CCA-718

Electronic Correlation in Molecular Systems: An Effective Interaction Approach

J. Koller, B. Lukman, and A. Ažman

Chemical Institute Boris Kidrič and Department of Chemistry, University of Ljubljana, 61000 Ljubljana, Slovenia, Yugoslavia

Received October 22, 1971

Numerous methods have been proposed which can account for the correlation between electrons. The aim of this note is to use one of them that has been used in nuclear physics¹ with some success. The mathematical procedure is as follows: The Hamiltonian of the molecular system is given by

 $H\Psi = E\Psi$

$$\mathbf{H} = \sum_{i} \mathbf{t}_{i} + \sum_{i < i} \mathbf{v}_{ij} \tag{1}$$

with the known zero order equation

$$\mathbf{H}_{0} \Phi = \mathbf{E}_{0} \Phi \tag{2}$$

In order to solve

the hermitian operator S is introduced²

 $\Psi=e^{i\mathbf{S}}\;\Phi$ and determined from

$$\mathbf{E} = \langle \Psi | \mathbf{H} | \Psi \rangle = \langle \Phi | \mathbf{H} | \Phi \rangle = \min.$$
(3)

with $\overline{H} = e^{-iS} H e^{iS}$

The cluster expansion of H includes clusters of one, two, three, *etc.* particles. The simplest approximation to the many-body operator H is the operator that retains only clusters of two particles. S takes then the form:

$$S = \Sigma S_{ij}$$

The Hamiltonian H is

$$\overline{H} = \overline{H}^1 + \overline{H}^2 + \overline{H}^3 + \dots$$

where

$$\overline{H}^{2} = \frac{1}{2} \sum_{ijkl} a_{i}^{+} a_{j}^{+} a_{l}a_{k} [\langle ij | e^{-iS_{12}} (t_{1} + t_{2} + v_{12}) e^{iS_{12}} \downarrow kl \rangle \\ - \langle ij | t_{1} + t_{2} | kl \rangle]$$

 $\overline{H}{}^{1} = \Sigma t_{i} = \Sigma a_{i}^{+} a_{j} < i \mid t \mid j >$

If the model function Φ is a single Slater determinant, the trial energy of the system can be written (neglecting three-particle $\overline{H^3}$ and higher terms)

539.19 Note

(4)

$$\mathbf{E} = \sum_{i}^{\text{occ.}} \langle \mathbf{i} | \mathbf{t} | \mathbf{i} \rangle + \frac{1}{2} \sum_{ij}^{\text{occ.}} \langle \mathbf{ij} | \overline{\mathbf{v}} | \mathbf{ij} - \mathbf{ji} \rangle$$
(5)

with \overline{v} (the effective potential)

$$\mathbf{v} = \mathbf{e}^{-\mathbf{i}S_{12}} \left(\mathbf{t}_1 + \mathbf{t}_2 + \mathbf{v}_{12} \right) \, \mathbf{e}^{\mathbf{i}S_{12}} - \left(\mathbf{t}_1 + \mathbf{t}_2 \right) \tag{6}$$

Instead of determining the operator $e^{-iS_{12}}$ from eq. (5) and keeping it to be unitary, it is simpler to introduce the correlated two-particle wave function $\psi(1,2)$ and to rewrite E using it. $\psi(1,2)$ is defined as $e^{iS_{12}}i(1)j(2) = \psi(1,2)$ and has to be determined from eq. (3) with the subsidiary condition $f/\psi(1,2)^{/2} dV_1 dV_2 = 1$. It is appropriate to notice that this procedure is not completely but only approximately equivalent to the procedure for determining the operator $e^{iS_{12}}$. Eq. (3) and eq. (5) give the equation

 $\left\langle \psi^{st}\left(1,2
ight)\left|\, {
m t_{1}}\,+\,{
m t_{2}}\,+\,{
m t_{12}}\left|\,\psi\left(1,2
ight)
ight
angle \equiv{
m F}={
m min}.$

and $\psi(1,2)$ is obtained from

$$\frac{\partial \mathbf{F}}{\partial \psi^*} = 0 \tag{7}$$

The above described procedure has been applied to calculate the energy of *trans*-butadiene. H_o was chosen in two different ways:

i)
$$\mathbf{H}_{o} = \sum_{i} \mathbf{t}_{i} + \mathbf{u}_{H.F.}$$
 ii) $\mathbf{H}_{o} = \sum_{i} \mathbf{t}_{i} + \mathbf{v}_{H.F.}$

where $V_{H,F_{i}}$ is the SCF potential deduced from the semiempirical Pariser-Parr-Pople method. (ref. 3, parameters with theoretical values). In both calculations $\psi(1, 2)$ was expanded into molecular orbitals φ_{ij} , φ_{ij} (the eigenfunctions of H_{0})

$$\psi_{\mathrm{m}}$$
 (1,2) = $\sum_{\mathrm{ij}} \mathsf{d}_{\mathrm{mij}} \varphi_{\mathrm{i}}$ (1) φ_{j} (2)

with the coefficients d_{mii} which resulted from eq. (7).

The calculated energies are -93.59 eV and -96.25 eV when the molecular orbitals from *i*) or *ii*) are used. These values have to be compared with values -93.79 eV and -96.15 eV obtained by the SCF or SCF configuration interaction method³. The present approach is equivalent⁴ to the Brueckner (Bethe-Goldstone) theory of the many-particle system. The variational approach of the Brueckner theory with independent pairs overestimates the correlation energy⁵. The present result with molecular orbitals from *ii*) is in accordance with this statement. The direct solution⁶ of the Bethe-Goldstone equation with molecular orbitals from *i*) agrees closely with the value obtained by the present approach (MO from *i*).

REFERENCES

- 1. M. E. Grypeos, Nucl. Phys. A 141 (1970) 400.
- 2. F. Coester, Nucl. Phys. 7 (1958) 421.
- 3. V. Staemmler and W. Kutzelnigg, Theor. Chim. Acta 9 (1967) 67.
- 4. C. M. Shakin, Phys. Rev C4 (1971) 684.
- 5. T. L. Barr, Int. J. Quantum Chem. Symposium No. 4, 1967, p. 239 and references therein.
- 6. J. Koller, B. Lukman and A. Ažman (to be published).

390

IZVLEČEK

Elektronska korelacija v molekulah: metoda efektivnega potencijala

J. Koller, B. Lukman in A. Ažman

V delu je uporabljena metoda efektivnega potencijala¹. Rezultati potrjujejo dejstvo, da metode z osnovo neodvisne parske korelacije dajo prevelike vrednosti za korelacijsko energijo.

KEMIČNI INŠTITUT »BORIS KIDRIČ« ODDELEK ZA KEMIJO UNIVERZE V LJUBLJANI 61000 LJUBLJANA

Primljeno 22. listopada 1971.