CROATICA CHEMICA ACTA

CCA-813

YU ISSN 0011-1643 547.51 Note

Vibrational Spectra and Force Constants of Bicyclic Molecules. I. Norbornane and Norbornane-d4

Z. Meić, M. Randić*, and A. Rubčić*

Institute »Ruđer Bošković«, POB 1016, 41001 Zagreb, and *Faculty of Science and Mathematics, University of Zagreb, Marulićev trg 19/II, 41000 Zagreb, Croatia, Yugoslavia

Received September 10, 1973

Norbornane (bicyclo[2.2.1]heptane) and its derivatives have been extensively studied by chemical and physical methods. Since norbornane represents an important strained molecule, particular attention was payed to its geometry¹ and bonding properties². However, no vibrational analysis of norbornane or its derivatives has been undertaken. Only partly analysed vibrational spectra are reported³. Therefore we find desirable to undertake a complete vibrational analysis of norbornane and its deuterated species.

Norbornane belongs to the C_{2v} point group¹. The orientation of the molecule in cartesian coordinates, the numbering of carbon atoms, as well as all the bonds and angles with which the internal valence coordinates are associated are presented in Fig. 1. The 3N - 6 = 51 fundamental vibrations are distributed among the irreducible representations of the C_{2v} point group as follows:

 $\Gamma_{\rm vib} = 15 \, A_1 + 11 \, A_2 + 13 \, B_1 + 12 \, B_2$

Fig. 1. Schematic view of norbornane molecule with the symbols of bond lengths, bond angles and orientation in the cartesian coordinate system.

Of these only A_1 , B_1 and B_2 modes are active in the infrared, but all the fundamentals are active in Raman spectroscopy. However, there are in all 62 internal coordinates, among which 11 redundancies exist. The redundant coordinates are distributed among the irreducible representations as follows:

The recognition of redundancy conditions is not trivial in molecules of such complexity. The local redundancies are easy to define. However, there is a number of cyclic redundancies which are not so obvious.

For instance, an unexpected condition is the linear dependence of the following internal coordinates: Θ^1 , Θ^2 , Θ^3 and Θ^4 in the A_1 species. Another example is the combination of R_{CC} , R'_{CC} and Θ^3 in the B_2 species. But it is not essential to solve all the redundancies, since in the calculation the corresponding frequencies appear as zeros, if all internal coordinates are used. The complete set of symmetry coordinates will be reported in a later paper⁴.

The standard procedure of Wilson⁵ and Eliashewich⁶ was followed in evaluating the G-matrix elements. The geometrical model used was based on electron diffraction data¹.

$$\begin{aligned} R_{\rm CC} &= R \left({\rm C}_1 - {\rm C}_2 \right) = R \left({\rm C}_2 - {\rm C}_3 \right) = 1.54 \text{ A} & R'_{\rm CC} = R \left({\rm C}_1 - {\rm C}_7 \right) = 1.57 \text{ Å} \\ & \text{all } R_{\rm CH} = 1.12 \text{ Å} \quad \diamondsuit \, {\rm C}_1 \, {\rm C}_2 \, {\rm C}_3 = 103^{\circ} & \measuredangle \, {\rm C}_1 \, {\rm C}_7 \, {\rm C}_4 = 93^{\circ} \\ & \swarrow \, {\rm HC}_1 \, {\rm C}_2 = 119^{\circ} & \text{dihedral angle} = 113^{\circ} \end{aligned}$$

All the HCH angles, however, were assumed tetrahedral. In addition to the parent compound, there are 15 distinct deuterated species possessing the same C_{2v} symmetry (Fig. 2). It is generally considered that the best available

Fig. 2. The normal and all the possible symmetrically deuterated norbornanes belonging to the $C_{2\nu}$ point group.

valence force field for saturated hydrocarbons is the one obtained by Snyder and Schachtshneider⁷. It was successively applied to several saturated cyclic molecules by the same authors⁷. Hence, we assumed it as the initial force fields for the moderately strained norbornane. In Table I are listed the signi-

	$K_{\rm d}$	= 4.554 mdyn Å ⁻¹	(C,CH ₂ ,C)	C—H stretch
	$K_{\rm s}$	= 4.588 "	(C,C,C,CH)	С—Н "
	$K_{ m R}$	= 4.387 ,,	(H_2C,CH_2)	С—С "
	$K_{ m R}'$	r = 4.337 ,,	(H ₂ C,CH)	С—С "
	H_{δ}	= 0.550 mdyn Å ⁻¹ rad ⁻²	(C,CH ₂ ,C)	CH_2 bend
	H_{γ}	= 0.656 ,,	(C,CH ₂ ,C)	CCH "
	H_{ζ}	= 0.657 ,,	(C,C,C,CH)	CCH "
	H_{ω}	= 1.130 "	(C,CH ₂ ,C)	CCC "
	H_{φ}	= 1.084 ,,	(C,C,C,CH)	CCC "
	F_{R}	$= 0.101 \text{ mdyn } \text{\AA}^{-1}$	(C,C) (C,C)	stretch-stretch
$F_{\rm R\gamma} = 0.32$	= 0.328 mdyn rad ⁻¹	(C,C) (C,C,H)	stretch-bend	
	$F_{R\omega}$	= 0.417 ,,	(C,C) (C,C,C,)	,,
	$F_{R\gamma'}$, = 0.079 ,,	(C,C) (C,C,H)	"
	F_{γ} = -0.021 mdyn Å ra		(C,C,H) (C,C,H')	bend-bend
	F_{φ}	=0.041 ,,	(C,C,C) (C,C,C')	"
	$F_{\gamma'}$	= 0.012 ,,	(C,C,H) (C,C,H')	3 7
	$F_{\gamma\omega}$	= —0.031	(C,C,C) (C,C,H)	"

ficant force constants taken from the paper of Snyder and Schachtschneider. Using the force constants of Table I we have calculated the vibrational fre-TABLE I

quencies for the molecules 1, 2, 3, 5 and 8 of Fig. 2. However, at present only infrared spectra⁸ of 1 and 3 are available for comparison with calculated values.

The observed, *i. e.* without the IR inactive A_2 species, and calculated fundamentals are listed in Table II.

No.	$\nu_{exp.}$	$\nu_{\rm calcd.}$	$\Delta \nu$	No.	$\nu_{\rm exp.}$	v _{calcd.}	Δν
	cm ⁻¹	cm ⁻¹	cm ⁻¹		cm ⁻¹	cm⁻¹	cm⁻¹
		A ₁			1	A_2	
1.	2950)	2926		1.		2930	_
2.		2908		2.		2853	
3.	1017	2856	_	3.		1400	
4.	2850	2853	_	4.		1319	
5.	1455	1512	+ 57	5.	<u> </u>	1288	
6.	1450	1455	+ 5	6.	<u></u>	1176	
7.	1310	1317	+7	7.		1124	
8.	1252	1260	+ 8	8.		1017	
9.	1138	1157	+ 19	9.	_	957	
10.	1068	1068	0	10.		567	
11.	948	967	+ 19	11.		93	
12.	888	891	+3				
13.	815	807	- 8				
14.	752	689	- 63				
15.	390	397	+ 7		12.9		

TABLE II Norbornane C_7H_{12} (1)

No.	$\frac{\nu_{\rm exp.}}{\rm cm^{-1}}$	$\frac{\nu_{\text{calcd.}}}{\text{cm}^{-1}}$	$\frac{\Delta \nu}{\mathrm{cm}^{-1}}$	No.	$\frac{v_{\text{caled.}}}{\text{cm}^{-1}}$	$\frac{\Delta \nu}{\mathrm{cm}^{-1}}$	$\frac{\Delta\nu}{\rm cm^{-1}}$
		B ₁	-	EA1	E	3 ₂	
1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13.	2950 2850 1449 1310 1310 1208 1138 1105 1020 870 —	2937 2902 2858 1457 1302 1291 1225 1159 1093 1013 854 707 282	$ \begin{array}{c} - \\ + \\ 8 \\ - \\ 8 \\ - \\ 19 \\ + \\ 17 \\ + \\ 21 \\ - \\ - \\ 12 \\ - \\ - \\ - \\ 16 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ -$	$ \begin{array}{c} 1.\\ 2.\\ 3.\\ 4.\\ 5.\\ 6.\\ 7.\\ 8.\\ 9.\\ 10.\\ 11.\\ 12.\\ \end{array} $	2950 2850 1450 1310 1237 1138 1105 988 920 797 338	2929 2924 2854 1453 1325 1246 1149 1117 989 912 800 359	$ \begin{array}{c} - \\ + & 3 \\ + & 15 \\ + & 9 \\ + & 11 \\ + & 12 \\ + & 1 \\ - & 8 \\ + & 3 \\ + & 21 \end{array} $
		N	orbornane-	$d_4 \mathrm{C_7H_8D_4}$	(3)		
	bred -b	A ₁			A	1 2	
1. 2. 3. 4.	2950 2850 2120	2908 2892 2857 2138		1. 2. 3. 4.		2897 2139 1307 1301	
5. 6. 7. 8. 9. 10. 11. 12. 13. 14.	2210) 1455 1325 1273 1235 1149 950 883 797 752 692	1511 1333 1276 1215 1139 961 900 789 685 677	$\begin{array}{r} + 56 \\ + 8 \\ + 3 \\ - 20 \\ - 10 \\ + 11 \\ + 17 \\ - 8 \\ - 67 \\ - 15 \end{array}$	5. 6. 7. 8. 9. 10. 11.		1259 1122 1010 908 862 535 84	oranor or <u>on</u> in volto 1110 fundsmen
15.	379	372	— 7		dessent 1	and million	.0M
	1	B ₁			E	B ₂	
1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13.	$\left \begin{array}{c} 2950\\ 2850\\ 2120\\ 2210\\ 1310\\ 1295\\ 1254\\ 1202\\ 1070\\ 983\\ 922\\ 775\\\\\\\\\\\\\\\\\\\\ -$	2904 2895 2148 1312 1292 1252 1198 1096 989 917 773 664 250	$ \begin{array}{c} $	1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12.	$\begin{array}{c} 2950\\ 2450\\ 2120-\\ 2210\\ 1310\\ 1273\\ 1254\\ 1083\\ 1030\\ 925\\ 810\\ 655\\ 347\\ \end{array}$	2929 2891 2131 1304 1288 1243 1118 1004 930 815 669 347	

Generally, the difference between experimental and calculated wavenumbers for most vibrational modes is within ± 20 cm⁻¹. However, several A_1 modes in the CH₂ deformation and skeletal bending regions show larger differences for both molecules 1 and 3. The preliminary investigation thus reveils that the force constants of Snyder and Schachtschneider are also fairly adequate for describing moderately strained polycyclic hydrocarbons. They may even be used for quantitative predictions, although some disagreement between the experimental and calculated frequencies should be expected for strained parts of a molecule.

The forms of normal modes and the potential energy distribution (PED) show, for instance, that the largest deviations are associated with v_5 of both isotopes corresponding to the CH₂ scissoring at the bridge position, and v_{14} of 1 as well as v_{13} of 3, which correspond to the $C_1C_7C_4$ deformation respectively. The most important force constants for these vibrations are $H_{\delta} = 0.550$ and $H_{\omega} = 1.130$ mdyn Å⁻¹ rad⁻². Because of the geometry used ($\Theta^4 = 93^{\circ}$ and not tetrahedral for which the force constant H_{ω} is applicable) force constant H_{ω} has to be increased to the value of 2.13 mdyn Å⁻¹ rad⁻², thus increasing the wavenumber $v_{14} = 685$ to 752 cm⁻¹, and H_{δ} has to be decreased from 0.550 to 0.490 mdyn Å⁻¹ rad⁻² thus decreasing the wavenumber $v_5 = 1512$ to 1455 cm⁻¹. The complete refinement of the original force field will be reported later.

A more detailed study of these molecules should be supported by the assignment of numerous bands in the CH stretching region, which are still ambiguous. The synthesis of molecules 2, 5 and 8 is in progress and the band contour analyses of the gas phase infrared spectra, as well as the depolarisation degrees of the Raman bands⁸, will provide sufficient experimental data for the complete and accurate vibrational analysis. This work will be reported in future.

Acknowledgement. We are indebted Prof. D. E. Sunko and Mr. M. Tomić, Zagreb, for the samples of norbornane and norbornane- d_4 . Our thanks are also due to Prof. D. Hadži, Ljubljana, who enabled the recording of IR spectra on Perkin--Elmer M521 in his laboratory.

REFERENCES

- Y. Morino, K. Kuchitsu, and A. Yokozeki, Bull. Chem. Soc. Jap. 40 (1967) 1552; G. Dallinga and L. H. Toneman, Rec. Trav. Chim. Pays-Bas 87 (1968) 795; J. F. Chiang, C. F. Wilcox, Jr., and S. H. Bauer, J. Amer. Chem. Soc. 90 (1968) 3149; A. Yokozeki and K. Kuchitsu, Bull. Chem. Soc. Jap. 44 (1971) 2356, and references cited therein.
- e.g. G. Klopman, J. Amer. Chem. Soc. 91 (1969) 89; N. Bodor and M. J. S. Dewar, J. Amer. Chem. Soc. 92 (1970) 4270; M. Randić and D. Stefanović, J. Chem. Soc. A (1968) 755; Z. B. Maksić and M. Eckert-Maksić, Croat. Chem. Acta. 42 (1970) 433.
- 3. D. Roberts, W. Bennet and F. Armstrong, J. Amer. Chem. Soc. 72 (1950) 3329; D. Kivelson, S. Winstein, P. Bruck and R. L. Hansen, J. Amer. Chem. Soc. 83 (1961) 2938; M. Avram, G. D. Mateescu and I. I. Pogany, Rev. Chim. Acad. Repub. Pop. Roum. 7 (1962) 665; V. T. Aleksanyan, Z. B. Barinova, G. N. Zhizhin, Kh. E. Sterin, N. A. Behkova and A. F. Plate, Zh. Strukt. Khim. 4 (1963) 28.
- 4. Z. Meić, A. Rubčić and M. Randić, in preparation.
- 5. E. B. Wilson, Jr., J. C. Decius and P. C. Cross, *Molecular Vibrations*, McGraw-Hill, New York 1955.

- 6. M. V. Volkestein, M. A. Eliashevich and B. I. Stepanov, Kolebanya Molekul, GITTL, Moscow 1949.
- 7. R. G. Snyder and J. H. Schachtschneider, Spectrochim. Acta 21 (1965) 169.
- 8. Z. Meić, D. E. Sunko and M. Tomić, in preparation.

SAŽETAK

Vibracijski spektri i potencijalne konstante bicikličkih molekula. I. Norbornan i norbornan-d4.

Z. Meić, M. Randić i A. Rubčić

Analizirana su svojstva unutrašnjih koordinata norbornana na temelju simetrije C_{2v} . Primjenom prosječnoga potencijalnog polja za zasićene ugljikovodike Snyder-Schachtschneidera izračunane su vibracijske frekvencije za više različitih izotopa norbornana. Raspoloživi eksperimentalni podaci infracrvenih spektara zadovoljavajuće se slažu s izračunanim vrijednostima.

INSTITUT »RUĐER BOŠKOVIĆ«

i

PRIRODOSLOVNO-MATEMATIČKI FAKULTET, SVEUČILIŠTA U ZAGREBU, 41000 ZAGREB Primljeno 10. rujna, 1973.

30