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On eqiform Darboux helices in Galilean 3-space
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Abstract. In this paper, we define equiform Darboux helices in a Galilean space G3 and
obtain their explicit parameter equations. We show that equiform Darboux helices have
only a non-isotropic axis and characterize equiform Darboux vectors of equiform Darboux
helices in terms of equiform rectifying curves. We prove that an equiform Darboux vector
of an equiform Darboux helix α is an equiform Darboux helix if an admissible curve α is
a rectifying curve. We also prove that there are no equiform curves of constant precession
and give some examples of equiform Darboux helices.
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1. Introduction

According to [11], Galilean geometry is a real Cayley-Klein geometry with projective
signature (0, 0,+,+). Galilean space G3 is a 3-dimensional projective space in which
the absolute consists of a real plane ω and a real line f ∈ ω, together with an elliptic
involution I. In non-homogeneous affine coordinates, the similarity group H8 of the
Galilean space G3 has the following form







x̄ = a11 + a12x,
ȳ = a21 + a22x+ a23 cosϕy + a23 sinϕz,
z̄ = a31 + a32x− a23 sinϕy + a23z cosϕz,

(1)

where aij and ϕ are real numbers. For a12 = a23 = 1, relation (1) defines the
group B6 ⊂ H8 of isometries of G3. In particular, if a12 = a23 = α 6= 1, all line
segments in the Euclidean plane (x = const.) will be mapped into proportional
ones with the same coefficient of proportionality equal to α ([13]). The condition
a12 = a23 = α 6= 1 defines a subgroup H7 ⊂ H8, which preserves the angles between
planes and lines. The groupH7 is called equiform group transformations ofG3, which
are the compositions of a homothety and an isometry. The geometry of equiform
group H7 is called equiform geometry of the Galilean space G3.
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Although equiform geometry of curves in Galilean spaceG3 has minor importance
related to the usual one, equiform helices can be seen as generalizations of ordinary
helices and therefore could be of research interest. Equiform geometry of curves

in the simple isotropic space I
(1)
3 and in the double isotropic space I

(2)
3 is studied

in [12]. Some properties of helices in equiform geometry of pseudo-Galilean and
Galilean 3-space are obtained in [7, 6, 8]. Equiform geometry of curves in Galilean
4-space is investigated in [2].

In Euclidean 3-space, rectifying curves are defined in [3] as space curves whose
position vector always lies in its rectifying plane spanned by the tangent and the
binormal vector field of the curve. It is proved in [4] that the Darboux vector of a
curve in E3 with constant curvature κ and a non-constant torsion τ is a rectifying
curve. It is shown in [3] that the ratio τ/κ of the torsion τ and the curvature κ of a
rectifying curve is a non-constant linear function in na arc-length parameter of the
curve. The same property also holds for rectifying curves in Galilean 3-space and
pseudo-Galilean 3-space ([9, 10]).

Darboux helices in E3 are defined in [15] as space curves whose Darboux vector
makes a constant angle with some fixed direction (the axis of the helix). However,
Darboux helices in equiform geometry of the Galilean spaceG3 have not been studied
yet.

In this paper, we define equiform Darboux helices in Galilean 3-space as ad-
missible curves whose equiform Darboux vector makes a constant angle with some
fixed non-isotropic or isotropic direction. We obtain explicit parameter equations
of equiform Darboux helices with a non-isotropic axis and prove that there are no
equiform Darboux helices with an isotropic axis. We characterize equiform Darboux
vectors of equiform Darboux helices in terms of equiform rectifying curves. We
also prove that an equiform Darboux vector of an equiform Darboux helix α is an
equiform Darboux helix if an admissible curve α is a rectifying curve. Finally, we
prove that there are no equiform curves of constant precession in Galilean 3-space
and give some examples of equiform Darboux helices.

2. Preliminaries

In Galilean 3-space, the Galilean scalar product of two vectors u = (u1, u2, u3) and
v = (v1, v2, v3) is defined by

〈u, v〉 =
{

u1v1 , if u1 6= 0 or v1 6= 0,
u2v2 + u3v3 , if u1 = v1 = 0.

(2)

If 〈u,v〉 = 0, the vectors u and v are said to be orthogonal. The norm of a vector
v is given by ||v|| =

√

〈v,v〉. In particular, if ||v|| = 1, the vector v is called a unit
vector.

The Galilean cross product of two vectors u = (u1, u2, u3) and v = (v1, v2, v3) is
given by

u ∧G v =

∣

∣

∣

∣

∣

∣

0 e2 e3
u1 u2 u3

v1 v2 v3

∣

∣

∣

∣

∣

∣

. (3)
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An angle between two unit non-isotropic vectors, a unit non-isotropic and an
isotropic vector, or two isotropic vectors, is defined in [1] as follows.

Definition 1. Let a = (1, y2, y3) and b = (1, z2, z3) be two unit non-isotropic vectors
in general position in G3. Then an angle ϕ between a and b is given by

ϕ =
√

(z2 − y2)2 + (z3 − y3)2.

The angle measure θ between the unit non-isotropic vector a = (1, y2, y3) and an
isotropic vector c = (0, z2, z3) is defined by Artykbaev in [1]. Geometrically, such an
angle can be interpreted as the length of the projection of the vector ã = (0, y2, y3)
onto the isotropic vector c = (0, z2, z3).

Definition 2. An angle θ between a unit non-isotropic vector a = (1, y2, y3) and an
isotropic vector c = (0, z2, z3) in G3 is given by

θ =
y2z2 + y3z3
√

z22 + z23
.

Definition 3. An angle ω between two isotropic vectors c = (0, y2, y3) and d =
(0, z2, z3) parallel to the Euclidean plane in G3 is equal to the Euclidean angle between
them. Namely,

cosω =
y2z2 + y3z3

√

y22 + y23
√

z22 + z23
.

Definition 4. The curve α (t) = (x(t), y (t) , z (t)) in the Galilean space G3 is said
to be admissible if it has no inflection points (α̇ (t) ∧G α̈ (t) 6= 0) and no isotropic
tangents (ẋ (t) 6= 0).

The unit speed admissible curve α in G3 can be written as

α (x) = (x, y (x) , z (x)) ,

where s = x is the arc-length parameter of α defined by ds = dx.
The curvature κ(x) and the torsion τ(x) of the curve α(x) are defined by

κ(x) =
√

ÿ(x)2 + z̈(x)2, (4)

τ(x) =
ÿ (x)

...
z (x)− ...

y (x) z̈ (x)

κ2(x)
, (5)

respectively.
The radius of the curvature of the curve α is given by

ρ(x) =
1

κ(x)
,

where κ(x) 6= 0, because α has no inflection point.
The Frenet frame {t, n, b} of the curve α has the form

t(x) = (1, ẏ (x) , ż (x)) , (6)

n(x) =
1

κ(x)
(0, ÿ (x) , z̈ (x)) , (7)

b(x) =
1

κ(x)
(0, − z̈ (x) , ÿ (x)) . (8)
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The vectors t(x), n(x) and b(x) are called the tangent, the principal normal and the
binormal vector of α, respectively.

The Frenet equations of the unit speed admissible curve α in G3 read





ṫ(x)
ṅ(x)

ḃ(x)



 =





0 κ(x) 0
0 0 τ(x)
0 −τ(x) 0









t(x)
n(x)
b(x)



 . (9)

Also, Frenet’s frame vectors of α satisfy the equations

t∧Gn = b, n∧Gb = 0, b∧Gt = n. (10)

Definition 5. For an admissible curve α : I = [a, b] → G3, the equiform parameter
σ(x) is defined by ([13])

σ(x) =

∫ x

a

1

ρ(t)
dt =

∫ x

a

κ(t) dt. (11)

If α(σ) = (x(σ), y(σ), z(σ)) is an admissible curve parameterized by an equiformly
invariant parameter σ(x), then its tangent vector is defined by

T (σ) = α′(σ) = (x′(σ), y′(σ), z′(σ)) = (
1

σ̇(x)
, y′(σ), z′(σ)).

In particular, the equiform Frenet frame {T,N,B} of α is related to the Frenet frame
{t, n, b} as follows

T = ρt, (12)

N = ρn, (13)

B = ρb. (14)

Consequently, the equiform Frenet equations of the curve α(σ) are given by





T ′(σ)
N ′(σ)
B′(σ)



 =





K(σ) 1 0
0 K(σ) T (σ)
0 −T (σ) K(σ)









T (σ)
N(σ)
B(σ)



 , (15)

where K is called the equiform curvature and T is called the equiform torsion of the
curve α (σ). These are related to the curvature κ and the torsion τ by the equations

K =
dρ

dx
, T =

τ

κ
. (16)

Throughout the next sections, as already used, let the symbol “dot” denote the
derivative with respect to arc-length parameter x and “prime” the derivative with
respect to equiform parameter σ. Also, let R0 denote R\{0}.
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3. Equiform Darboux helices in G3

In this section, we first obtain an equiform Darboux vector of an admissible curve in
Galilean 3-space and then define equiform Darboux helices. We obtain their explicit
parameter equations and prove that any equiform Darboux helix does not have
isotropic axis. We also characterize equiform Darboux vectors of equiform Darboux
helices in terms of equiform rectifying curves and equiform Darboux helices and give
some examples.

When an equiform Frenet frame {T,N,B} of an admissible curve α moves along
α in G3, there exists an axis of the frame’s rotation. The direction of such axis is
given by equiform Darboux vector (equiform centrode)D(σ) which satisfies equiform
Darboux equations

T ′ (σ) = D (σ) ∧G T (σ) , (17)

N ′ (σ) = D (σ) ∧G N (σ) , (18)

B′ (σ) = D (σ) ∧G B (σ) . (19)

If σ̇(x) = κ(x) = constant 6= 0, then the following vector

D(σ) = σ̇T (σ)T (σ) + σ̇B(σ) (20)

defines the equiform Darboux vector, as follows by using relations (10), (11), (12),
(13), (14), (17), (18) and (19). We find that if an admissible curve α has an equiform
Darboux vector, then its first equiform curvature K satisfies the relation K = ρ̇(x) =
0.

Definition 6. An admissible curve α(σ) parameterized by an equiform parameter
with the equiform curvature K(σ) = 0 in G3 is called an equiform Darboux helix
if its unit equiform Darboux vector D(σ) makes the constant angle with some unit
non-isotropic fixed direction U ∈ G3 or with some isotropic fixed direction W ∈ G3.

Let α(σ) be an admissible curve parameterized by an equiform parameter with
equiform curvature K(σ) = 0 given by

α(σ) = (x (σ) , y (σ) , z (σ)) . (21)

By using of relations (6) and (12) we find

T (σ) = ρt = (ρ, ρẏ, ρż).

On the other hand,

T (σ) = α′(σ) = (x′(σ), y′(σ), z′(σ)).

These two relations imply

x′(σ) = ρ(x) = constant.

Integrating this we find
x (σ) = ρσ + c0, c0 ∈ R0.
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Up to a translation, we may take c0 = 0. Hence

x(σ) =
σ

σ̇
. (22)

Substituting relation (22) in relation (21), we get

α (σ) =
(σ

σ̇
, y (σ) , z (σ)

)

.

Therefore, as σ̇ is constant, the equiform Frenet frame of α has the form

T (σ) =

(

1

σ̇
, y′ (σ) , z′ (σ)

)

, (23)

N (σ) = (0, y′′ (σ) , z′′ (σ)) , (24)

B (σ) = (0,−z′′ (σ) , y′′ (σ)) . (25)

Substituting (23) and (25) in (20), we find

D(σ) = (T , σ̇T y′ − σ̇z′′, σ̇T z′ + σ̇y′′) . (26)

In order to characterize equiform Darboux helices, we must exclude the case
when the equiform Darboux vector is the constant vector, since it trivially makes a
constant angle with any fixed direction. In relation to that, assume that equiform
Darboux vector D(σ) given by relation (26) is the constant vector. Differentiating
relation (26) with respect to σ, we obtain

D′ = (T ′, σ̇T ′y′ + σ̇T y′′ − σ̇z′′′, σ̇T ′z′ + σ̇T z′′ + σ̇y′′′) . (27)

From relations (15), (24), (25) and K(σ) = 0, we have y′′′ = −T z′′ and z′′′ = T y′′.
Substituting these two equalities in relation (27), we get

0 = D′ = (T ′, σ̇T ′y′, σ̇T ′z′) = σ̇T ′T.

Since σ̇(x) 6= 0, it follows T (σ) = constant. Therefore, we can give the following
lemma.

Lemma 1. Let α(σ) be an admissible curve in G3 parameterized by equiform param-
eter σ with the equiform curvature K(σ) = 0 and the equiform torsion T (σ). Then its
equiform Darboux vector D(σ) is a constant vector if and only if T (σ) = constant.

In the sequel, assume that T (σ) 6= constant. Then the equiform Darboux vector
of α is a non-constant non-isotropic vector. By using relations (2) and (26), we
obtain that the unit equiform Darboux vector D0 is given by

D0 =
D

‖D‖ =

(

1, σ̇y′ − σ̇

T z′′, σ̇z′ +
σ̇

T y′′
)

. (28)

In order to find explicit parameter equations of Darboux helices, we consider the
next two cases: (A) an axis of an equiform Darboux helix is a non-isotropic vector;
(B) an axis of an equiform Darboux helix is a isotropic vector.
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(A) an axis of an equiform Darboux helix is a non-isotropic vector;
Let U = (1, u2, u3) be a unit non-isotropic fixed axis of an equiform Darboux

helix α. According to Definition 6, the unit equiform Darboux vector D0 of α makes
the constant angle ϕ with an axis U . By using relation (28) and Definition 1, we
have

ϕ2 =

(

σ̇y′ − σ̇

T z′′ − u2

)2

+

(

σ̇z′ +
σ̇

T y′′ − u3

)2

= c21,

where c1 ∈ R0. This implies

σ̇y′ − σ̇

T z′′ − u2 = c1 cosω, (29)

σ̇z′ +
σ̇

T y′′ − u3 = c1 sinω, (30)

where ω(σ) is some arbitrary differentiable function. Differentiating both sides of
the relations (29) and (30) with respect to σ, we obtain

σ̇y′′ − (
σ̇

T )
′
z′′ − σ̇

T z′′′ = −c1ω
′ sinω, (31)

σ̇z′′ + (
σ̇

T )
′
y′′ +

σ̇

T y′′′ = c1ω
′ cosω. (32)

If K is substituted by K = 0 in (15) and by using relations (24) and (25), we find

y′′′ = −T z′′, z′′′ = T y′′. (33)

Substituting (33) in (31) and (32), relations (31) and (32) reduce to

(
σ̇

T )
′
z′′ = c1ω

′ sinω, (34)

(
σ̇

T )
′
y′′ = c1ω

′ cosω. (35)

Also, from relation (4) we can write

ÿ(x)2 + z̈(x)2 = κ(x)2 = σ̇(x)2, (36)

and thus

y′′2 + z′′2 =
1

σ̇2
. (37)

Substituting (34) and (35) in (37) yields

ω′ =
1

c1
(
1

T )′. (38)

Integrating the last relation, we get

ω =
1

c1T
+ c2, c2 ∈ R. (39)
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By taking c2 = 0 it follows that

ω =
1

c1T
, c1 ∈ R0. (40)

Substituting (38) in (35) and (34), we find

y′′ =
1

σ̇
cosω, z′′ =

1

σ̇
sinω. (41)

Substituting the first equation of (41) in the second equation of (33) gives

z′′′ =
1

σ̇
T cosω.

On the other hand, differentiating the second equation of (41) with respect to σ, we
get

z′′′ =
1

σ̇
ω′ cosω.

The last two relations and relation (40) imply

T =
1√

2c1σ + c3
, c1 ∈ R

+
0 , c3 ∈ R. (42)

By taking c3 = 0 and by using the relations (40), (41) and (42), we obtain

z′′ =
1

σ̇
sin

(
√

2σ

c1

)

,

y′′ =
1

σ̇
cos

(
√

2σ

c1

)

.

Integrating the last two equations, we get

y(σ) = c4+c5σ +
3c1

√
2c1σ

σ̇
sin

(
√

2σ

c1

)

+ (
3c21 − 2c1σ

σ̇
) cos(

√

2σ

c1
), (43)

z(σ) = c6+c7σ − 3c1
√
2c1σ

σ̇
cos

(
√

2σ

c1

)

+ (
3c21 − 2c1σ

σ̇
) sin(

√

2σ

c1
), (44)

where c1 ∈ R
+
0 , c4, c5, c6, c7 ∈ R. Relations (22), (43) and (44) imply that the

parameter equation of α reads

α(σ) = (
σ

σ̇
, c4 + c5σ +

3c1
√
2c1σ

σ̇
sin(

√

2σ

c1
) + (

3c21 − 2c1σ

σ̇
) cos(

√

2σ

c1
),

c6 + c7σ − 3c1
√
2c1σ

σ̇
cos(

√

2σ

c1
) + (

3c21 − 2c1σ

σ̇
) sin(

√

2σ

c1
)),

where σ̇ ∈ R0, c1 ∈ R
+
0 , c4, c5, c6, c7 ∈ R. Therefore, the following theorem is proved.
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Theorem 1. Let α be an admissible curve parameterized by equiform parameter σ,
with the equiform curvature K(σ) = 0 and the equiform torsion T (σ) 6= constant in
G3. If α is an equiform Darboux helix whose unit Darboux vector makes constant
angle ϕ = c1 with a non-isotropic axis, then:
(i) it has a parameter equation given by

α(σ) = (
σ

σ̇
, c2 + c3σ +

3c1
√
2c1σ

σ̇
sin(

√

2σ

c1
) + (

3c21 − 2c1σ

σ̇
) cos(

√

2σ

c1
), (45)

c4 + c5σ − 3c1
√
2c1σ

σ̇
cos(

√

2σ

c1
) + (

3c21 − 2c1σ

σ̇
) sin(

√

2σ

c1
)), (46)

where σ̇ ∈ R0, c1 ∈ R
+
0 , c2, c3, c4, c5 ∈ R.

(ii) its equiform torsion is given by

T (σ) =
1√
2c1σ

, c1 ∈ R
+
0 . (47)

Example 1. Let us consider an admissible curve α(σ) in G3 with parameter equation
given by relations (45) and (46) (Figure 1). Putting σ̇ = c1 = 2, c3 = c5 = 1 and
c2 = c4 = 0 in (45) and (46), we get

α(σ) = (
σ

2
, σ+6

√
σ sin(

√
σ)+(6−2σ) cos(

√
σ), σ−6

√
σ cos(

√
σ)+(6−2σ) sin(

√
σ)).

0

100

200

300

0

500

1000

0

500

1000

1500

Figure 1: The equiform Darboux helix α with the non-isotropic axis

According to relations (23), (24) and (25), the equiform Frenet frame of the curve
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α reads

T (σ) =

(

1

2
, 1+ cos

(√
σ
)

+
√
σsin

(√
σ
)

, 1 + sin
(√

σ
)

−
√
σcos

(√
σ
)

)

,

N(σ) =
1

2
(0, cos(

√
σ), sin(

√
σ)),

B(σ) =
1

2
(0,− sin(

√
σ), cos(

√
σ)).

From relations (28) and (47), it follows that the unit equiform Darboux vector of α
is given by

D0(σ) = (1, 2 + 2 cos(
√
σ), 2 + 2 sin(

√
σ)).

Considering the fixed direction U = (1, 2, 2), one can easily verify that the equiform
Darboux vector D0(σ) makes the constant angle ϕ = 2 with the fixed direction U .
This means that α is the equiform Darboux helix.

Example 2. Consider an admissible curve β(σ) in G3 with parameter equation
given by relations (45) and (46) (Figure 2). By setting constants σ̇ = 1, c1 = 8,
c3 = c5 = 3, c2 = c4 = 0 and substituting them in (45) and (46), we obtain

β(σ) = (σ, 3σ + 96
√
σ sin(

√
σ

2
) + (192− 16σ) cos(

√
σ

2
),

3σ − 96
√
σ cos(

√
σ

2
) + (192− 16σ) sin(

√
σ

2
)).

By using relations (23), (24) and (25), we find that the equiform Frenet frame of

-

Figure 2: The equiform Darboux helix β with the non-isotropic axis

the curve β has the form

T (σ) = (1, 3 + 8 cos(

√
σ

2
) + 4

√
σ sin(

√
σ

2
), 3 + 8 sin(

√
σ

2
)− 4

√
σ cos(

√
σ

2
)),

N(σ) = (0, cos(

√
σ

2
), sin(

√
σ

2
)),

B(σ) = (0,− sin(

√
σ

2
), cos(

√
σ

2
)).
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Relations (28) and (47) imply that the unit equiform Darboux vector of β is given
by

D0(σ) = (1, 3 + 8 cos(

√
σ

2
), 3 + 8 sin(

√
σ

2
)).

Considering the fixed direction U = (1, 3, 3), one can easily verify that the equiform
Darboux vector D0(σ) makes the constant angle ϕ = 8 with the fixed direction U ,
which means that β is the equiform Darboux helix.

(B) an axis of the equiform Darboux helix is an isotropic vector;
Let W = (0, w2, w3) be an isotropic axis of the equiform Darboux helix α(σ).

According to Definition 6, the unit equiform Darboux vector D0(σ) of α makes the
constant angle θ with an axis W . By using relation (28) and Definition 2, we have

θ =

(

σ̇y′ − σ̇
T z′′

)

w2 +
(

σ̇z′ + σ̇
T y′′

)

w3
√

w2
2 + w2

3

= c1,

where c1 ∈ R0. This shows
(

σ̇y′ +
σ̇

T z′′
)

w2 +

(

σ̇z′ +
σ̇

T y′′
)

w3 = c1

√

w2
2 + w2

3 (48)

Differentiating both sides of this equality with respect to σ, as σ̇ is constant, we
obtain

(

σ̇y′′ − (
σ̇

T )
′
z′′ − σ̇

T z′′′
)

w2 +

(

σ̇z′′ + (
σ̇

T )
′
y′′ +

σ̇

T y′′′
)

w3 = 0. (49)

According to relation (33), we have

y′′′ = −T z′′, z′′′ = T y′′. (50)

Substituting (50) in (49) yields

(
σ̇

T )
′
(−w2z

′′ + w3y
′′) = 0. (51)

Since ( σ̇
T )′ 6= 0, it follows

−w2z
′′ + w3y

′′ = 0. (52)

We also have

y′′ =
1

σ̇2
ÿ, z′′ =

1

σ̇2
z̈.

Substituting this in relation (52), we get

z̈ =
w3

w2
ÿ. (53)

Differentiating the previous relation with respect to x, we find

...
z =

w3

w2

...
y . (54)

From relations (5), (53) and (54), we find τ = 0. Substituting this in (16), we get
T (σ) = 0, which is a contradiction. Therefore, the following theorem is proved.
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Theorem 2. If α(σ) is an equiform Darboux helix with an equiform curvature
K(σ) = 0 and an equiform torsion T (σ) 6= constant in Galilean space G3, then
its axis can not be of isotropic direction.

Next we show that there exists a simple relationship between equiform Darboux
vectors and equiform rectifying curves.

Theorem 3. The equiform Darboux vector D(σ) of an equiform Darboux helix α(σ)
in G3 with the equiform curvature K(σ) = 0 and the equiform torsion T (σ) 6=
constant is an equiform rectifying curve.

Proof. Assume that the equiform Darboux vector D of α is given by relation (20).
Substituting (12), (14) and (16) in (20), we easily get

D(σ(x)) = ρτ(x)t(x) + ρκb(x), ρ = constant 6= 0, (55)

where x is the arc-length parameter of admissible curve α(x) with the Frenet frame
{t, n, b}. Substituting relations (6) and (8) in this equation, we get

D(x) = (ρτ, ρτ ẏ − ρz̈, ρτ ż + ρÿ). (56)

Denote by u the arc-length parameter of the curve D. Then u is given by u = ρτ(x).
Differentiating both sides of (55), we find

D′(u) = t(x(u)).

Denote by {tD, nD, bD} the Frenet frame of D. It can be easily verified that

tD = D′(u) = t, nD = n, bD = b. (57)

The Frenet curvature κD and the Frenet torsion τD of D have the forms

κD =
κ

ρτ̇
, τD =

τ

ρτ̇
, (58)

respectively. Denote by {TD, ND, BD} the equiform Frenet frame of D. Then it is
related to the Frenet frame {tD, nD, bD} as follows

TD =
1

κD

tD, ND =
1

κD

nD, BD =
1

κD

bD. (59)

By using (55), (57), (58), (59) and ρκ = 1, we get

D = τDTD + κDBD. (60)

Since the position vector of the equiform Darboux vector D(σ) lies in its equiform
rectifying plane span{TD, BD}, it follows that the equiform Darboux vector D(σ) is
the equiform rectifying curve.

Now we can ask the following question: ”Can an equiform Darboux vector of
an equiform Darboux helix α with equiform curvature K = 0 and equiform torsion
T 6= constant be an equiform Darboux helix?” The answer is given in the next
theorem.
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Theorem 4. An equiform Darboux vector D(σ) of an equiform Darboux helix α(σ)
in G3 with the equiform curvature K(σ) = 0 and the equiform torsion T (σ) 6=
constant is the equiform Darboux helix if an admissible curve α(x) is a rectifying
curve.

Proof. Assume that α(σ) is the equiform Darboux helix parameterized by equiform
parameter σ whose equiform Darboux vector D(σ) makes the constant angle with
some fixed non-isotropic direction. Denote by DD the equiform Darboux vector of
D. Then DD can be written as

DD(ω) = a(ω)TD(ω) + b(ω)ND(ω) + c(ω)BD(ω), (61)

where {TD, ND, BD} is the equiform Frenet frame of D and a(ω), b(ω), c(ω) are some
differentiable functions in equiform parameter ω of D. Denote by KD and TD the
equiform curvature and the equiform torsion of D, respectively.

By using equiform Darboux equations (17), (18), (19) and equiform Frenet equa-
tions (15), we find

a = τD, b = 0, c = κD, KD = 0, (62)

where κD and τD are the Frenet curvature and the Frenet torsion of D, respectively.
Let u be the arc-length parameter of D. According to relation (55), the arc-length
parameter u is given by u = ρτ(x). As ρD = 1/κD = ρτ̇/κ = ρ2τ̇ by using (58) and
by (16), we get

KD =
dρD
du

=
d(ρ2τ̇ )

du
= ρ2

dτ̇

dx

dx

du
=

ρτ̈

τ̇
.

Thus KD = 0 shows τ̈ = 0. Consequently, τ(x) = a1x + a2, a1 ∈ R0, a2 ∈ R. Since
K = 0, we have κ(x) = constant 6= 0. Therefore,

τ(x)

κ(x)
= c1x+ c2,

c1 ∈ R0, c2 ∈ R, which means that an admissible curve α(x) is a rectifying curve.
Substituting (62) in (61), we find

DD = τDTD + κDBD. (63)

Relations (63) and (60) show
DD = D.

By assumption, the equiform Darboux vector D(σ) makes the constant angle with
some fixed non-isotropic direction. Hence DD also makes the constant angle with
the same direction, which means that equiform Darboux vector D is the equiform
Darboux helix.

4. Equiform curves of constant precession in G3

According to Scofield [14], the Euclidean curves of constant precession are defined as
the curves whose Darboux vector makes the constant angle with some fixed direction
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and rotate about it with constant speed. Therefore, such curves are Darboux helices
whose Darboux vector has constant speed.

In this section, we show that there are no equiform curves of constant precession
in Galilean 3-space. Let α(σ) be the equiform Darboux helix with the equiform
Darboux vector D(σ) given by relation (20). Assume that the equiform Darboux
vector D(σ) of α has the constant speed, i.e. ||D′(σ)|| = constant 6= 0. The last
condition and the relation (27) give ||D′(σ)|| = |T ′(σ)| = constant 6= 0. On the
other hand, according to Theorem 1, we have T (σ) = 1√

2c1σ
. Differentiating the last

relation with respect to σ, we get

T ′(σ) = − 1

2σ
√
2c1σ

6= constant.

This proves the last theorem.

Theorem 5. There are no equiform curves of constant precession in G3.
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