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Abstract. In this paper, we study reducibility of a certain class of parabolically induced
representations of p-adic Hermitian quaternionic groups. We use Jacquet modules tech-
niques and the theory of R-groups to extend reducibility results of Tadić for split classical
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1. Introduction

The purpose of this note is to extend the results of Tadić [24] regarding reducibility
of parabolically induced representations of split symplectic and special orthogonal
groups over a p-adic field to the case of arbitrary p-adic Hermitian quaternionic
groups. Hermitian quaternionic groups over a p-adic field F are the isometry groups
of Hermitian and antihermitian forms on finite-dimensional right vector spaces over
the quaternion division algebra D central over F . These are classical groups, and
their structure resembles the structure of split classical groups, but they are not
quasi-split. See [12] for a classification of such groups.

Parabolic induction is one of the most important constructions of representa-
tions of reductive groups. Hence, reducibility of parabolically induced representa-
tions is always among the first steps in the study of the representation theory for a
given group. In the case of split and quasi-split classical groups over a p-adic field,
parabolic induction was studied extensively by many authors, among which Bern-
stein and Zelevinsky [2, 27], Harish-Chandra [9], Casselman [4], Knapp and Stein
[10], Shahidi [15, 16, 17], Silberger [18], and Tadić [22, 23, 24, 25]. Many techniques
and approaches to the reducibility question have been developed in that context.
However, since Hermitian quaternionic groups are not quasi-split, we must choose
our methods carefully, as some of them, such as Shahidi’s theory of automorphic
L-functions [16], are not available in our setting.
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In this paper, we study reducibility of representations of p-adic Hermitian quater-
nionic groups that are parabolically induced from cuspidal and (essentially) square-
integrable representations of the Levi factors of standard parabolic subgroups. With
slight modifications, the results are very much parallel to the reducibility results of
Tadić [24]. The proofs rely on the theory of R-groups [6, 10], extended to cover the
case of Hermitian quaternionic groups and Jacquet module techniques, in particular
the structural formula [23], which may be applied to any classical p-adic group.

The paper is organized as follows. In Section 2, we introduce the p-adic Her-
mitian quaternionic groups and their structure. Section 3 recalls some basic facts
from representation theory of reductive p-adic groups. In Section 4, the theory of
Jacquet modules is introduced and the main technical tools are verified in the case of
Hermitian quaternionic groups. Section 5 contains the results regarding reducibility
of certain parabolically induced representations of Hermitian quaternionic groups.

2. Hermitian quaternionic groups

In this section, we define the Hermitian quaternionic groups considered in the paper
and recall their structure. The main references are [12, 14, 7, 11].

2.1. Definition

Let F be a p-adic field, i.e., a non-archimedian local field of characteristic zero. Let
D be the unique (up to isomorphism) quaternion algebra, central over F , with an
involution τ of the first kind.

For a positive integer m, we write GL(m,D) for the group of invertible elements
of the algebra Mm(D) of m ×m matrices with entries in D. It is an inner form of
the general linear group GL(2m,F ) over F .

Let V be either Hermitian or antihermitian right vector space of dimension N
over D. We denote by ( , ) the form on V . Let X be a maximal isotropic subspace
of V . Let Y be another maximal isotropic subspace, such that X and Y form a total
polarization. Let n denote the dimension of X and Y . Then, there is a (possibly
trivial) anisotropic subspace of dimension l, orthogonal to X and Y , such that there
is a direct sum decomposition

V = X ⊕W ⊕ Y.

Note that we have N = 2n+ l.
We fix ordered bases {e1, . . . , en} and {en+1, . . . , e2n} of spaces X and Y , respec-

tively, and an ordered basis {f1, . . . , fl} of the anisotropic space W , such that

(ei, e2n+1−j) = δij ,

for i, j = 1, . . . , n, where δij is the Kronecker δ symbol. Then the form on V is given
by

(v, v′) = ǫτ
(
(v′, v)

)
, (vx, v′x′) = τ(x)(v, v′)x′,

for v, v′ ∈ V and x, x′ ∈ D, where ǫ = 1, if the form is Hermitian and ǫ = −1 if the
form is antihermitian.
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We recall the classification of Hermitian and antihermitian spaces over (D, τ)
from [12, Chapter 1]. The Hermitian spaces are completely classified by their di-
mension, while the antihermitian spaces are classified by their dimension and the
determinant of the form. The classification is summarized in Tables 1 and 2.

Dimension N Short description
2n The anisotropic space W is trivial.

2n+ 1 The anisotropic space W is the unique anisotropic
Hermitian space of dimension l = 1.

Table 1: Classification of Hermitian spaces according to [12]

Dimension N Determinant d Short description

2n d ∈ (F×)
2

The anisotropic space W is trivial.

2n+ 2 d /∈ (F×)
2

The anisotropic space W is one of 3
non-isomorphic anisotropic antiher-
mitian spaces of dimension l = 2.

2n+ 1 d /∈ −(F×)
2

The anisotropic space W is one of 3
non-isomorphic anisotropic antiher-
mitian spaces of dimension l = 1.

2n+ 3 d ∈ −(F×)
2

The anisotropic space W is the uni-
que anisotropic antihermitian space
of dimension l = 3.

Table 2: Classification of antihermitian spaces according to [12]

Let

Jn =




1

. .
.

1



 ,

and let JW be the matrix of the form restricted to W in the fixed basis for W . Then

J =




0 0 Jn
0 JW 0
ǫJn 0 0


 ,

is the matrix of the form on V in the fixed basis of V , where JW does not appear if
the anisotropic space W is trivial.

Let Gn = Gn,l(D, ǫ) be the group of isometries of the form ( , ) on V . We refer to
these groups as the Hermitian quaternionic groups and their representation theory
is the subject of this paper. The group Gn is an algebraic group defined over F of
F -rank n. The group of its F -rational points is

Gn(F ) = {g ∈ GL(N,D) | g∗Jg = J} ,

where for the matrix g = (gij) ∈ GL(N,D), the matrix g∗ is defined as (τ (gji)). The
group Gn is an inner form of the symplectic group Sp2N if the space is Hermitian,
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i.e., ǫ = 1, and an inner form of the special orthogonal group SO2N if the space is
antihermitian, i.e., ǫ = −1.

Note that if l = 0, then G0(F ) is just a trivial group. If l 6= 0, then the group
G0(F ) is an anisotropic group, and thus compact. Its irreducible representations are
finite-dimensional.

2.2. Parabolic subgroups

We fix the maximal F -split torus A0 of Gn with the group of F -rational points

A0(F ) =
{
diag(λ1, . . . , λn, Il, λ

−1
n , . . . , λ−1

1 ) |λi ∈ F×
}
,

where the identity matrix Il is omitted if l = 0. Let Φ(Gn, A0) be the relative root
system of Gn with respect to A0. It is a root system of type Bn for Hermitian
quaternionic groups of Hermitian space, i.e., for ǫ = 1, and of type Cn for Hermitian
quaternionic groups of antihermitian space, i.e., for ǫ = −1.

We fix once and for all a minimal parabolic subgroup Pmin defined over F . In our
matrix realization we may and will take Pmin to be the group of upper-triangular
matrices in Gn. Let ∆ be the set of simple roots determined by the choice of Pmin.
If εi denotes the projection to the ith component of A0, i.e.,

εi(diag(λ1, . . . , λn, Il, λ
−1
n , . . . , λ−1

1 )) = λi,

then
∆ = {α1, . . . , αn},

where αi = εi − εi+1, for i = 1, . . . , n− 1, and αn = εn if ǫ = 1, αn = 2εn if ǫ = −1.
The standard parabolic subgroups of Gn are in bijective correspondence with

subsets θ of ∆. Subsets θ of ∆ can be parameterized by sequences (α) = (n1, . . . , nk)
of positive integers such that n1 + · · · + nk ≤ n. More precisely, a sequence (α) =
(n1, . . . , nk) corresponds to the subset

θ = ∆ \ {αn1 , αn1+n2 , . . . , αn1+···+nk
}.

For θ ⊂ ∆ parameterized by a sequence (α) = (n1, . . . , nk), we write Pθ = P(α) =
M(α)N(α) for the Levi decomposition of the corresponding standard parabolic sub-
group. Then the Levi factor M(α)(F ) consists of block-diagonal matrices of the
form

diag(g1, . . . , gk, h, Jnk
(g−1

k )∗Jnk
, . . . , Jn1(g

−1
1 )∗Jn1),

where gi ∈ GL(ni, D) and h ∈ Gr(F ) with r = n−
∑k

j=1 nj a non-negative integer.
It is isomorphic to the product GL(n1, D)× · · · ×GL(nk, D)×Gr(F ). Note that if
Gn = Gn,l(D, ǫ), then Gr = Gr,l(D, ǫ), i.e., the anisotropic space remains the same.

3. Preliminaries from representation theory

In this section, we recall some basic facts from the representation theory of general
linear groups over p-adic division algebras, and rephrase in our setting the Langlands
quotient theorem. All considered representations are smooth.



On induction for Hermitian quaternionic groups 185

3.1. Parabolic induction

Let (α) = (n1, . . . , nk) be a sequence of positive integers such that
∑k

j=1 nj ≤ n,

and r = n −
∑k

j=1 nk, as above. If π1, . . . , πk are representations of the groups
GL(n1, D), . . . , GL(nk, D), respectively, and σ is a representation of Gr(F ), we de-
note by

π1 × · · · × πk ⋊ σ = Ind
Gn(F )
P(α)(F ) (π1 ⊗ · · · ⊗ πk ⊗ σ)

the representation of Gn(F ) obtained by (normalized) parabolic induction from
the representation of the Levi factor M(α)(F ) of P(α)(F ), which is isomorphic to
GL(n1, D)× · · · ×GL(nk, D)×Gr(F ).

3.2. Cuspidal reducibilities for GL(k,D)

For g ∈ GL(k,D), we let ν(g) = |RN(g)|F , where RN is the reduced norm on the
algebraMk(D) as in [14, Sect. 8.5]. For each irreducible cuspidal representation ρ of
GL(k,D), let ρ′ be the essentially square-integrable representation of GL(2k, F ) at-
tached to ρ by the local Jacquet–Langlands correspondence [5]. If ρ is an irreducible
cuspidal representation of GL(k,D), we define, as in [26], an integer

s(ρ) =

{
1, if ρ′ is cuspidal,

2, otherwise,

and we put νρ = νs(ρ).
The following theorem from [20] completely describes the cuspidal reducibility

of parabolic induction for GL(k,D).

Theorem 1. Let ρ1 and ρ2 be irreducible cuspidal representations of GL(k1, D) and
GL(k2, D), respectively. Then the induced representation ρ1 × ρ2 of GL(k1 + k2, D)
reduces if and only if k1 = k2, s(ρ1) = s(ρ2) and ρ1 ∼= ν±1

ρ2
ρ2.

3.3. Essentially square-integrable representations

Sets of the form {
ρ, νρρ, . . . , ν

m
ρ ρ

}
,

where ρ is an irreducible cuspidal representation of GL(k,D) and m a non-negative
integer, are called segments of irreducible cuspidal representations of the general
linear group over a division algebra D. The segment above is denoted by

∆ = [ρ, νmρ ρ].

According to [20], for any segment ∆, the induced representation νmρ ρ × νm−1
ρ ρ ×

· · · × νρρ× ρ has a unique irreducible subrepresentation, denoted by

δ(∆) = δ([ρ, νmρ ρ]),

and a unique irreducible quotient, denoted by

ζ(∆) = ζ([ρ, νmρ ρ]).
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Irreducible representation δ(∆) is essentially square-integrable and the representa-
tion νmρ ρ⊗ · · · ⊗ νρρ⊗ ρ appears in its Jacquet module (see Sect. 4).

For a symmetric segment [ν
−(m−1)/2
ρ ρ, ν

(m−1)/2
ρ ρ], we use a shorter notation

δ(ρ,m) = δ
(
[ν−(m−1)/2

ρ ρ, ν(m−1)/2
ρ ρ]

)
.

By [24, Sect. 9], for every α ∈ R we have ναρ δ(ρ,m) ∼= δ(ναρ ρ,m).

3.4. Langlands quotient theorem

Following [8], we describe now the Langlands classification [3] in the setting of the
Hermitian quaternionic group Gn(F ). For every essentially square-integrable rep-
resentation δ of the group GL(n,D), there exists a unique real number e(δ) and a
unique square-integrable representation δu of GL(n,D) such that

δ = νe(δ)δu.

We say that an ordered multiset (δ1, . . . , δk) of irreducible esentially square-inte-
grable representations of general linear groups over D is in standard order if e(δ1) ≥
e(δ2) ≥ · · · ≥ e(δk).

Theorem 2 (Langlands quotient theorem, see [3]). Let (δ1, . . . , δk) be an ordered

multiset of essentially square-integrable representations of general linear groups over

D in standard order and such that e(δk) > 0. Let τ be an irreducible tempered

representation of the group Gr(F ). Then the parabolically induced representation

δ1 × · · · × δk ⋊ τ

has a unique irreducible quotient, the so-called Langlands quotient, which is denoted

by L(δ1, . . . , δk; τ). It appears with multiplicity one in the parabolically induced rep-

resentation. Conversely, every irreducible representation of the group Gn(F ) is ob-

tained as a Langlands quotient in this way.

4. Jacquet modules, the structural formula and R-groups

This section forms the technical heart of the paper, as we introduce here the theory
of Jacquet modules, and check whether the structural formula and the theory of
R-groups can be applied in our setting.

Let (α) = (n1, . . . , nk) be a sequence of positive integers such that r = n −∑k
j=1 nj ≥ 0. For an irreducible admissible representation σ of the Hermitian

quaternionic group Gn(F ), we denote by s(α)(σ) the normalized Jacquet module
of σ with respect to the standard parabolic subgroup P(α).

4.1. Square-integrability criterion

We now recall from [4] (see also [8]) the Casselman’s square-integrability criterion
for irreducible admissible representations of Gn(F ).
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Let σ be an irreducible admissible representation of Gn(F ). Let P(α) be one of
the associate parabolic subgroups that are minimal in the set of standard parabolic
subgroups P of Gn with the property that the Jacquet module of σ with respect to
P is non-zero. Then every irreducible subquotient of s(α)(σ) is a cuspidal represen-
tation of M(α)(F ).

As in Section 3, for a cuspidal representation ρi of GL(ni, D), let e(ρi) be a real
number such that ρi ∼= νe(ρi)ρui , where ρ

u
i is unitary. For a cuspidal representation

ρ ∼= ρ1 ⊗ · · · ⊗ ρk ⊗ τ of the Levi factor M(α)(F ) ∼= GL(n1, D)× · · · ×GL(nk, D)×
Gr(F ), where (α) = (n1, . . . , nk), we define a character of A0 as the n-tuple

e(ρ) = (e(ρ1), . . . , e(ρ1), e(ρ2), . . . , e(ρ2), . . . , e(ρk), . . . , e(ρk), 0, . . . , 0) ∈ X(A0)⊗R,

where e(ρi) appears ni times, and 0 appears r = n −
∑k

j=1 nj times, and X(A0)
denotes the Z-module of F -rational characters of A0.

Theorem 3 (The square integrability criterion, see [4]). An irreducible admissible

representation σ of the Hermitian quaternionic group Gn(F ) is square-integrable if

and only if for every irreducible subquotient ρ = ρ1⊗· · ·⊗ρk⊗τ of the Jacquet module

s(α)(σ), where as above (α) is such that P(α) is minimal with non-zero Jacquet module

of σ, the following inequalities hold

(e(ρ), βn1+n2+···+ni
) > 0,

for all i = 1, . . . , k, where (α) = (n1, . . . , nk) and βj is the jth fundamental weight

for Gn with respect to A0.

Recall that fundamental weights form the basis dual to the basis consisting of
simple coroots for the root system of Gn with respect to A0. The ordering of
fundamental weights is consistent with the ordering of simple roots as in Section 2.
Hence, the square-integrability condition of Theorem 3 can be written explicitly as

n1e(ρ1) > 0

n1e(ρ1) + n2e(ρ2) > 0

...

n1e(ρ1) + · · ·+ nke(ρk) > 0,

where ni and e(ρi) are as introduced before the theorem was stated.

4.2. Structural formula

On the direct sum R = ⊕k≥0Rk of the Grothendieck groups Rk of the category of
smooth finite length representations of GL(k,D), there is a well-known Hopf algebra
structure [2]. The multiplication m : R ⊗ R → R is given by parabolic induction
and denoted by ×. The comultiplication m∗ : R → R ⊗ R is defined using Jacquet
modules as

m∗(π) =

k∑

i=0

s. s.(r(i,k−i)(π)),
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where π is a representation of GL(k,D), and r(i,k−i)(π) denotes the normalized
Jacquet module with respect to the standard parabolic subgroup of GL(n,D) with
the Levi factor consisting of two blocks of sizes i and k − i.

Let R(Gn) be the Grothendieck group of the category of smooth finite length rep-
resentations of the Hermitian quaternionic group Gn(F ). Let R(G) = ⊕n≥0R(Gn).
Parabolic induction gives the R-module structure on R(G), where the left multiplica-
tion by elements of R is denoted by ⋊. The comodule structure is defined in the same
way as in the case of general linear groups. The Z-linear map µ∗ : R(G) → R⊗R(G)
is defined on the basis consisting of irreducible admissible representations by

µ∗(σ) =

n∑

k=0

s. s.(s(k)(σ)),

where σ is a representation of Gn(F ), and s(k)(σ) is the Jacquet module with respect
to the parabolic subgroup corresponding to (α) = (k), and s. s. stands for semi-
simplification.

If σ is a finite length representation of Gn(F ) and (α) = (n1, . . . , nk), we consider
semi-simplification s. s.(s(α)(σ)) as an element of Rn1 ⊗ · · · ⊗ Rnk

⊗ R(Gr), where

r = n−
∑k

j=1 nj . Denote by s : R⊗R→ R⊗R a linear map given by s(π1 ⊗ π2) =
π2 ⊗ π1. We define a ring homomorphism ψ∗ : R → R⊗R by

ψ∗ = (m⊗ 1) ◦ (˜⊗m∗) ◦ s ◦m∗,

where ˜ denotes taking the contragredient.

Theorem 4 (Structural formula). For a smooth representation π of GL(k,D) of

finite length and a smooth representation σ of Gr(F ) of finite length, we have

µ∗(π ⋊ σ) = ψ∗(π)⋊ µ∗(σ).

Proof. The proof of this structural formula for µ∗ of a parabolically induced rep-
resentation is based on the Geometric Lemma [2, 27]. The filtration of Jacquet
modules is determined by representatives of minimal length of certain double cosets
in the associated Weyl groups. More precisely, we need a convenient description of
representatives of minimal length for double cosets in Wθ \W/WΩ, where W is the
Weyl group of the relative root system Φ(Gn, A0), and Wθ, for θ ⊂ ∆, is the Weyl
group of the relative root system of the Levi factor Mθ of the parabolic subgroup
Pθ with respect to A0.

Since the relative root systems of Hermitian quaternionic groups are either of
type Bn or Cn, the description of these double cosets is essentially the same as in
the case of split classical groups SO(2n+1, F ) and Sp(2n, F ). Hence, we may follow
closely the description of double cosets of [23], and the proof reduces to the proof of
Theorems 5.2 and 5.4 in loc. cit.

4.3. R-groups

The theory of R-groups is a general approach to the study of reducibility and com-
position series of representations parabolically induced from square-integrable rep-
resentations of the Levi factors. The R-group provides a combinatorial description
of the structure of the induced representations in question.
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Theorem 5 (R-groups). Let (α) = (n1, . . . , nk) be a sequence of positive integers

such that r = n−
∑k

j=1 nj ≥ 0. For j = 1, . . . , k, let δj be a square-integrable rep-

resentation of GL(nj , D) and τ a square-integrable representation of Gr(F ). Then

the induced representation

δ1 × · · · × δk ⋊ τ

of Gn(F ) decomposes into a direct sum of 2d non-isomorphic irreducible tempered

representations, where d is the number of non-isomorphic representations δj such

that δj ⋊ τ reduces.

Proof. The intertwining algebra of the induced representation is determined by its
R-group. In our case, it is isomorphic to the group algebra of the R-group. Hence,
the R-group completely determines the structure of the induced representation.

The computation of the R-group reduces to the computation in the Weyl group of
Gn. It is a subgroup of the stabilizer in the Weyl group of the inducing representation
of the Levi subgroup. The subgroup is determined by vanishing of the Plancherel
measure at zero, which is equivalent to reducibility of the representations δj ⋊ τ , as
stated in the theorem. Hence, the computation of the Weyl group essentially reduces
to the split case, which is handled in [6]. See also [7] for the result in the case of
Hermitian quaternionic groups with trivial anisotropic space.

For the convenience of the reader, we recall from [7] the action of the Weyl group
on the Levi factors and their representations. Since the Weyl group is generated
by simple reflections, it is sufficient to provide the action in the case of maximal
parabolic subgroups. Let M be the Levi factor of a maximal parabolic subgroup,
which is isomorphic to GL(k,D)×Gr(F ). It consists of block-diagonal matrices of
the form

diag
(
g, h, Jk(g

−1)∗Jk
)
,

where g ∈ GL(k,D) and h ∈ Gr(F ), as in Section 2. Then the unique non-trivial
element w of the Weyl group of Gn modulo the Weyl group of M acts as

w diag
(
g, h, Jk(g

−1)∗Jk
)
w−1 = diag

(
(g−1)∗, h, JkgJk

)
.

Hence, if σ ∼= δ ⊗ τ is an irreducible representation of M(F ), where δ and τ are
irreducible representations of GL(k,D) and Gr(F ), respectively, then its conjugate
by w is isomorphic to

σw ∼= δ∗ ⊗ τ,

where δ∗ denotes the representation of GL(k,D) given by δ∗(g) = δ((g−1)∗). How-
ever, according to [13, Lemma 1.1], the representation δ∗ is isomorphic to the con-

tragredient representation δ̃ of δ. We remark that this is where the self-duality
condition in Section 5.1 comes from.

It turns out that the R-group is a direct product of R-groups for the case of so-
called basic parabolic subgroups, which are parabolic subgroups with the Levi factor
of the form GL(m,D)l ×Gr(F ). For these, the R-group is isomorphic to (Z/2Z)dm ,
where dm is the number of non-isomorphic representations δj of GL(m,D) such that
δj ⋊ τ reduces. This gives the claim.
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5. Reducibility of induced representations - fascicule de

résultats

In this section, reducibility of certain induced representations of Hermitian quater-
nionic groups is described. The proofs are almost entirely omitted, as they follow
in the same way as in the split case, once that the applicability of technical tools is
checked in Section 4. Thus the fascicule de résultats in the section title.

Throughout this section, let ρ be an irreducible unitarizable cuspidal represen-
tation of GL(k,D), and σ an irreducible cuspidal representation of the Hermitian
quaternionic group Gr(F ).

5.1. Condition (Cα)

According to [18], if ρ is self-dual (i.e., isomorphic to its contragredient ρ̃), then
there is a unique α ≥ 0 such that the induced representation νβρ ρ⋊ σ reduces if and
only if β ∈ {±α}, where νρ is as defined in Section 3. On the other hand, if ρ is not
self-dual, then the induced representation νβρ ρ⋊ σ is irreducible for all β ∈ R.

Definition 1. We say that the pair (ρ, σ) satisfies condition (Cα), for α ≥ 0, if the
induced representation ναρ ρ⋊ σ reduces.

Observe that, if ρ is self-dual, then the pair (ρ, σ) satisfies condition (Cα) for a
unique α ≥ 0, and if ρ is not self-dual, then the pair (ρ, σ) does not satisfy (Cα) for
any α ≥ 0. If a pair (ρ, σ) satisfies (Cα) with α = 0, α = 1/2 or α = 1, we say that
it has generic cuspidal reducibility.

5.2. Generalized Steinberg representation

Suppose that the pair (ρ, σ) satisfies condition (Cα) with α > 0. Then for every
integer m ≥ 0 the induced representation

να+m
ρ ρ× να+m−1

ρ ρ× · · · × ναρ ρ⋊ σ

has a unique irreducible subrepresentation and it is square-integrable. It is called a
generalized Steinberg representation. The main properties of the generalized Stein-
berg representation are given in the following theorem.

Theorem 6. Let ρ be an irreducible unitarizable cuspidal representation of the group

GL(k,D), and let σ be a cuspidal representation of the Hermitian quaternionic group

Gr(F ). Suppose that the pair (ρ, σ) satisfies (Cα) for some α > 0, that is, ναρ ρ⋊ σ
reduces for some α > 0. Then the following holds.

(a) The representation ρ is self-dual.

(b) For all m ≥ 0, the representation

να+m
ρ ρ× να+m−1

ρ ρ× · · · × ναρ ρ⋊ σ
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has a unique irreducible subrepresentation denoted by δ([ναρ ρ, ν
α+m
ρ ρ], σ). It is

square-integrable and we have

µ∗(δ([ναρ ρ, ν
α+m
ρ ρ], σ)) =

m∑

i=−1

δ([να+i+1
ρ ρ, να+m

ρ ρ])⊗ δ([ναρ ρ, ν
α+i
ρ ρ], σ),

where we take formally that δ(∅, σ) = σ, and for the contragredient

δ([ναρ ρ, ν
α+m
ρ ρ], σ)˜= δ([ναρ ρ, ν

α+m
ρ ρ], σ̃).

(c) For all m ≥ 0, the representation

να+m
ρ ρ× να+m−1

ρ ρ× · · · × ναρ ρ⋊ σ

has a unique irreducible quotient denoted by ζ([ναρ ρ, ν
α+m
ρ ρ], σ). We have

µ∗(ζ([ναρ ρ, ν
α+m
ρ ρ], σ)) =

m∑

i=−1

ζ([ν−α−m
ρ ρ, ν−α−i−1

ρ ρ])⊗ ζ([ναρ ρ, ν
α+i
ρ ρ], σ),

where we take formally that ζ(∅, σ) = σ. In the Langlands classification

ζ([ναρ ρ, ν
α+m
ρ ρ], σ) = L(ναρ ρ, ν

α+1
ρ ρ, . . . , να+m

ρ ρ, σ),

and it can be characterized as the unique irreducible subquotient π of the in-

duced representation νm+α
ρ ρ× νm−1+α

ρ ρ× · · · × ναρ ρ⋊ σ that satisfies

s(k)m+1(π) = ν−α−m
ρ ρ⊗ ν−α−(m−1)

ρ ρ⊗ · · · ⊗ ν−α−1
ρ ρ⊗ ν−α

ρ ρ⊗ σ,

where (k)m+1 stands for the sequence (k, . . . , k) with k appearing m+1 times.

Proof. For (a) see [19]. The proof of (b) is analogous to the quasi-split case in [25,
Prop. 3.1]. Applying Aubert involution [1] to (b) gives (c).

5.3. Unitary induction of GL−type

We consider here reducibility of the induced representations δ ⋊ σ, where δ is an
irreducible square-integrable representation of GL(k,D).

Theorem 7. Let ρ be an irreducible unitarizable cuspidal representation of the group

GL(k,D), and let σ be a cuspidal representation of the Hermitian quaternionic group

Gr(F ). Then the following holds.

(a) Suppose that the pair (ρ, σ) does not satisfy (Cα) for any α ∈ 1/2 + Z. Then

the representation δ([ν
−m−1/2
ρ ρ, ν

m+1/2
ρ ρ]) ⋊ σ is irreducible for all integers

m ≥ 0.

(b) Suppose that the pair (ρ, σ) does not satisfy (Cα) for any α ∈ Z. Then the

representation δ([ν−m
ρ ρ, νmρ ρ])⋊ σ is irreducible for all integers m ≥ 0.
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(c) Suppose that the pair (ρ, σ) satisfies (C1/2). Then for all integers m ≥ 0,

the representation δ([ν
−m−1/2
ρ ρ, ν

m+1/2
ρ ρ])⋊ σ reduces to the sum of two non-

isomorphic irreducible representations.

(d) Suppose that the pair (ρ, σ) satisfies either (C0) or (C1). Then for all integers

m ≥ 1, the representation δ([ν−m
ρ ρ, νmρ ρ])⋊ σ reduces to the sum of two non-

isomorphic irreducible representations.

Proof. The proof of all claims is based on reducibility criteria for parabolically
induced representations established in [24, Section 3]. These criteria are based on
the existence of the so-called coherent decompositions of Jacquet modules introduced
in loc. cit. Since this technique is developed for arbitrary p-adic reductive groups,
it can be directly applied to the case of Hermitian quaternionic groups. The main
tools that we use are [24, Lemma 3.8] and the reducibility criterion of [24, Lemma
3.1 and Remark 3.2].

Then the proofs of (a) and (b) follow as the proofs of [24, Prop. 4.1] and [24,
Prop. 4.2]. In (c), for reducibility we use [24, Lemma 3.1 and Remark 3.2], and
the rest follows as [21, Theorem 4.2]. Claim (d) follows as [21, Theorems 5.4 and
6.4].

Using Aubert involution [1], the same theorem is obtained for representations of
the form ζ(∆) for symmetric segments ∆.

5.4. Irreducibility of some induced representations

We now consider induced representations νβρ ρ ⋊ δ(νβρ ρ, σ) and νβρ ρ ⋊ ζ(νβρ ρ, σ), for
β ∈ (1/2)Z with β ≥ 1, and induced representations δ([ρ, νρρ])⋊σ and ζ([ρ, νρρ])⋊σ.

Proposition 1. Let ρ be an irreducible unitarizable cuspidal representation of the

group GL(k,D), and let σ be a cuspidal representation of the Hermitian quaternionic

group Gr(F ). Then the following holds:

(a) Suppose that the pair (ρ, σ) satisfies (Cβ) for β ∈ (1/2)Z with β ≥ 1. Then

induced representations νβρ ρ⋊ δ(νβρ ρ, σ) and ν
β
ρ ρ⋊ ζ(νβρ ρ, σ) are irreducible.

(b) Suppose that the pair (ρ, σ) satisfies neither (C0) nor (C1). Then the induced

representations δ([ρ, νρρ])⋊ σ and ζ([ρ, νρρ])⋊ σ are irreducible.

Proof. As in Theorem 7, the proof of (a) is based on the coherent decompositions
of Jacquet modules. It follows as the proof of [24, Prop. 5.1].

The proof of (b) closely follows the proof of [24, Lemmas 6.2 and 6.3]. It
uses the theory of R-groups, which holds for Hermitian quaternionic groups as
checked in Theorem 5, to establish irreducibility of the induced representation ρ ×
δ([ν−1

ρ ρ, νρρ]) ⋊ σ. Then the structural formula, checked in Theorem 4 for Hermi-
tian quaternionic groups, is applied to show that the representation δ([ρ, νρρ]) ×
δ([ρ, νρρ])⊗ σ is of multiplicity four in the representations µ∗(ρ× ρ× νρρ× νρρ⋊ σ)
and µ∗(ρ× δ([ν−1

ρ ρ, νρρ])⋊ σ).
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5.5. Cuspidal reducibilities at 1

In this subsection, we consider the pair (ρ, σ) satisfying condition (C1). The follow-
ing theorem holds for any α ∈ R, but we state it only for α ≥ 0, because the case of
negative α follows from the equality π ⋊ σ = π̃ ⋊ σ in the Grothendieck group.

Theorem 8. Let ρ and ρ0 be an irreducible unitarizable cuspidal representation of

GL(k,D) and GL(k0, D), respectively, and let σ be an irreducible cuspidal represen-

tation of Gr(F ). Suppose that the pair (ρ, σ) satisfies (C1). Let m be a positive

integer and α ≥ 0 a real number. Then the following holds:

(a) If ρ0 6∼= ρ, then ναρ0
ρ0 ⋊ δ([νρρ, ν

m
ρ ρ], σ) reduces if and only if (ρ0, σ) satisfies

condition (Cα). In that case,

• if (ρ0, σ) satisfies condition (C0), then ρ0 ⋊ δ([νρρ, ν
m
ρ ρ], σ) is the sum of

two non-isomorphic irreducible tempered representations;

• if (ρ0, σ) satisfies condition (Cα) for some α > 0, then the representation

ναρ0
ρ0 ⋊ δ([νρρ, ν

m
ρ ρ], σ) contains a unique square-integrable subquotient

denoted by δ(ναρ0
ρ0, [νρρ, ν

m
ρ ρ], σ), and we have

ναρ0
ρ0⋊δ([νρρ, ν

m
ρ ρ], σ)=δ(ν

α
ρ0
ρ0, [νρρ, ν

m
ρ ρ], σ)+L(ν

α
ρ0
ρ0, δ([νρρ, ν

m
ρ ρ], σ))

in the Grothendieck group.

(b) If ρ0 ∼= ρ, then ναρ ρ⋊δ([νρρ, ν
m
ρ ρ], σ) reduces if and only if α ∈ {0,m+1}. The

representation ρ⋊δ([νρρ, ν
m
ρ ρ], σ) is the sum of two non-isomorphic irreducible

tempered representations. In the Grothendieck group we have

νm+1
ρ ρ⋊ δ([νρρ, ν

m
ρ ρ], σ) = δ([νρρ, ν

m+1
ρ ρ], σ) + L(νm+1

ρ ρ, δ([νρρ, ν
m
ρ ρ], σ)).

(c) If α > 0 and if ναρ0
ρ0 ⋊ δ([νρρ, ν

m
ρ ρ], σ) is irreducible, then

ναρ0
ρ0 ⋊ δ([νρρ, ν

m
ρ ρ], σ)

∼= L(ναρ0
ρ0, δ([νρρ, ν

m
ρ ρ], σ)).

Proof. The proof of [24, Theorem 7.1] may be applied in our case, as it only uses the
structural formula, which is verified for Hermitian quaternionic groups in Theorem 4.

The analogous result, under the same assumptions, for the dual representation
ζ([νρρ, ν

m
ρ ρ], σ) follows by using Aubert involution [1]. For the description of the

composition series in that case we may follow the proof of [24, Theorem 7.2].

5.6. Cuspidal reducibilities at 1/2

Now we consider the pair (ρ, σ) satisfying condition (C1/2). Note that, as in the
previous subsection, the result is stated only for α ≥ 0, although it also holds for
negative α.
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Theorem 9. Let ρ and ρ0 be irreducible unitarizable cuspidal representations of

GL(k,D) and GL(k0, D), respectively, and let σ be an irreducible cuspidal represen-

tation of Gr(F ). Suppose that the pair (ρ, σ) satisfies (C1/2). Let m be a positive

integer and α ≥ 0 a real number. Then the following holds:

(a) If ρ0 6∼= ρ, then ναρ0
ρ0 ⋊ δ([ν

1/2
ρ ρ, ν

1/2+m
ρ ρ], σ) reduces if and only if (ρ0, σ)

satisfies condition (Cα). In that case,

• if (ρ0, σ) satisfies condition (C0), then ρ0 ⋊ δ([ν
1/2
ρ ρ, ν

1/2+m
ρ ρ], σ) is the

sum of two non-isomorphic irreducible tempered representations;

• if (ρ0, σ) satisfies (Cα) for some α > 0, then the representation ναρ0
ρ0 ⋊

δ([ν
1/2
ρ ρ, ν

1/2+m
ρ ρ], σ) contains a unique square-integrable subquotient de-

noted by δ(ναρ0, [ν
1/2
ρ ρ, ν

1/2+m
ρ ρ], σ), and we have

ναρ0 ⋊ δ([ν1/2ρ ρ, ν1/2+m
ρ ρ], σ)

= δ(ναρ0, [ν
1/2
ρ ρ, ν1/2+m

ρ ρ], σ) + L(ναρ0, δ[ν
1/2
ρ ρ, ν1/2+m

ρ ρ], σ))

in the Grothendieck group.

(b) If ρ0 ∼= ρ, then ναρ ρ⋊δ([ν
1/2
ρ ρ, ν

1/2+m
ρ ρ], σ) reduces if and only if α ∈ {1/2,m+

3/2}.

• For α = m+ 3/2, we have

νm+3/2
ρ ρ⋊ δ([ν1/2ρ ρ, ν1/2+m

ρ ρ], σ)

= δ([ν1/2ρ ρ, ν3/2+m
ρ ρ], σ) + L(νm+3/2

ρ ρ, δ([ν1/2ρ ρ, νm+1/2
ρ ρ]), σ))

in the Grothendieck group.

• For α = 1/2 and m > 0, there exists a unique irreducible square-integrable

subquotient in the induced representation ν
−1/2
ρ ⋊ δ([ν

1/2
ρ ρ, ν

1/2+m
ρ ρ], σ)

denoted by δ([ν
−1/2
ρ ρ, ν

1/2+m
ρ ρ]+, σ), and we have

ν1/2ρ ρ⋊ δ([ν1/2ρ ρ, ν1/2+m
ρ ρ], σ)

= L(ν1/2ρ ρ, δ([ν1/2ρ ρ, ν1/2+m
ρ ρ], σ) + δ(([ν−1/2

ρ ρ, ν1/2+m
ρ ρ]+, σ)

in the Grothednieck group.

(c) If α > 0 and if ναρ0
ρ0 ⋊ δ([ν

1/2
ρ ρ, ν

1/2+m
ρ ρ], σ) is irreducible, then

ναρ0
ρ0 ⋊ δ([ν1/2ρ ρ, ν1/2+m

ρ ρ], σ) = L(ναρ0
ρ0, δ[ν

1/2
ρ ρ, ν1/2+m

ρ ρ], σ)).

Proof. This theorem is stated without proof as [24, Theorem 8.2]. However, its
proof is very similar to the proof of [24, Theorem 8.1], which is an analogous result

for the representations of the form ζ([ν
1/2
ρ ρ, ν

1/2+m
ρ ρ], σ). Since the proof uses only

the structural formula, it may be applied in our case due to Theorem 4.



On induction for Hermitian quaternionic groups 195

5.7. Reducibility points of the representation να

ρ
δ(ρ,m)⋊ σ

Recall from Section 3 the notation δ(ρ,m) = δ([ν
−(m−1)/2
ρ ρ, ν

(m−1)/2
ρ ρ]), which is a

square-integrable representation of GL(mk,D), where m is a positive integer. We
assume here that m ≥ 2, because for m = 1 we have δ(ρ, 1) = ρ, and reducibility
points are just cuspidal reducibilities of ναρ ρ⋊ σ.

Theorem 10. Let ρ be an irreducible unitarizable cuspidal representation of the

group GL(k,D), and σ an irreducible cuspidal representation of the Hermitian quater-

nionic group Gr(F ). Let m ≥ 2 be an integer, and α ∈ R. Then the induced

representation ναρ δ(ρ,m)⋊ σ has the following reducibility points:

(a) If ρ is not self-dual, then ναρ δ(ρ,m)⋊ σ is irreducible for all α ∈ R.

(b) If the pair (ρ, σ) satisfies (C1/2), then the representation ναρ δ(ρ,m) ⋊ σ is

reducible if and only if

α ∈

{
−m

2
,
−m

2
+ 1, . . . ,

m

2

}
.

(c) If the pair (ρ, σ) satisfies (C0), then the representation ναρ δ(ρ,m) ⋊ σ is re-

ducible if and only if

α ∈

{
−m+ 1

2
,
−m+ 1

2
+ 1, . . . ,

m− 1

2

}
.

(d) If the pair (ρ, σ) satisfies (C1), then the representation ναρ δ(ρ,m) ⋊ σ is re-

ducible if and only if

α ∈

{
−m− 1

2
,
−m− 1

2
+ 1, . . . ,

m+ 1

2

}
.

Proof. The proof of [24, Theorem 9.1] for the split groups is applicable to our
case.
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[24] M.Tadić, On reducibility of parabolic induction, Israel J. Math. 107(1998), 29–91.
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