MATHEMATICAL COMMUNICATIONS

Factorial-like values in the balancing sequence

Nurettin Irmak $^{1, *}$, Kálmán Liptai ${ }^{2}$ and László Szalay ${ }^{3,4}$
${ }^{1}$ Art and Science Faculty, Mathematics Department, Ömer Halisdemir University, Niğde TR-51 240, Turkey
${ }^{2}$ Institute of Mathematics and Informatics, Facutly of Natural Sciences, University of Eger, H-3 300, Eger, Hungary
${ }^{3}$ Department of Mathematics and Informatics, J. Selye University, SK-501 026 Komarno, Slovakia
${ }^{4}$ Institute of Mathematics, University of West Hungary, H-9 401 Sopron, Hungary

Received May 11,2017; accepted October 24, 2017

Abstract

In this paper, we solve a few Diophantine equations linked to balancing numbers and factorials. The basic problem consists of solving the equation $B_{y}=x$! in positive integers x, y, which has only one nontrivial solution $B_{2}=6=3$!, as a direct consequence of the theorem of F. Luca [5]. A more difficult problem is to solve $B_{y}=x_{2}!/ x_{1}!$, but we were able to handle it under some conditions. Two related problems are also studied.

AMS subject classifications: 11B39, 11D72
Key words: Factorials, balancing numbers, diophantine equation

1. Introduction

The balancing sequence $\left\{B_{n}\right\}$ is given by $B_{0}=0$ and $B_{1}=1$, and by the recursive rule $B_{n}=6 B_{n-1}-B_{n-2}$ for $n \geq 2$. The $n^{t h}$ element of the associate sequence of $\left\{B_{n}\right\}$ is denoted by C_{n}, which satisfies the recurrence relation $C_{n}=6 C_{n-1}-C_{n-2}$ ($n \geq 2$), where the initial values are $C_{0}=2$ and $C_{1}=6$. The elements of the sequence $\left\{C_{n}\right\}$ are often called Lucas-balancing numbers. Note that

$$
\begin{equation*}
B_{2 n}=B_{n} C_{n} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
C_{n}^{2}-32 B_{n}^{2}=4 \tag{2}
\end{equation*}
$$

These two identities can be obtained similarly to those for Fibonacci and Lucas numbers. Observe that

$$
\begin{equation*}
B_{1}=1=1!, \quad C_{0}=2=2!, \quad B_{2}=C_{1}=6=3! \tag{3}
\end{equation*}
$$

so the question arises naturally whether there are other factorial values in $\left\{B_{n}\right\}$ or in $\left\{C_{n}\right\}$. More generally, one may claim the solutions to the Diophantine equations

$$
\begin{equation*}
B_{y}=x_{1}!\cdot x_{2}!\cdots x_{r}!, \quad C_{y}=x_{1}!\cdot x_{2}!\cdots x_{r}! \tag{4}
\end{equation*}
$$

[^0]in the positive integers x_{1}, \ldots, x_{r}, and y. Today it is an easy question since Luca ([5], Theorem 4) proved the following theorem. A Lucas sequence $\left\{u_{n}\right\}$ is a nondegenerate binary recurrence with the initial values $u_{0}=0, u_{1}=1$. Let $\mathcal{P \mathcal { F }}$ be the set of all positive integers which can be written as a product of factorials.

Theorem 1 (see [5], Theorem 4). Let $\left(u_{n}\right)_{n \geq 0}$ be a Lucas sequence. Let α and β denote the two roots of the characteristic equations. Suppose that $|\alpha| \geq|\beta|$. If $\left|u_{n}\right| \in \mathcal{P F}$, then

$$
\begin{equation*}
y \leq \max \{12,2 e|\alpha|+1\} \tag{5}
\end{equation*}
$$

The same upper bound is true for the associate sequence of $\left\{u_{n}\right\}$. Luca used deep algebraic number theoretical considerations and the Baker method.

In the case of balancing a sequence and its associate sequence, the zeros of the characteristic polynomial $x^{2}-6 x+1$ are $\alpha=3+2 \sqrt{2}$ and $\beta=3-2 \sqrt{2}$. Thus, by (5) we obtain $y \leq 32$. Using a brute force algorithm, computer search provides only (3) as all the solutions to (4). (All of them are single factorial terms.)

For the Fibonacci sequence given by $F_{0}=0, F_{1}=1$, and $F_{n}=F_{n-1}+F_{n-2}$, Luca's bound is only 53 , and $u_{y}=x_{1}!\cdot x_{2}!\cdots x_{r}!$ is fulfilled in the cases

$$
F_{1}=F_{2}=1!, \quad F_{3}=2!, \quad F_{6}=(2!)^{3}, \quad F_{12}=(2!)^{2}(3!)^{2}=3!\cdot 4!.
$$

Consider now the Tribonacci sequence defined by $T_{0}=0, T_{1}=T_{2}=1$ and by $T_{n}=T_{n-1}+T_{n-2}+T_{n-3}$. The equation

$$
T_{y}=x!
$$

was solved by Marques and Lengyel [4], and it showed that the only solutions are $(y, x)=(1,1),(2,1),(3,2),(7,4)$. Their proof is based on the determination of the 2 -adic order of Tribonacci numbers. The p-adic order of the non-zero integer n denoted by $\nu_{p}(n)$ is defined by the exponent of the highest power of prime p dividing n.

The main purpose of this paper is to investigate the solvability of three Diophantine equations linked to factorials and balancing numbers:

$$
B_{y}=\frac{x_{2}!}{x_{1}!}, \quad B_{y}=\frac{x_{2}!}{x_{1}}, \quad B_{y}=x_{1} x_{2}!
$$

in positive integers x_{1}, x_{2} and y, under some conditions on x_{1} and x_{2}.
One important argument, which will be used later, is the characterization of the 2-adic order of balancing numbers as it has been already obtained for Fibonacci numbers by Lengyel [3].

Theorem 2. For $n \geq 1$, we have

$$
\nu_{2}\left(B_{n}\right)=\left\{\begin{array}{ll}
0, & \text { if } n \equiv 1(\bmod 2) \\
1, & \text { if } n \equiv 2(\bmod 4) \\
\nu_{2}(n), & \text { if } n \equiv 0(\bmod 4)
\end{array} .\right.
$$

Precise results are formulated in the next three theorems. We note that in Theorem 3 the value $\delta=0.98$ and in Theorem 5 the value $K=10^{6}$ were choosen to carry out precise calculations. Our method, at least in theory, works for arbitrary $0<\delta<1$ and $K \geq 1$.

Theorem 3. Unless $\left(x_{1}, x_{2}, y\right)=(1,3,2)$, the Diophantine equation

$$
B_{y}=\frac{x_{2}!}{x_{1}!}
$$

in positive integers y, x_{1}, x_{2} with $x_{1}+2 \leq x_{2}$ has no solution in the folowing cases:

- $x_{1} \leq 0.98 x_{2}$, or
- $x_{1}=x_{2}-\eta$, where $\eta \in\{2,3,4\}$.

Theorem 4. The only solutions of the Diophantine equation

$$
B_{y}=\frac{x_{2}!}{x_{1}}
$$

in positive integers x_{1}, x_{2} and y with $x_{1} \leq x_{2}$ are

$$
\left(x_{1}, x_{2}, y\right)=(1,1,1),(2,2,1),(1,3,2),(4,4,2)
$$

Theorem 5. The only solutions of the Diophantine equation

$$
B_{y}=x_{1} x_{2}!
$$

in positive integers x_{1}, x_{2} and y with the condition $x_{1} \leq 10^{6} x_{2}$ are

$$
\begin{aligned}
\left(x_{1}, x_{2}, y\right)= & (1,1,1),(6,1,2),(3,2,2),(1,3,2),(35,1,3) \\
& (204,1,4),(102,2,4),(34,3,4),(1189,1,5),(6930,1,6) \\
& (3465,2,6),(1155,3,6),(40391,1,7),(235416,1,8) \\
& (117708,2,8),(39236,3,8),(9809,4,8),(1332869,3,10)
\end{aligned}
$$

2. Preliminaries

In this section, we present several lemmas which help us to prove the theorems.
Lemma 1. If $n \geq 2$, then

$$
\alpha^{n-1}<B_{n}
$$

where α is the larger zero in absolute value of the characteristic polynomial of the sequence $\left\{B_{n}\right\}$.

Proof. See Lemma 4 in [1].
Theorem 2 is an immediate consequence of the following lemma; it states a bit more when 4 does not divide n.

Lemma 2. Let n be a positive integer.

1. $B_{n} \equiv n(\bmod 4)$.
2. Let $n=2^{s} r$ for some integers $s \geq 2$ and odd r. Then $B_{2^{s} r} \equiv 2^{s} r\left(\bmod 2^{s+1}\right)$.

Proof. (1) It is an easy consequence of considering the sequence of balancing numbers B_{n} modulo 4.
(2) We use induction on s. Assume $s=2$. The balancing sequence modulo 8 begins with

$$
0,1,6,3,4,5,2,7,0,1, \ldots
$$

Clearly, the length of the period is 8 and $B_{4 r} \equiv 4 \equiv 4 r(\bmod 8)$ (note that here r is odd).

Suppose that the statement is true for some $s \geq 2$ and r odd, i.e. $B_{2^{s} r}=$ $2^{s} r+2^{s+1} k$ holds for some positive integer k. It is easy to see that $C_{n} \equiv 2(\bmod 4)$. Thus $C_{n}=4 u_{n}+2$ for some positive integer sequence $\left\{u_{n}\right\}$. Applying identity (1), we have

$$
\begin{aligned}
B_{2^{s+1} r} & =C_{2^{s} r} B_{2^{s} r}=\left(4 u_{2^{s} r}+2\right)\left(2^{s} r+2^{s+1} k\right) \\
& =2^{s+1} r+2^{s+2}\left(k+u_{2^{s} r} r+2 u_{2^{s} r} k\right) \\
& \equiv 2^{s+1} r\left(\bmod 2^{s+2}\right)
\end{aligned}
$$

and the proof of the lemma is complete (and Theorem 2 follows).

Let $s_{p}(k)$ denote the sum of the base- p digits of the positive integer k.
Lemma 3 (Legendre). For any integer $k \geq 1$ and p prime, we have

$$
\nu_{p}(k!)=\frac{k-s_{p}(k)}{p-1} .
$$

Proof. See [2].

The result of Legendre has the following consequence.
Corollary 1. For any integer $k \geq 2$ and prime p the inequalities

$$
\frac{k}{p-1}-\frac{\log k}{\log p}-1 \leq \nu_{p}(k!) \leq \frac{k-1}{p-1}
$$

hold.
Proof. Consider the maximal and minimal values of $s_{p}(k)$, respectively.

3. General approach to the proofs

This approach does not affect the problem $B_{y}=x_{2}!/ x_{1}!$ with $x_{2}-x_{1}=c, c \in$ $\{1,2,3\}$.

For a given positive integer r and the integer valued function $f\left(x_{1}, x_{2}, \ldots, x_{r}\right)$ we would like to solve the Diophantine equation

$$
\begin{equation*}
B_{y}=f\left(x_{1}, x_{2}, \ldots, x_{r}\right) \tag{6}
\end{equation*}
$$

in the positive integers y, x_{1}, \ldots, x_{r}. Recall Theorem 2 to remind us that the value $\nu_{2}\left(B_{n}\right)$ is rather small. If we are able to give a "good" lower bound for the "sufficiently large" $\nu_{2}\left(f\left(x_{1}, x_{2}, \ldots, x_{r}\right)\right)$, meanwhile we can provide a "good" upper bound for $f\left(x_{1}, x_{2}, \ldots, x_{r}\right)$, then there is a chance to bound the variables. More precisely, Lemma 1 leads to

$$
y<1+\frac{\log f\left(x_{1}, x_{2}, \ldots, x_{r}\right)}{\log \alpha}
$$

starting from (6). Theorem 2 implies

$$
\nu_{2}\left(f\left(x_{1}, x_{2}, \ldots, x_{r}\right)\right)=\nu_{2}\left(B_{y}\right) \leq \nu_{2}(y) \leq \frac{\log y}{\log 2}
$$

Combining the last two formulas, we obtain

$$
\begin{equation*}
\nu_{2}\left(f\left(x_{1}, x_{2}, \ldots, x_{r}\right)\right)<\frac{1}{\log 2} \log \left(1+\frac{\log f\left(x_{1}, x_{2}, \ldots, x_{r}\right)}{\log \alpha}\right) \tag{7}
\end{equation*}
$$

We succeed if the comparison of the two sides bounds the variables. This will happen in the following cases:

1. $f\left(x_{1}, x_{2}\right)=x_{2}!/ x_{1}$!, with the condition $x_{1} \leq \delta x_{2}$ for some $0<\delta<1$,
2. $f\left(x_{1}, x_{2}\right)=x_{2}!/ x_{1}$ with $x_{1} \leq x_{2}$,
3. $f\left(x_{1}, x_{2}\right)=x_{1} x_{2}$! with the restriction $x_{1} \leq K x_{2}$ for some positive integer $1 \leq K$.

4. Proof of the theorems

4.1. Proof of Theorem 3

Case 1. $x_{1}+2<x_{2}$ and $x_{1} \leq \delta x_{2}$ with a fixed $0<\delta<1$.
Assume that the positive integer solutions x_{1}, x_{2} and y satisfy $x_{1}+2<x_{2}$ and $x_{1} \leq \delta x_{2}$ with a fixed $0<\delta<1$.

Corollary 1 provides

$$
\begin{aligned}
\nu_{2}\left(\frac{x_{2}!}{x_{1}!}\right) & =\nu_{2}\left(x_{2}!\right)-\nu_{2}\left(x_{1}!\right) \geq x_{2}-\frac{\log x_{2}}{\log 2}-1-\left(x_{1}-1\right) \\
& \geq(1-\delta) x_{2}-\frac{\log x_{2}}{\log 2}
\end{aligned}
$$

On the other hand,

$$
\frac{x_{2}!}{x_{1}!} \leq x_{2}!\leq\left(\frac{x_{2}}{2}\right)^{x_{2}}
$$

follows where we applied the well-known identity $k!\leq(k / 2)^{k}$. The preparation till now enables us to apply (7). It leads to

$$
\begin{equation*}
(1-\delta) x_{2}-\frac{\log x_{2}}{\log 2}<\frac{1}{\log 2} \log \left(1+\frac{x_{2} \log \left(x_{2} / 2\right)}{\log \alpha}\right) \tag{8}
\end{equation*}
$$

For fixed δ, it provides an upper bound for x_{2}. Indeed, if x_{2} is large enough, the lefthand side of (8) is positive, further the leading term is linear, while the right-hand side is approximately logarithmic in x_{2}. For instance, if $\delta=49 / 50$, then $x_{2} \leq 1102$. Making a simple computer verification in the range $3<x_{2} \leq 1102,1 \leq x_{1} \leq x_{2}-2$, $x_{1} \leq 49 / 50 x_{2}$, according to (2), we find a balancing number if

$$
\sqrt{8\left(\frac{x_{2}!}{x_{1}!}\right)^{2}+1}
$$

is an integer. It occurs only in the case $\left(x_{1}, x_{2}\right)=(1,3)$, which gives $B_{y}=6$, and then $y=2$. Taking another example, say $\delta=1-10^{-6}$, we obtain $x_{2}<5.5 \cdot 10^{7}$. This bound is too large, even to check possible cases by a computer!
Case 2. $x_{1}=x_{2}-2$.
We have to solve $B_{y}=x_{2}\left(x_{2}-1\right)$. Put $z=C_{n}$. Then $z^{2}=32 x_{2}^{2}\left(x_{2}-1\right)^{2}+4$ via $z_{1}=z / 2$ leads to the equation

$$
z_{1}^{2}=8 x_{2}^{4}-16 x_{2}^{3}+8 x_{2}^{2}+1
$$

To this equation, the Magma procedure

$$
\text { IntegralQuarticPoints }([8,-16,8,0,1]) \text {; }
$$

determines the solutions

$$
\left(x_{2}, z_{1}\right)=(-2, \pm 17),(0, \pm 1),(1, \pm 1),(3, \pm 17)
$$

Only the last one provides solution to $B_{y}=x_{2}\left(x_{2}-1\right)$, namely $B_{2}=6=3 \cdot 2$, i.e. $\left(x_{2}, y\right)=(3,2)$.

Case 3. $x_{1}=x_{2}-3$.
Now, our task is to solve $B_{y}=x_{2}\left(x_{2}-1\right)\left(x_{2}-2\right)$. Let $z=C_{n}$ and $t=x_{2}-1$. Then we have

$$
z^{2}=32(t-1)^{2} t^{2}(t+1)^{2}+4=32\left(t^{2}-1\right)^{2} t^{2}+4
$$

Applying $z=2 z_{1}$ and $t_{1}=t^{2}$, and multiplying the equation by 3^{6}, together with $t_{1}=(T-4) / 6$, we arrive at the elliptic equation

$$
\begin{equation*}
\left(27 z_{1}\right)^{2}=T^{3}-108 T+1161 \tag{9}
\end{equation*}
$$

We used Magma (E:=EllipticCurve([-108, 1161]); IntegralPoints(E);) to solve (9), and we got

$$
\left(T, 27 z_{1}\right)=(-12, \pm 27),(-2, \pm 37),(6, \pm 27),(15, \pm 54),(60, \pm 459)
$$

None of them gives a solution to $B_{y}=x_{2}\left(x_{2}-1\right)\left(x_{2}-2\right)$ with the given conditions.
Case 4. $x_{1}=x_{2}-4$.
The corresponding equation is $B_{y}=x_{2}\left(x_{2}-1\right)\left(x_{2}-2\right)\left(x_{2}-3\right)$. Put $z=C_{n}$. Then $z^{2}=32 x_{2}^{2}\left(x_{2}-1\right)^{2}\left(x_{2}-2\right)^{2}\left(x_{2}-3\right)^{2}+4$ via $z_{1}=z / 2$ and $t=x_{2}^{2}-3 x_{2}+1$ leads to

$$
z_{1}^{2}=8 t^{4}-16 t^{2}+9
$$

IntegralQuarticPoints ([8,0, $-16,0,9]$); returns with

$$
\left(t, z_{1}\right)=(\pm 6, \pm 99),(\pm 1, \pm 1),(0, \pm 3)
$$

Clearly, none of them leads to a solution of $B_{y}=x_{2}\left(x_{2}-1\right)\left(x_{2}-2\right)\left(x_{2}-3\right)$.

4.2. Proof of Theorem 4

Here $f\left(x_{1}, x_{2}\right)=x_{2}!/ x_{1}$ assuming $x_{1} \leq x_{2}$. Thus

$$
\nu_{2}\left(B_{y}\right)=\nu_{2}\left(x_{2}!/ x_{1}\right)=\nu_{2}\left(x_{2}!\right)-\nu_{2}\left(x_{1}\right) \geq x_{2}-1-2 \frac{\log x_{2}}{\log 2}
$$

Further

$$
\frac{x_{2}!}{x_{1}} \leq x_{2}!\leq\left(\frac{x_{2}}{2}\right)^{x_{2}}
$$

follows. Putting them together to apply (7), we obtain

$$
x_{2}-1-2 \frac{\log x_{2}}{\log 2}<\frac{1}{\log 2} \log \left(1+\frac{x_{2} \log \left(x_{2} / 2\right)}{\log \alpha}\right) .
$$

It provides $2 \leq x_{2} \leq 11$. Lastly, we checked the possible values of x_{1} and x_{2}, and found three solutions.

4.3. Proof of Theorem 5

Now we study the function $f\left(x_{1}, x_{2}\right)=x_{1} x_{2}$! with the restriction $x_{1} \leq K x_{2}$, where $K=10^{6}$.

$$
\nu_{2}\left(B_{y}\right)=\nu_{2}\left(x_{1} x_{2}!\right)=\nu_{2}\left(x_{1}\right)+\nu_{2}\left(x_{2}!\right) \geq x_{2}-1-\frac{\log x_{2}}{\log 2}
$$

follows by Corollary 1. Also,

$$
x_{1} x_{2}!\leq x_{1}\left(\frac{x_{2}}{2}\right)^{x_{2}}
$$

holds, so together with (7) we have

$$
\begin{aligned}
x_{2}-1-\frac{\log x_{2}}{\log 2} & <\frac{1}{\log 2} \log \left(1+\frac{\log x_{1}+x_{2} \log \left(x_{2} / 2\right)}{\log \alpha}\right) \\
& \leq \frac{1}{\log 2} \log \left(1+\frac{\log K+\log x_{2}+x_{2} \log \left(x_{2} / 2\right)}{\log \alpha}\right)
\end{aligned}
$$

The solution of the inequality above for $K=10^{6}$ is $x_{2} \leq 8$. A computer verification for $B_{y}=x_{1} x_{2}$! returns 18 solutions described in the theorem.

References

[1] M. Alp, N. Irmak, L. Szalay, Balancing Diophantine Triples, Acta Univ. Sapientiae 4(2012), 11-19.
[2] A. M. Legendre, Theorie des Nombres. Firmin Didot Freres, Paris, 1830.
[3] T. Lengyel, The order of the Fibonacci and Lucas numbers, Fibonacci Quart. 33(1995), 234-239.
[4] T. Lengyel and D. Marques, The 2-adic order of the Tribonacci numbers and the equation $T_{n}=m!$, J. Integer Seq. 17(2014), Article 14.10.1.
[5] F. Luca, Products of factorials in binary recurrence sequences, Rocky Mountain J. Math. 29(1999), 1387-1411.

[^0]: *Corresponding author. Email addresses: nirmak@ohu.edu.tr (N. Irmak), liptaik@gemini.ektf.hu (K.Liptai), szalay.laszlo@uni-sopron.hu (L. Szalay)

