CCA-755

541.18.046 Conference Discussion

The Role of Ionic Interactions in the Coagulation Process*

N. Kallay and B. Težak

Institute of Physical Chemistry, University of Zagreb, 41000 Zagreb, Croatia, Yugoslavia

Received January 25, 1973

The influence of different combinations of electrolytes on negatively charged silver iodide sols was studied. Wo. Ostwald¹, Težak², Overbeek³, Matijević⁴, Levine⁵ and other authors have offered different explanations for these electrolyte effects.

EXPERIMENTAL

The rate coefficients of coagulation were measured by a light scattering procedure. According to Oster⁶ and von Smoluchowski, coagulation is a second order rate process. The rate coefficient of coagulation is proportional to a change in the intensity of scattered light with relationship to time. It will be assumed that the change in the relative intensity ratio at 10 minutes of 0.12 corresponds to the same value of the rate coefficient. The experimental procedure *in statu nascendi* described by Težak *et al.*⁷ was used.

RESULTS

In Tables I and II the concentrations of ions which produced the constant value of the rate coefficient of AgI/I^- sol coagulation are presented. It is assumed that ion-pairing⁸ and adsorption⁹ of the ions on the sol surface could be neglected in the calculations of the bulk solution compositions.

The concentration of I⁻ ions in bulk solution was calculated as a difference between the initial concentrations of KI and AgNO₃ solutions. Because the solubility product⁸ of AgI is 10^{-16} mol² dm⁻⁶ almost all the silver was assumed to be in a form of AgI sol. The concentration of Mg²⁺ ions is equal to the total concentration of Mg(NO₃)₂ solution. Ionic strengths were calculated by using the concentrations of the ions presented in Tables. The activity coefficients of Mg²⁺ ions were calculated by the

TABLE I

Concentration of Ions 10 ⁻³ mol dm ⁻³				Ionic Strength	Activity Coefficient	Activity of Mg ²⁺ ions
Mg^{2+}	K^+	NO_3^-	I-	dm ⁻³	of Mg ²⁺ ions	dm ⁻³
1.50	2.00	3.40	1.60	6.50	0.709	1.06
1.52	3.00	4.44		7.56	0.692	1.05
1.60	4.00	5.60		8.80	0.674	1.08
1.80	7.00	9.00		12.4	0.630	1.13
2.00	12.0	1.44		18.0	0.579	1.16
2.25	22.0	2.49		28.8	0.513	1.15
2.60	42.0	4.56	>>	49.6	0.432	1.12

The Composition of Solutions of AgNO₃, KI, Mg(NO₃)₂ and KNO₃ at Constant Value of Rate Coefficient of AgI/I⁻ Sol Coagulation at 20 °C

Initial concentration of $AgNO_3$: 4.00×10^{-4} mol dm⁻³; Initial concentration of KI: 2.00×10^{-3} mol dm⁻³.

* Based on a discussion contribution presented at the III International Summer School on the Chemistry of Solid/Liquid Interfaces, Rovinj, Yugoslavia, July 1-5, 1972.

TABLE II

Concentration of Ions 10^{-3} mol dm ⁻³					Ionic Strength	Activity Coefficients	Activity of Mg ²⁺ ions
Mg^{2+}	H^{+}	K^+	NO_3^-	I-	dm ⁻³	of Mg ²⁺ ions	dm ⁻³
1.50	0.00	2.00	3.40	1.60	6.50	0.709	1.06
1.52	1.00	. ,,	4.44	,,	7.56	0.692	1.05
1.65	2.00	,,	5.70	,,	8.95	0.672	1.11
1.90	10.0	,,	14.2	,,	17.7	0.582	1.11
2.30	20.0	,,	25.0	,,	28.9	0.512	1.18
2.65	40.0	"	45.7	,,	50.0	0.431	1.14

The Composition of Solutions of $AgNO_3$, KI, $Mg(NO_3)_2$ and HNO_3 at Constant Value of Rate Coefficient of AgI/I^- Sol Coagulation at 20 °C

Initial concentration of $AgNO_3$: 4.00×10^{-4} mol dm⁻³; Initial concentration of KI: 2.00×10^{-3} mol dm⁻³.

formula quoted below which can be used for solutions with ionic strengths up to 0.1 mol dm⁻³. In the case of Mg^{2+} ions the equation is¹⁰

$$-\log f_{\mathrm{Mg}^{2+}} = \frac{2\sqrt{\mu}}{1+\sqrt{\mu}}$$

where μ is the ionic strength. The activities of Mg²⁺ ions were calculated as products of the single ion activity coefficients and concentrations of Mg²⁺ ions.

The concentrations of ions, ionic strengths, activity coefficients and activities in Table II were calculated in the same way as in Table I.

DISCUSSION

The results show that the rate of coagulation is a function of the activity of counter-ions. This function includes the ionic strength and the concentration of counter-ions. In Fig. 1 it is demonstrated that the activity of Mg^{2^+} ions is constant at the same value of rate coefficient of coagulation with increasing ionic strength, but that the concentration of Mg^{2^+} ions is not constant. The influence of KNO_3 and HNO_3 solutions on the activities of the magnesium ions are the same within experimental error. This result is in agreement with the assumption that ion-pairing could be neglected. In the region of activities of I^- ions from 10^{-2} until 10^{-9} mol dm⁻³

Fig. 1. The influence of ionic strength on the activity of Mg^{2+} ions (a_{Mg}^{2+}) and concentration of Mg^{2+} ions (c_{Mg}^{2+}) at constant value of rate coefficient of AgI/I sol coagulation at 20 °C. Concentration of Mg^{2+} ions in the solution which contained: \blacksquare HNO₃, \triangle KNO₃ Activity of Mg^{2+} ions in the solution which contained: \bigcirc HNO₃, \blacktriangle KNO₃ no influence on the rate of coagulation of AgI/I⁻ sol was found¹¹. The change of ionic strength from 6×10^{-3} to 6×10^{-2} mol dm⁻³ produces a change in activity of I⁻ ions approximately from 1.5 to 1.3×10^{-3} mol dm⁻³ at the concentration of I⁻ ions of 1.6×10^{-3} mol dm⁻³. Therefore the activity range covered in this study was well within the range of I⁻ ion activities which produced no change in the rate of coagulation. Because of the above reasons the influence of the change in activity of I⁻ ions on the rate of coagulation is neglected. The influence of H⁺ and K⁺ as counter-ions on the coagulation rate was negligible up to the concentration of 0.04 mol dm⁻³ for H⁺ or K⁺ ions. This is in agreement with data⁹ on the adsorption of counter-ions on silver iodide sols.

The results from Table III show that the activities of H^+ ions as counter-ions are practically constant at the same rate coefficient of coagulation for different acids. The small differences in results could be explained by differences in viscosities of acids as a consequence of which the diffusion coefficients of colloidal particles are not constant⁶.

TABLE III

The Concentrations of Acids, pH and Activities of H^+ Ions at Constant Value of Rate Coefficient of AgI/I^- Sol Coagulation

Acid	Concentration of acid mol dm ⁻³	рН	Activity of H ⁺ ion mol dm ⁻³	
$\begin{array}{c} \mathrm{HNO}_{3}\\\mathrm{H}_{2}\mathrm{SO}_{4}\\\mathrm{H}_{3}\mathrm{PO}_{4}\\\mathrm{CH}_{3}\mathrm{COOH} \end{array}$	$\begin{array}{c} 0.141 \\ 0.219 \\ 2.76 \\ 5.62 \end{array}$	$0.86 \\ 0.85 \\ 0.84 \\ 0.65$	$\begin{array}{c} 0.138 \\ 0.141 \\ 0.145 \\ 0.224 \end{array}$	

Initial concentration of $AgNO_3$: 4.00×10^{-4} mol dm⁻³; Initial concentration of KI: 2.00×10^{-3} mol dm⁻³. The activities of hydrogen ions were determined by pH measurements.

The activities of ions can be evaluated from the rate coefficient of coagulation measurements. In this evaluation the empirical equation of Paine¹² is used

$\log k' = K + n \log a$

where k' is the value proportional to the rate coefficient of coagulation, K and n are constants, and a is the activity of counter-ion which is used instead of the concentration. Sensitivity of the measurements depends on the constant n. Constant n was determined in this study for the system AgI/I⁻. The n value for this system is 6.70. This procedure was used for determining the dissociation constants of ion-pairs La SO₄⁺ and MgSO₄. The dissociation constants were calculated and will be published separately¹³.

The values of concentration of electrolytes chosen by the rate constant proportional to 0.12 were not the usual critical coagulation concentrations. The values used in this study are between the critical coagulation concentrations defined by Težak⁷ and the values defined by Reerink and Overbeek¹⁴. The reason for choosing these rate coefficients was the sensitivity of the rate of coagulation towards the activities of counter-ions. In this region of coagulation rates the empirical equation from Paine¹² could be used.

When critical coagulation concentrations of electrolyte combinations were used, antagonistic effects were observed^{1,2}. This effect was explained in different ways. Overbeek³ indicated (in the discussion of a paper) that antagonistic effects often disappear if activities of the counter-ions are calculated. This study supports the conclusion that in the examined combinations of electrolytes the behaviour could be explained by the influence of bulk solution composition on the activity of counter-ions.

REFERENCES

1. Wo. Ostwald, Kolloid Z. 88 (1939) 1.

2. B. Težak, Croat. Chem. Acta 42 (1970) 81.

3. J. Th. Overbeek, Discussions Faraday Soc. 18 (1954) 200.

- 4. E. Matijević, S. Kratohvil, and J. Stickels, J. Phys. Chem. 73 (1969) 564:
- L. J. Stryker and E. Matijević, J. Phys. Chem. 73 (1969) 1484.
- S. Levine and G. M. Bell, J. Colloid Sci. 17 (1962) 838;
 S. Levine and G. M. Bell, J. Colloid Sci. 20 (1965) 695.

- 6. G. Oster, J. Colloid Sci. 2 (1947) 291.
 7. B. Težak, E. Matijević, and K. Schulz, J. Phys. Chem. 55 (1951) 1557.
 8. L. G. Sillen and A. E. Martell, Stability Constants, Special Publication No. 17., London: The Chemical Society, Burlington House, London 1964.
- 9. M. J. Herak and M. Mirnik, Kolloid Z. 179 (1961) 130.
- 10. R. A. Robinson and R. H. Stokes, Electrolyte Solutions, London, Butterworths, 1955, p. 230.
- 11. K. F. Schulz and B. Težak, Arhiv Kem. 26 (1954) 187;
 M. Mirnik, F. Flajšman, K. F. Schulz, and B. Težak, J. Phys. Chem. 60 (1956) 1473.
- 12. H. H. Paine in H. Reerink and J. Th. Overbeek, Discussions Faraday Soc. 18 (1954) 74.
- 13. N. Kallay, to be published.
- 14. H. Reerink and J. Th. Overbeek, Discussions Faraday Soc. 18 (1954) 74.

IZVOD

Uloga ionskih interakcija kod koagulacionih procesa

N. Kallay i B. Težak

Ispitan je zajednički utjecaj otopina $Mg(NO_3)_2$ i KNO_3 te $Mg(NO_3)_2$ i HNO_3 na brzinu koagulacije negativnog sola AgJ. Uz pretpostavku da se prisustvo ionskih parova može zanemariti, izračunati su aktiviteti Mg2+ iona. Ustanovljeno je, da je aktivitet Mg²⁺ iona konstantan uz konstantnu vrijednost koeficijenta brzine koagulacije unatoč promjeni ionske jakosti u koloidnom sistemu. Mjerenjem pH ustanovljen je približno konstantni aktivitet H⁺ iona uz konstantni koeficijent brzine koagulacije za otopine HNO₃, H₂SO₄, H₃PO₄ i CH₃COOH. Antagonistički efekt objašnjava se utjecajem sastava elektrolita na aktivitet protuiona.

INSTITUT ZA FIZIKALNU KEMIJU SVEUČILIŠTA U ZAGREBU 41000 ZAGREB

Primljeno 25. siječnja 1973.