSO 0 N/A N/A N/A N/A
RPGA 0 N/A N/A N/A N/A
Novel PSO 72 8408.19 26738.14 21824.9 71045
G12 3 —1.000 Adaptive PSO 100 -1 —1 —1 0
ALPSO 100 -1 —1 —1 0
RPGA 100 -1 —1 -1 0
Novel PSO 100 —1 —1 —1 0
G18 9 —0.866 Adaptive PSO 70 0 0 0 0
ALPSO 0 N/A N/A N/A N/A
RPGA 50 0 0 0 0
Novel PSO 50 —0.838 0 —0.2 0.0278
G19 15 32.66 Adaptive PSO 0 N/A N/A N/A N/A
ALPSO 0 N/A N/A N/A N/A
RPGA 0 N/A N/A N/A N/A
Novel PSO 12 32.68 137.83 38.95 22744
G24 2 —5.508 Adaptive PSO 100 —5.508 —5.508 —5.508 0
ALPSO 100 —5.508 —5.508 —5.508 0
RPGA 100 —5.508 —5.508 —5.508 0
Novel PSO 100 —5.508 —5.508 —5.508 0
Table 2. Average computation time (G01-G24).
Function GO1 G02 G04 G06 G07 G08 G09 G10 G12 G18 G19 G24
Times (ms) 3.80 418 2.14 1.16 2.44 1.62 243 2.80 1.40 2.59 2.80 1.14
The bold numbers indicate the time for each iteration.
4
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Figure 3. Convergence curves of ALPSO and Novel PSO and
RPGA for function G02.

Figure 4. Convergence curves of Adaptive PSO and Novel PSO
and RPGA for function G09.



Table 3. Longitudinal channel step response performance
index.

Performance tr 0% tp ts ess
Index 0.3s 15% 0.7s 1s 5%

Figure 5. Sample missile longitudinal Raytheon control structure.

In order to ensure the generality, this paper selects the
classic Raytheon controller as the sample missile con-
trol structure, and its longitudinal control structure is
shown in Figure 5.

The time domain performance index of the sample
missile longitudinal channel is shown in Table 3.

We can see that the missile fixed-structure © con-
troller design problem is much more complex than the
test functions. However, with our proposed algorithm,
the parameters can be simply taken as

e Swarm size: 20

e Swarm dimension: 4

o Maximum swarm speed: Vinaxd = Xmaxd/2 i = 1..4,
e Learning factors: c; = 2,6, =2
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e The maximum and minimum of inertia coeffi-
cient: Wy = 0.9, Whin = 0.4

Also for RPGA, the parameters can be taken as

Popsize: 20

Individual dimension: 4
Crossover probability: 0.9
Mutation probability: 0.05

Each task runs 50 times and the constraints are
listed in table (2). What is more, we introduce the
parameter “u” as a robust performance constraint.
The optimization results based on four different algo-
rithms are shown in Tables 4-6.

As shown in Tables 4-7, the p value obtained by
PSO algorithm with adaptive penalty function is the
biggest, and the minimum p value is greater than 1,
which shows that the controller has poorest robust-
ness. The ALPSO algorithm’s overall performance
takes second place. The RPGA is about the same with
ALPSO. Simple constraint PSO algorithm presented in
this paper has the best performance and the traditional
amplitude and phase margin index. The convergence
curves of objective function based on the three PSO
algorithms are shown in Figures 6-9.

From Figures 6-9, we can see that simple constraint
PSO algorithm proposed in this paper has the best sta-
tistical convergence characteristics. And that we obtain
the best optimum result: iy = 0.97, K5 = 0.2, K4 = 2.44,

Table 4. Statistical analysis of optimization results: PSO with adaptive penalty functions-design case.

K5 K4 KO iy Pm Gm "
Maximum 0.426139 5.446269 0.804308 0.974 52.14646 20.37846 3.376226
Minimum 0.197782 2.659609 0.401655 0.974 41.91909 14.36969 1.079223
Average 0.307782 4.017192 0.618247 0.974 49.52932 16.83758 1.59549
Variance 0.003391 0.524464 0.012105 0 4.990968 2.622232 0.143544
Table 5. Statistical analysis of optimization results: ALPSO-design case.
K5 K4 ) iy Pm Gm ©
Maximum 0.45335 5.14782 0.957044 0.974 55.71681 20.39364 2.637763
Minimum 0.200236 2.402963 0.406267 0.974 45.92925 12.81485 0.988533
Average 0.2816 3.280196 0.587651 0.974 51.61155 17.45787 1.194117
Variance 0.005556 0.649556 0.027371 0 6.555494 5.296641 0.118109
Table 6. Statistical analysis of optimization results: RPGA-design case.
K5 K4 KO iy Pm Gm n
Maximum 0.432745 5.305936 0.924359 0.974 55.79524 20.42399 2.898844
Minimum 0.216643 2.372155 0.408335 0.974 42.09922 13.08642 0.951545
Average 0.273813 3.643545 0.617537 0.974 50.89723 17.65566 1.236918
Variance 0.003996 0.452355 0.021436 0 6.192434 5.036654 0.107466

Table 7. Statistical analysis of optimization results: the proposed PSO-design case.

K5 K4 KO iy Pm Gm m
Maximum 0.410577 4.667844 0.879264 0.974 55.88111 20.47188 2.517808
Minimum 0.203696 2433613 0.41349 0.974 46.29897 14.58738 0.890642
Average 0.266061 3.104618 0.549285 0.974 51.98557 17.93639 1.065869
Variance 0.002964 0.337044 0.013827 0 6.107922 3.040519 0.070271
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Fitness Value

Iteration

Figure 6. Objective function convergence curve — PSO with
adaptive penalty function.
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Figure 7. Objective function convergence curve — ALPSO.
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Figure 8. Objective function convergence curve — RPGA.
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Figure 9. Objective function convergence curve — PSO pre-
sented in this paper.

KO = 0.41, which is shown in Table 6. Moreover, we
present a closed-loop system robust simulation verifi-
cation structure, which is shown in Figure 10. The
model uncertainty function and the noise interference
are taken as: win: 2-(s + 3.2) /(s + 160), acceleration
meter noise: 1%; angular rate gyro noise: 0.1%, respec-
tively, which can be seen in reference [15].

The frequency domain and time domain perfor-
mance of the closed-loop control system are analysed
as follows:

(1) Performance analysis in frequency domain
(a) Robust stability analysis

As shown in Figure 10, if we only consider the
response of Z1, we can see that the upper bound of the
structure singular value of the transfer function from
D1 to Z1 is always below 0.3, which is shown in
Figure 11, and shows its good robust stability.

(b) Robust performance analysis

The performance of the system under the action of
the external input and the multiplicative uncertainties
is investigated. As shown in Figure 11, the structure
singular value is also below 1, which indicates that the
robust performance of the system also meets the robust
performance requirements.

(2) Performance analysis in time domain
(a) Unit step response of nominal system

Figure 12 shows the step response of the nominal sys-
tem. We can see that the simulation results meet the time

domain performance requirements shown in Table 3.

(b) Unit step response of perturbed system
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Figure 12. The nominal performance response curve.

Figure 13. The perturbation system performance curve.

The step response under the external input and the
uncertainty is shown in Figure 13. It shows that the
perturbation system also has a good time domain
performance.

6. Conclusion

In this paper, we have proposed a new algorithm based
on PSO (denoted as simple constraint PSO) and apply
it to fixed-structure p controller design. A new con-
straint strategy is introduced and it solves the short-
comings of traditional methods. What is more, we test
our proposed algorithm on a set of 12 benchmark
functions widely used and a comparison is made with
other algorithms. The simulation results show that our
proposed algorithm has an absolute advantage. Second,
we apply our algorithm to the missile fixed-structure u
controller design progress, and also get the best results
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than other algorithms. At last, we provide an analysis
of the robustness of the system, and show its good
robust performance.
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