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Recently (Chem. Phys. Lett. 42 283 (1976) a simple procedure 
for deriving symmetry properties of graphs has been suggested. It 
is based on a canonical numbering of the vertices of a graph, and 
consists in searching for all the acceptable numberings which have 
a unique adjacency matrix. In the series of papers initiated here we 
will apply the above procedure and derive all symmetry operations 
for graphs of interest to chemistry. We start with the Petersen 
graph which is of interest in discussions of isomerizations of 
trigonal bipyramidal structures. 

INTRODUCTION 

The importance of symmetry in physics and chemistry is for some time 
non generally accepted. The spherical symmetry of atoms and the point group 
for molecules arise in various problems and at a very elementary level in the 
study of molecular structure. The study of molecules with internal rotation by 
Howard1 and later by E. Bright Wilson and collaborators2 has shown that the 
effective molecular symmetry which dictates the selection rules in infrared and 
microwave spectra may be different from the symmetry of a rigid molecular 
frame. Hougen3 and Longuet-Higgins4 developed the topic of symmetry groups 
for such non-rigid molecules. These more general molecular symmetry groups 
are special subgroups of the full permutational group. They differ from the 
more familiar molecular point groups in having additional symmetry operations 
that are legitimate under somewhat relaxed constraints on the molecular geo
metry in these molecules with a relatively low barrier to internal rotations and 
inversions. Use of graphs in the discussion of chemical results calls for a study 
of the symmetry properties of graphs. In graphs we are concerned with the 
connectivity, and normally the angles and lengths of the links (edges) do not 
enter into consideration. Hence, one can view the pictorial diagrams of graphs 
as structures with even greater flexibility than non-rigid molecules. Symmetry 
properties of graphs will therefore be described by more versatile subgroups 
of the full permutational group. It is the purpose of this series of papers to 
discuss and describe the symmetry properties of graphs, in particular graphs of 
interest to chemistry. While in the case of nonrigid molecules it was possible 
to recognize additional symmetry operations, in contrast here with graphs, no 
previous knowledge of all feasible symmetry operations is available. Hence the 
study of the symmetry properties of graphs cannot follow the familiar procedure 
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valid for molecules in which one examines which of the possible symmetry 
operations will leave the system invariant. The complexity of the symmetry 
properties of graphs is well illustrated in Figure 1 which depicts a graph of 

Figure 1. A similar graph shown as two interlocked tetrahedra and in a prismatic form 

two interlocked tetrahedra (left side). Consider now as a new additional sym
metry operation an inside-outside inversion by which the inner tetrahedron 
becomes outer and vice versa. By such an operation we have left the connectivity 
intact, hence it qualifies as a permissible symmetry operation. However, in 
addition to this operation we can pull the inside tetrahedron in such a way the 
two tetrahedra are not interlocked. In this way we obtain a prismatic structure 
(Figure 1, right side) in which also all connectivity is preserved. 'The new 
structure has a different geometric form and belongs to a different molecular 
point group. Hence, the considered graph has, simultaneously, symmetry pro
perties of a tetrahedral structure and of a prismatic, and possibly a few others. 
Various pictorial representations of a graph only show some aspects of the 
underlying symmetry and the problem is to derive all the symmetry features 
of graphs of interest in a systematic way. We deal here with subgroups of the 
full symmetric group of all permutations, and since any subgroup of the full 
permutation group corresponds to a graph5 we may refer to the derived sym
metry groups as the connectivity grotips, in order to discriminate between these 
and other subgroups of the full symmetric group corresponding to molecular 
point groups and non-rigid molecular symmetry groups. 

There are very few publications dealing with the symmetry properties of 
graphs in which the individual symmetry operations are fully indicated. Most 
of the mathematical papers, when applied to specific graphs, discuss only the 
order of the symmetry group, i:. e., the number of the symmetry operations, and 
do not attempt to enlist the permutations involved. "Although not a profound 
task, the manual enumerations of the symmetries would be tedious and an 
algorithm approach would be preferred.6" While for smaller graphs the per
mutations of the labels that preserve the adjacency relationship may be ap
parent, this is no longer obvious in larger graphs and the necessity for a 
systematic approach becomes evident. For a number of smaller graphs Balaban7 

tabulated the symmetry operations by listing the admissable permutations of 
labels. From such a list one can derive the cycle index term Yk which appears 
in P6lya's counting theorem8 and from which, as shown by P6lya, the number 
of substitutional isomers of the corresponding figure can be obtained. The cycle 
indices reflect connectivity rather than geometrical features, expressing con
stitutional isomerism. Lederberg6 considers somewhat larger graphs for which 
one can no longer operate solely on a visual image and describes an algorithm 
which exploits the hamiltonian circuit (where they exist) . The essential feature 
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of the scheme is that it searches at most 2n possibilities of label permutations 
rather than n! possibilities which a complete exhaustibn of label permutations 
involves. 

The strategy of our approach is different: rather than generating numerous 
(even if selective) permutations and subsequently testing to find which cor
respond to a symmetry operation of the graph, we :derive acceptable labels, 
from which all symmetry operations follow. 

OUTLINE OF THE PROCEDURE 

It is known9 that finding all distinctive labelings of a graph which give 
a same adjacency matrix is tantamount to finding all the symmetry features 
of a graph. The individual symmetry operations correspond 'to the changes 
from one to another acceptable labeling. A list of all symmetry operations can 
be derived by indicating the permutations of labels between one of the labelings 
and all others. From such a list one can then construct the group multiplication 
table which may be viewed as the end of the task of characterizing the sym
metry of a graph. 

The problem consists in finding all labelings which belong to an identical 
adjacency matrix in a practical way. This .excludes generating ,all n! labelings 
and the subsequent search for those which have an identical adjacency matrix. 
A practical approach ·has to reduce the number of combinatorial possibilities 
that one examines dramatically. we· will describe a scheme which satisfies 
the above requirement 

Let us illustrate the situation on a very simple graph of a square. There 
are in all 4! = 24 distinctive labelings for the four vertices of a square, but 
as one can easily verify there are only three different adjacency matrices for 
the graph, since the position of the first label when all vertices are equivalent 
is immaterial (four possibilities) and the sense of direction along the cyclic 
system (clockwise or counterclockwise) will not affect the form of the matrix 
(two possibilities). Hence any of the shown three different labelings will gene
rate another eight labelings which will not change the adjacency matrix: 

D D 
3 n 

4 l 3 l. l. 2 

The corresponding adjacency matrices are: 

Io 1 0 1 0 1 1 0 

00 ") 

\ ~ 
0 1 0 1 0 0 0 0 1 1 
1 0 1 1 0 0 1 1 1 0 0 
0 1 0 0 1 1 0 1 1 0 0 

Take for instance the last matrix and all the eight corresponding labelings: 
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By comparing the first labeling with itself and all others, the list of all the 
permutations of the labels which define the symmetry of the square are derived: 

AA' (1)(2)(3)(4) 
AB (4, 2, 3, 1) 
AC (2, 1)(4, 3) 
Al) (3, 2, 4, 1) 

AE (1)(2)(3, 4) 
AF (3, 1)(4, 2) 
AG (2, 1)(3)(4) 
AI! (4, 1)(2, 3) 

Any of the three adjacency matrices can be used for generating the permuta
tions which would duplicate the results of others. For instance the permu
tations defining the symmetry of a square given by Balaban7 in his Table I 
correspond to the second adjacency matrix. I!ence, if we consider only labelings 
that belong to one of the possible adjacency matrices all the duplications 
associated with the other forms of the adjacency matrix will be avoided 
resulting in an enormous saving of the searching for symmetry operations. 
As discussed elsewhere,1° it is possible to single out one of the different 
adjacency matrices because of its unique feature that it corresponds to the 
smallest binary code, if the rows of the matrix are combined · in a single 
number, by sequencing them starting from the top, in a single line. Of the 
three matrices considered before, the last one, as one can easily verify, corre
sponds to the smallest binary code: 

0 0 1 1 0 0 1 1 1 1 0 0 1 1 0 0 

PETERSEN'S GRAPH 

Petersen's graph has been introduced in mathematics to provide a cunter
example to the Tait conjecture concerned with resolving the famous four color 
problem.11 It has since been found important in discussions of various mathe
matical problems and unexpectedly appeared as one of the important graphs 
in chemistry where it depicts possible routes for the isomerization of trigonal 
bipyramidal complexes with five different ligands. 12 l)unitz and Prelog13 

have pointed to the equivalence of various pictorial forms for the graph, in 
particular drawing attention to an alternative pentagonal form equivalent to 
the usually adopted trigonal representation for the graph in chemical literature. 
The equivalence between the pentagonal and trigonal forms has been known 
to mathematicians14, while the octahedral form for the graph does not appear 
in mathematical discussions. 

The possibility of the plurality of pictorial forms for a similar connectivity 
which has different apparent symmetry is interesting, however there has been 
little systematic search for a characterization of the symmetry properties of 
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such graphs. In Figure 2 we illustrate the connectivity of the Petersen graph 
by different images having apparent symmetry D3h, D5h, T d, and D2d. Obviously 
the Petersen graph has all the symmetry properties following from the above 
representations, at which one may look as special subgroups of the actual 
symmetry group of the graph. Our task is to find the symmetry group in 
question and fully list all the permissable permutations of labels within the 
given symmetry group. For the Petersen graph it is known that the order of 
the symmetry group is 120 and that the group is fully symmetric (permutation) 
on five objects, S5• So in this particular application of our general approach 
to the characterization of the symmetry of graph novel results is the list of 
all symmetry operations. 

Figure 2. Geometrical representations of the Petersen graph of different apparent symmetry 

First, we have to find the canonical numberings of the vertices associated 
with the smallest binary code for the adjacency matrix when its entries are 
read row by row from left to right and from top to bottom. In Figure 3 we 
illustrate the search for the canonical labeling. In order that the code is as 
small as possible obviously the first row of the adjacency matrix should have 
as many zeros as possible and these should all precede the digits of one. 
Such a distributions of labels will secure that the beginning of the overall label 
ensures the possible smallest binary code. Hence the smallest label 1 should 
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Figure 3. An illustration of the search for labels belonging to the smallest binary code for the 
adjacency matrix. Only one possibility for label 1 and its neighbours 10, 9, 8 is shown (out of 60 
such possibilities). Label 2 leads to two possilJilities, but only one alternative assignment of 6 

and 7 gives optimal environment for label 3. 

have as its nearest neighbors the largest possible labels: 10, 9, 8. The condition 
determines the connectivity and labels of an immediate environment of the 
vertex 1, but it does not determine which of the ten vertices should be labeled 
as 1 and which of its neighbors will be 10, 9 and 8. Until from some additional 
considerations one can eliminate some of the possibilities, one has to consider 
all ten vertices as a site for label 1, and for each of such possibilities one has 
to register all 3! combinations of permuting digits 8, 9, 10. Despite the large 
number of possibilities which need further consideration one should realize 
that already an enormous number of possible label distributions, which is 
10!, has been eliminated. These are all combinations in which any or all of the 
large labels 8, 9, 10 are replaced with labels 2-7, which gives more than 30000 
possibilities to be compared with only 60 possibilities retained in the analysis. 
In the next step one searches for the smallest possible binary code for the 
second row compatible with the given connectivity. Obviously label 2 should 
be adjacent to label 10 since only then the second row will produce the smallest 
number. Its neighbors will have the largest available. labels which are now 
6 and 7. A closer examination of Figure 3, which depicts one of the acceptable 
labelings for 1 and the triplet 10, 9, 8, now reveals that label 2 has two possible 
sites. An assignment of label 2 to any of the two sites gives two possibilities 
for the assignment of labels 6 and 7. However, as one can verify quickly only 
one of the two possibilities for · placing labels 6 and 7 leads to the smallest 
valU'e for the third row of the adjacency matrix. The situation is shown in 
Figure 3, ·where one see that the two alternative assignments of labels 6 and 
7 produce a different environment for label 3. In one case 3 has as neighbors 
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Figure 4. Twelve labelings of vertices of the Petersen graph derived from a fixed site for 
label 1. The remaining of 120 labelings follow from a different selection of the site for label 1. 

5, 7, 9 while in the other case its neighbors · are 5, 6, 9, clearly the former 
corresponds to the smaller value for the third row. In the continuation of the 
search for the canonical labels unacceptable assignments are abandoned and 
one continues with the assignment of yet unused labels. For this particular 
example all subsequent labels have a unique position already determined 
with the assignment of labels 1, 10, 9, 8, and 2. In Figure 4 we list twelve 
out of possible 120 labelings which are given by selecting a site for label 1. 
Other possibilities can be derived from those given in Figure 4 by selecting 
any of the remaining nine vertices as the site for label 1. Observe that in 
deriving acceptable labelings no use of the apparent symmetry of Petersen's 
graph was made. However, from derived labeling, one can deduce immediately 
that all vertices in this highly symmetrical graph are equivalent. Take for 
example the two acceptable labelings of Figure 4: 

@1 ®19 
.10 8 10 2 7 8 

' 3 6 

2 7 5 4 
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We see that labels 2 and 5 in one of the figures correspond to an outer and 
the inner vertex respectively while in the other figure their role is exchanged, 
hence the inner and outer vertices must be equivalent. One even need not 
assume the apparent equivalence of outer (or inner) vertices and their use in 
deriving the labels of the very irregular pictorial representations of the graph. 
By comparing the labels in the two above assignments one can univocally 
establish the equivalence of the following pairs of vertices: (2,5); (3,6); (4,7). 
From other assignments additional equivalencies will follow and eventually 
one will deduce that all vertices are equivalent, regardless of the form of the 
adopted pictorial representation of the graph. 

Once labels lave been assigned it is a straightforward matter to write down 
the form of the adjacency matrix, the elements of which are defined by: 

' { = 1 if i and j are connected 
U;j 

= 0 otherwise 

All the labelings of Figure 4 and others not shown lead to a single adjacency 
matrix which is: 

0 0 0 0 0 0 0 1 1 
0 0 0 0 0 1 1 0 0 
0 0 0 0 1 0 1 0 1 0 

0 0 0 0 0 1 0 0 

0 0 1 1 0 0 0 0 0 l 
0 0 1 0 0 0 0 1 0 
0 1 1 0 0 0 0 1 0 0 

0 0 1 0 0 1 0 0 0 
0 1 0 0 0 0 0 0 

0 0 1 0 0 0 0 0 

LIST OF SYMMETRY OPERATIONS 

The list of symmetry operations can be constructed once we have all 
labelings belonging to the same adjacency matrix. All 120 symmetry operations 
fall into seven classes of the symmetry group. Each class is characterized by a 
partitioning of the permutations in cycles, giving: 

po 14 23 l2 24 1 33 1 3 6 2 42 52 

The number of symmetry operations within each class can be determined from 
a closer look at the permutations involved (Figure 4): 

110 this is identity operation, each label is unpermuted; 
14 23 take as as representative element: (1)(8)(9)(10)(2,5)(3,6)(4,7) Vertex (1) has 

here a unique position, its nearest neighbors also remain unpermuted, 
while the next nearest neighbors of the unique vertex exchange labels. 
Since in each such symmetry operation one vertex takes the unique 
position, there are in all 10 operations of this class; 

l2 24 take as a representative element: (1)(9)(2,7)(3,6)4,5)(8,10). The unpermuted 
pair of vertices are adjacent and define an edge. The remaining vertices 
that exchange positions may be viewed as mirror images in a reflection 



PETERSEN GRAPH 651 

plane which contains the unique edge. Since there are 15 edges in the 
graph, each will take the unique position in one of the operations of the 
class, hence there are 15 operations in this class; 

1 33 take as representative element: (1)(2,4,3)(5,7,6)(8,9,10). One vertex takes 
the unique position (being unpermuted), the remaining are cyclically 
permuted, suggesting the rotation of a figure about a threefold axis. 
Visualization of such operations is therefore simple if the graph is repre
sented by a figure with a threefold axis: 

There are ten vertices, but two senses of rotation, which leads to 20 
symmetry elements in this class; 

13 6 take as a representative element: (1)(8,9,10)(2,7,3,5,4,6). Again there is a , 
single unique vertex and a cyclic permutation of three labels adjacent 
to the unique site (with the remaining vertices making _another cyclic 
permutation) which can be associated with a positive and negative sense 
of rotation. Hence, again there will be 20 symmetry elements in this 
cl~ss also; 

2 42 take as a representative element: (1,9)(2,47,5)(3,10,6,8), Here an edge plays 
the unique role, while other vertices fall in group of four which are 
cyclically permuted. There are two senses of cyclic permutations and 
in all 15 edges which makes a total of 30 symmetry operations in this 
class. One can visualize the individual permutations best in a figure of 
D2d apparent symmetry; 

TABLE I 

List of an 120 Symmetry Operations of the Petersen Graph. Operations Belonging to 
the same Class are Grouped together. 

Permutations 

po 12 24 

(1) (2) (3) ( 4)(5)(6) (7) (8) (9)(10) (1) (8) (2,6) (3,5) ( 4, 7)(9, 10) 
( 1) (10) (2,5) (3, 7) ( 4,6) (8,9) 
(2) (7) (1,9) ( 4,5) (6,10) (3,8) 
(1)(9)(2, 7) (3,6)( 4,5)(8,10) 
( 4) (5) (1,9)(2, 7)(3,10)(6,8) 
(2) (10)(1,5)(3,9)( 4,8)(6, 7) 
(2)(6) (1,8)(3,5)( 4,9)(7 ,10) 
(3) (5) (1,8) (2,6) ( 4,10) (7 ,9) 
(7) (8) (1,4) (2,3) (5, 10) (6,9) 
(3) (7) (1, 10)(2,8) ( 4,6) (5,9) 
( 4)(6) (1,10)(2,9)(3, 7)(5,8) 
( 4)(8)(1, 7)(2,10)(3,9)(5,6) 
(6) (8) (1,3) (2,4) (5, 10) (7 ,8) 
(5) ( 10) (1,2) (3,4) (6,9) (7 ,8) 
(3) (9)(1,6)(2,10)( 4,8)(5, 7) 

14 23 

(1) (2) (5) (10) (3,4) (6, 7) (8,9) 
(1) (8) (9) (10) (2,5)(3,6) ( 4, 7) 
(1) ( 4) (7) (8) (2,3) (5,6)(9,10) 
(1) (3) (6) (9) (2,4) (5, 7) (8, 10) 
(2)(3)(7)(8)(1,4)(5,9)(6,10) 
(2) (6) (7)(10) (1,5) (3,8) ( 4,9) 
(3) (5) (7) (9) (1,6)(2,8) ( 4,10) 
( 4)(5)(6)(8)(1, 7)(2,9)(3,10) 
(2) ( 4) (6) (9) (1,3) (5,8) (7, 10) 
(3) ( 4) (5) (10) (1,2) (6,8) (7 ,9) 
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1 33 

(1)(2,4,3)(5, 7 ,6)(8,9,10) 
(1) (2,3,4) (5,6, 7) (8, 10,9) 
(6)(1, 7,5)(2,4,9) (3,10,8) 
(8)(1, 7 ,4)(2,5,9)(3,6,10) 
(3) (1,2,4) (5,9, 7) (6,8,10) 
(7) (1,6,5) (2,3,8) ( 4, 10,9) 
(10)(1,2,5)(3,8,6)( 4,9, 7) 
(3)(1,4,2)(5, 7 ,9)(6,10,8) 
( 4)(1,3,2)(5,6,8)(7 ,10,9) 
(9)(1,3,6)(2,8,5) ( 4, 10, 7) 
(5)(1, 7 ,6)(2,9,8)(3,4,10) 
(8)(1,4, 7) (2,9;5) (3, 10,6) 
(2)(1 ,4,3) (5,9,8)(6, 7 ,10) 
(5) (1,6, 7)(2,8,9) (3, 10,4) 
(6) (1,5, 7)(2,9,4) (3,8, 10) 
( 4)(1,2,3)(5,8,6)(7 ,9,10) 
(9)(1,6,3)(2,5,8)( 4, 7 ,10) 
(10) (1,5,2)(3,6,8)( 4, 7 ,9) 
(7) (1 ,5,6)(2,8,3)( 4,9, 10) 
(2) (1,3, 4) ( 5,8,9) ( 6, 10, 7) 

1 3 6 

(7)(2,3 ,8)(1 ,10,5,4,6,fl) 
(2)(6,10, 7) (1,8,4,5,3,9) 
(1) (8, 10,9) (2,6,4,5,3, 7) 
(1)(8,9,10)(2, 7 ,3,5,4,6) 
( 4)(5,6,8)(1,10,2, 7 ,3,9) 
(5)(3, 10,4)(1,8, 7 ,2,6,9) 
( 4)(5,8,6)(1,9,3, 7 ,2,10) 
(3)(5,9, 7)(1,8,4,6,2,10) 
(6)(2,9,4)(1 ,8, 7 ,3,5,10) 
(10) (1 ,2,5)(3,9,6,4,8, 7) 
(2)(6, 7' 10) (1 ,9,3,5,4,8) 
(3)(5,7,9)(1,10,2,6,4,8) 
(6)(2,4,9) (1 ,10,5,3, 7 ,8) 
(5) (3,4, 10) (1,9,6,2, 7 ,8) 
(8)(1 , 7,4)(2,6,9,3,5,10) 
(7)(2,8,3) (1 ,9,6,4,5, 10) 
(8) (1 ,4, 7) (2, 10,5,3,9,6) 
(9) (1,6,3)(2, 7,8,4,5,10) 
(10) (1 ,5,2)(3, 7 ,8,4, 6,9) 
(9) (1,3,6)(2,10,5,4,8, 7) 

2 42 

(3,5)(1 ,2,8,6)( 4,9,10, 7) 
(1,9)(2,5, 7 ,4)(3,8,6,10) 
(1,9)(2,4, 7 ,5)(3,10,6,8) 

M . RANDIC 

Table I, contd. 

( 4,8)(1,6, 7 ,5)(2,3,10,9) 
(2, 7)(1,4,9,5) (3,10,8,6) 
(1,8)(2,5 ,6,3)( 4,9, 7, 10) 
(1,8)(2,3,6,5)( 4,10, 7 ,9) 
(3, 7)(1,6,10,4)(2,5,8,9) 
(6,9)(1,2,3,4)(5,8,10, 7) 
(5, 10)(1,3,2,4)(6,8,9, 7) 
(2, 7) (1 ,5,9,4)(3,6,8, 10) 
(1,10)(2,9,5,8)(3,4,7,6) 
(1,10)(2,8,5 ,9)(3,6, 7 ,4) 
(2 ,6)(1,3,8,5)( 4,10,8, 7) 
(3,9)(1 , 7 ,6,5)(2,4,10,8) 
(3,5)(1 ,6,8,2)( 4, 7 ,10,9) 
(6,9) (1,4,3,2)(5, 7 ,10,8) 
( 4,5)(1, 7 ,9,2)(3,6,10,8) 
(3 , 7)(1,4,10,6)(2,9,8,5) 
(2 , 10)(1 , 7,5,6)(3,4,9,8) 
(2, 10)(1,6,5, 7)(3,8,9,4) 
(5,10) (1 ,4,2,3)(6, 7 ,9,8) 
( 4,6)(1, 7 ,10,3)(2,5,9,8) 
( 4,5)(1 ,2,9, 7)(3,8,10,6) 
(3,9)(1,5,6, 7) (2,8,10,4) 
( 4,6) (1,3,10, 7) (2,8,9,5) 
(2,6)(1,5,8,3)(4,7,9,10) 
(7,8)(1,2,4,3)(5,9,10,6) 
(7,8)(1,3,4,2)(5,6,10,9) 
( 4,8)(1,5, 7 ,6)(2,9,10,3) 

52 

(1 ,8, 7,3,9)(2,5,6,10,4) 
(1 ,10,2,6,9) (3,8,5, 7 ,4) 
(1 ,8 ,4,6,9)(2,3,10,7,5) 
(1, 10,5,3,9)(2,4, 7 ,6,8) 
(1,8, 7,2,10)(3,6,5,9,4) 
(1,8,4,5, 10) (2,9, 7 ,6,3) 
(1 ,9,6,2,10)(3,4, 7 ,5,8) 
(1 ,3,10,9,5) (2,6,4,8,7) 
(1,9,6,4,8)(2,5, 7' 10,3) 
(1,5,8, 10,4) (2,6,9,3, 7) 
(1, 10,2, 7,8) (3,4,9,5,6) 
(1,9,3, 7,8) (2,4,10,6 ,5) 
( 1, 10,5,4,8) (2,3,6, 7 ,9) 
(1 ,6,8,9,4)(2, 7 ,3,5,10) 
( 1,9,3,5, 10) (2,8,6, 7 ,4) 
(1,4,10,8,5)(2, 7 ,3,9,6) 
(1 , 7 ,10,8,2)(3,5,4,6,9) 
(1,4,9,8,6) (2,10,5,3 , 7) 
(1,3,8,9, 7) (2, 10,5, 4,6) 
(1 , 7 ,9,8,3) (2 ,6,4,5,10) 
(1,2,8,10, 7)(3,9,6,4,5) 
(1,5,9,10,3)(2, 7 ,8,4,6) 
(1,6 , 10,9,2)(3, 7,8,4,5) 
(1,2,9, 10,6) (3,5,4,8, 7) 
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25 take as a representative element: (1,10,2,7,8)(3,4,9,5,6). The presence of 
five vertices in a cyclic permutation suggests the visualization of the 
symmetry operations figure with a pronounced fivefold rotational axis. 
There are 12 five membered rings15 in the graph which can be posed in 
the unique position and for each, one can have rotation in the positive 
or the negative sense for an angle of 2 rr,/5. In all this .makes 24 symmetry 
elements in this class. Observe that the remaining five vertices which 
also cyclically change labels are not adjacent to each other. This makes 
a rotation by 2 (2 n/5) to correspond to the rotation of the other set of 
five vertices by 2 n/5, hence there is no need to consider the successive 
rotations about the fivefold axis. 

As we see, all the symmetry operations can be interpreted with known opera
tions of symmetry points group. if a suitable geometrical realization of the 
graph is selected. 

DISCUSSION 

Symmetry of the Petersen graph has been investigated by mathematicians 
and that it is a full symmetric group S 5 is known.16 The. equivalence with the 
S5 group can be easily established if one considers the particular contractions ' 
of the graph in which the length of selected edges is gradually reduced until 
the corresponding adjacent vertice collapses into a single vertex.17 Consider 
the graph with the pentagonal image and gradually r educe the lengths of 
the radial edges connecting the inner folded ring with the outer five mem
bered ri,ng. As a result we have a complete graph with five vertices K 5 , which 
of course belong to the full symmetry group S5 • Each labeled Petersen graph 
will, through such a process, be transformed into a labeled complete graph in 
which each vertex will have double labels. If one retains only the smaller label, 
then for selected cases we obtain the labeled graphs of Figure 5. The process 
illustrates that there is a 1 : 1 correspondence between the two sets of labeled 
graphs. 

Previous work on the symmetry properties of the Petersen graph was 
directed to establish its isomorphism with the group of the complete graph K 0 

which then has 5! = 120 symmetry operations. We presented here the list of 
all operations. Classes in the full symmetric group are determined by the 
partition of the permutations, but this need no longer hold in subgroups of 
the full symmetric group which may correspond to the symmetry of other 
graphs. Our approach is sufficiently general to yield results also for graphs 
which have a lesser symmetry than complete graphs. The symmetry operations 
of the Petersen graph can be interpreted within forms for the graph which 
have an apparent symmetry D 0h, D3d, or D 2d. Since D~d and D 2d are subgroups 
of the tetrahedral point group T d we may summarize the symmetry properties 
of the Petersen graph by indicating that within itself it contains point symmetry 
groups T d and D,h. For the connectivity group of the Petersen graph we may 
symbolically write (Td, D ,h). The two point groups only indicate the fragmen
tary symmetry features of the Petersen graph, but the notation has a convenient 
property: it indicated the highest symmetries of the geometrical figures that 
one can construct to represent the graph and its connectivity. Any isomorphous 
group to those shown will lead to alternative geometrical forms, while any 
subgroup of the point groups listed in the bracket will suggest geometrical 
forms of lower apparent symmetry. Thus since D3d is a subgroup of Td one 
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'@' s@' '@s '@' 
2 3 1 3 2 1 2 3 

A B C D 
(1)(2)(3)(4)(5) (1,2)(3)(4)(5) (1,3)(2)(4,5) (1)(2)(3)(4,5) 

(1,2)(3)(4,5) (1,3)(2)(4)(5) (1)(2 ,5,3,4) (1, 2,5,3,4) 

•@2 J@2 '@· ·@' 
4 5 4 5 4 5 5 4 

I J K L 
(I, 3,5) ( 2 ,4 ) (1) (2,4)( 3,5) (1,2,4)(3,5) · 11,3,4,2,5) 

Figure 5. Contracted graphs derived from the fusion of five pairs of adjacent vertices which 
convert the Petersen graph into the complete graph on five vertices (Ks). There is a 1 : 1 corre

spondiance between each labeled Petersen graph and the corresponding labeled K s graph. 

can construct a figure D3d symmetry if one wishes. Since D3d is isomorphic 
with D 3h one can make a geometrical figure of the Petersen graph of apparent 
D3h symmetry. Such forms have been frequently used in chemical literature, 
in particular before the symmetry properties of the Petersen graph were 
better investigated. 

Acknowledgment. I would like to thank professor A. T. Balaban (Bucharest, 
Roumania) for discussion of the material and several suggestions that improved the 
presentation. Also I am indebted to professor J. Lederberg (Stanford Univ.) for 
kindy sending preprints concernig use of graphs in the analysis of the ring stru
ctures of chemistry, (ref. 6 in particular). This work was supported by the U.S . De
partment of Energy, Division of Basic Energy Sciences. 

REFERENCES 

1. J . B . Howard, J. Chem. Phys. 
2. E. B. W i 1 so n Jr., C. C. Lin, and D. R. Lide, J. Chem. Phys. 23, 136 (1955). 
3. J . T . Hougen, J. Chem. Phys 37 (1962) 1433; 39 (1963) 358. 
4. H. C. Lon g u et - Higgin s, MoL Phys 6 (1963) 4.45 . 
5. R. Fr u ch t, Compositio Math. 6 (1938) 239. 
6. J . L e de r b erg, DendraL-64, Part II a report to National Aeronautics and Space 

Administration, NASA CR 68898. 
7. A. T. Ba 1 ab an, Rev. Roum. Chim. 19 (1974) 1323. 
8. G. P 61 ya, Acta Math. 68 (1937) 145. 
9. F. Har a r y, Graph Theory, Addison-Wesley Publ. Co., Reading, Mass, 1972, 

chapter 14. 
10. M. Randi c, J . Chem. Inf. & Computer Sci. 17 (1977) 171. 
11. See: N. L. Biggs, E. K. L 1 o yd, and R. J . W i 1 son, Graph Theory 1736-

1936, Clarendon Press, Oxford 1976. 



PETERSEN GRAPH 655 

12. M. Giel en and J. Na s i els k i, Bult Soc. Chim. Belges 78 (1969) 339; J. 
Bro ca s and M. Giel en, Bull. Soc. Chim. Belges 80 (1971) 207. 

13. J. D. Dun it z and V. Pre log, Angew. Chem. 80 (1968) 700. 
14. W. T. Tutt e, Connectivity in Graphs, Univ. of Toronto Press, Toronto 1966. 
15. There are 10 vertices, each vertex is involved in 6 five membered rings, which 

total 60. However each ring has been counted five times (having five vertices) 
once for each vertex of the ring, hence the result is 60/5, i. e., 12. 

16. R. Fr u ch t, Comment. Math. Helv. 9 (1937) 217. 
17. F. Har a r y and W. T. Tutt e, Canad. Math. Bull. 8 (1965) 17. 

SAZETAK 

Sustavni studij simetrijskih svojstava grafova. I. Petersonov graf 

M. Randie 

Izvedena su simetrijska svojstva Petersonova grafa s pomocu jednostavnog 
postupka. Taj se postupak temelji na tra:Zenju svih numeriranja grafa, koji imaju 
jedinstvenu matricu susjedstva. Petersonov graf je vafan pri proucavanju izomeri
zacija trigonalnih bipiramidskih kompleksa s pet razlicitih liganada. 
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