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To achieve high-voltage reactive power compensation, a 5.6kV 17-level STATCOM under SVG Condition is
presented. In this paper, we use a cascaded H-bridge multilevel star-connection converter whose system structure
and circuit schematic are described. Then by using the phase-shifted carrier modulation strategy and the active-
reactive current decoupling method, the STATCOM performs quite well. Moreover modulation strategy of the 17-
level STATCOM based on the active disturbance rejection control (ADRC) is presented and the analytical formulas
are described. For implementation, control strategy for DC bus voltage balance in cascaded H-bridge multilevel
converters, time average distribution method and extreme value offset method are applied in our design. Finally,
simulation results demonstrate that the proposed 17-level STATCOM is capable of reactive power compensation,
simultaneous controlling and balancing the DC side voltages during the work and verify that high-voltage reactive
power can be accurately and effectively compensated.

Key words: STATCOM, Static var generation (SVG), Control strategy, Active-reactive current decoupling, Cas-
caded H-bridge (CHB) multilevel converters, Time average distribution, Extreme value offset

Simuliranje i upravljačka strategija 5.6 kV 17-razniskog STATCOM sustava uz SVG uvjet. Za postizanje
kompenzacije jalove snage uz visoki napon, predstavljen je STATCOM s 5.6 kV i 17-razina uz SVG uvjet. U ovom
radu koristimo kaskadni višerazinski H-mosni pretvarač u zvijezda spoju uz opisane strukturu i shemu spoja. Zatim
korištenjem strategije modulacije s fazno-pomaknutim signalom nosioca i metode rasprezanja radno-jalove struje,
STATCOM pokazuje prilično dobro vladanje. Uz to, prikazana je strategija modulacije 17-razinskog STATCOM-a
zasnovana na upravljanju s aktivnim odbacivanjem smetnji (ADRC) te su opisane analitičke formule. Za imple-
mentaciju, u naš dizajn primjenjene su upravljačka strategija balansiranja napona DC sabirnice u kaskadnom više-
razinskom H-mosnom pretvaraču te metoda vremenskog uprosječavanja razdiobe i metoda ekstremne vrijednosti
pomaka. Konačno, simulacijski rezultati pokazuju da je predloženi 17-razinski STATCOM sposoban za kompen-
zaciju jalove snage, istovremeno upravljanje i balansiranje napona DC strane u radu te potvr�uju da je jalovu snagu
uz visoki napon moguće točno i djelotvorno kompenzirati.

Ključne riječi: STATCOM, proizvodnja energije uz statičku jalovu snagu (SVG), upravljačka strategija,
rasprezanje radne-jalove struje, višerazinski H-mosni pretvarači (CHB), vremenski uprosječena
razdioba, ekstremna vrijednost odmaka

1 INTRODUCTION

In recent years, the major power has been consumed
through instantaneous reactive loads like asynchronous
motor, synchronous motor, pumps etc. According to the
concepts and principles of instantaneous reactive power
compensation, the static synchronous compensator (STAT-
COM) performs well in the stability of the system voltage,
system steady-state and dynamic [1, 2]. Compared with
the traditional static var compensator (SVC), it has advan-
tages such as high adjustment speed, wide operation range,
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continuous compensation, small harmonic current and low
loss etc [3]. In addition, two-level inverters which can re-
duce the harmonics while increasing the capacity are intro-
duced into STATCOM [4]. However the necessary expen-
sive transformer leads to the high system cost and energy
consumption. Cascaded H-bridge (CHB) multilevel invert-
ers without transformer are applied in the area of high-
voltage and high-power STATCOM [5,6], and those invert-
ers uses multi-level square wave synthesis staircase to ob-
tain sinusoidal output voltage. With the increasing in out-
put voltage level, a better harmonic spectrum is achieved,
and switches have low voltage stress. Due to its low cost,
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high reliability, security, and good controllability, the CHB
STATCOM has been widely applied in the reactive power
compensation, power quality control and other fields.

There are many control methods for CHB multilevel
STATCOM such as modulation technique based on ladder
wave, PWM (pulse width modulation) modulation tech-
nique based on space vector (SVPWM), and PWM mod-
ulation method based on carrier [7, 8]. All these control
methods have their advantages and disadvantages. We can
select and use the appropriate control methods in practical
applications. CPS-SPWM (carrier phase shifted sinusoidal
pulse with modulation) can control output of inverter ac-
cording to SPWM law in high power applications, improve
the output waveform greatly, reduce the output harmon-
ics and reduce cost with smaller filter. On account of its
high equivalent switching frequency and wide transmis-
sion bandwidth, a variety of advanced control strategies
can be used to optimize the overall system performance.

CHB multilevel inverter is connected with DC side ca-
pacitors which are isolated from each other, based on this,
it exists multi-independent DC bus voltage and unbalanced
DC capacitor voltage. Moreover because each H-bridge in-
verter is a linear, multi-variable and strong coupling sys-
tem, thus the parallel loss, switching loss, modulation ra-
tio and pulse delay are different among inverters [9, 10].
DC bus voltage balance control is directly related to AC
side of inverter output waveform quality, active and reac-
tive power output, voltage and current of switching device,
and dynamic response of converter. Unbalanced DC capac-
itor voltage can decrease the performance of CHB multi-
level converter [11].

Given above all, novel control strategies for DC bus
voltage balance, time average distribution method and ex-
treme value offset method are applied in this paper. The
paper is organized in the following manner. In Section 2,
the system structure of STATCOM including the schematic
of CHB multilevel converter is reviewed Section 3 de-
scribes the modulation strategy of 17-level STATCOM us-
ing active-reactive current decoupling. he novel control
strategy for DC bus voltage balance in CHB multilevel
converters is presented in Section 4 and in Section 5 the
simulation results are illustrated. Section 6 is devoted to
total voltage of CHB multilevel converters conclusions.

2 SYSTEM STRUCTURE OF STATCOM

Fig. 1 shows the system structure of STATCOM. In
this figure, usa, usb and usc are grid voltage, ila, ilb and
ilc stand for load current, uca, ucb and ucc are voltage of
STATCOM, ica, ic and ica are the output current of STAT-
COM. Lc is the filter inductance while Ls is the line in-
ductance. The main circuit of STATCOM is 17-level CHB
multilevel converters which is shown in Fig. 1. It consists
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Fig. 1. System structure of 17-level STATCOM

of three legs in star-connection and each leg consists of
eight cells (H-bridge converter) and filter inductances. The
output voltage level be increased by connecting H-bridge
converter in sequence. Besides the DC side capacitor of H-
bridge converter is independent. STATCOM is mainly used
to realize the current reactive power compensation. Energy
exchange between the grid and STATCOM is realized by
adjusting the phase and amplitude of the STATCOM output
voltage, respectively. The amount of exchanged energy is
determined by STATCOM active power and load reactive
power. 17-level CHB as STATCOM produce high-quality
sine wave without transformer. Three small smoothing re-
actors are required to filter out high-frequency current har-
monics generated by STATCOM.

3 MODULATION STRATEGY OF 17-LEVEL
STATCOM BASED ON ADRC

In Fig. 2, the controller detects the reactive component,
iqref ,of the load side current, ilabc, by using the park trans-
form and phase-locked loop (PLL). The active and reactive
component of iab, id ,and iq are got from the output cur-
rent, icabc, of STATCOM by Park transform. The active
component, idref , from PI controller is determined by the
DC side reference value, udcref , and feedback voltage,
udc. By Park transform, usd and usq are got from System
voltage, uabc. All the variables above are used by reactive
decoupling controller, and the output voltage vector, ud
and uq , are obtained.Input signal of CPS-PWM,uα) and
uβ , are got from ud and uq by dq-αβ transform. Finally,
CSP-PWM generator engender PWM signal. The driving
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Fig. 2. Control principle of STATCOM

circuit makes the CHB work, and STATCOM generates the
desired reactive power.

3.1 CHB switching modulation signals
Among the different pulse generation methods, the

PWM which is achieved by comparing reference signal
with a high-frequency ‘carrier’ signal is the most preferred
approach in multilevel converters. It has the advantage of
switching frequency been fixed and implementation sim-
plicity. Carrier phase-shift PWM (CPS-PWM) is the most
commonly used modulation method for H-bridge multi-
level converter, because of it’s power distribution among
all of the CHBs and easy to implement [12–14]. The phase
of each carrier signal is shifted in a proper angle to reduce
the harmonic of current flowing from each leg and to lower
the output current ripple of the CHB.

The modulation method, unipolar dual frequency CPS-
SPWM, is used. The working principle is that all H-bridge
converters have the same modulation reference signal, and
the phase of its triangular carrier signal shifts 1/N of the
carrier cycle, and the cascaded H bridge inverters consists
of N cells in sequence connection. The carrier phase is
shifted half carrier cycle for the two legs of an H-bridge
converter, and the same modulation reference sine signal is
used to generate the unipolar dual frequency CPS-SPWM.
Because a common modulation reference signal is used,
the fundamental output is exactly the same. The output of
each H-bridge converter can be added together, the general
output is N times of single H-bridge output, and the output
voltage is 2N+1 level. For the carrier phase shift, the low-
order harmonics cancel each other out which leads to the
improvements of the equivalent switching frequency.

3.2 System control based on ADRC
ADRC is a new type of controller which can inherit

the advantage as independent of the object model and im-

prove inherent defects of the traditional PID. ADRC can
automatically detect the real-time effects of the system and
compensates the error. ADRC detects and compensates the
total disturbances of the system, whether internal distur-
bances or external disturbances. ADRC does well, whether
parameters change or uncertain disturbance, which shows
that it has strong adaptability, robustness and maneuver-
ability [15].

For the nonlinear uncertain objects of SISO, equation
(1) is given as below:

y(n) = f(y, ẏ, · · · , y(n−1), t) + ω̄(t) + bu, (1)

where f(y, ẏ, · · · , y(n−1), t) is unknown function, ω̄(t) is
unknown disturbances, y is measurement output, u is con-
trol input.
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Fig. 3. The diagram of ADRC

The diagram of ADRC corresponding to equation (1) is
shown in Fig. 3. It is composed of a tracking differentiator
(TD), an extended state observer (ESO), and a nonlinear
state error feedback controller (NLSEF). TD realizes the
fast non-overshoot tracking of the input signal and gives
the reference input of corresponding derivative. ESO can
be used to estimate system state, real-time effect of model
and external disturbance and compensate it. The nonlinear
uncertainty object with unknown interference is controlled
as integral tandem object. NLSEF realizes the disturbances
compensation control by using the error between the out-
put of the TD and ESO.

The realization of the first order ADRC is given as




v1 = −r · fal (v1 − v(t), a0, δ0)

ε = z1 − y
ż1 = z2 − β1 · fal(ε, a1, δ1) + bu

ż2 = −β2 · fal(ε, a1, δ1)

ε1 = v1 − z1
u0 = β3 · fal(ε1, a2, δ2)

u = (u0 − z2)/b

, (2)

where fal(ε, a, δ) =

{
|ε|asgn(ε) |ε| > δ
ε/δ1−a |ε| ≤ δ .
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It can be seen from equation (2) that the input and out-
put of the object, u and y, is needed, which means it is
simple and easy to implement.

From Fig. 1, according to the voltage balance of sys-
tem, mathematical model of the main circuit is obtained in
equation (1).

L
di

dt



ia
ib
ic


 =



usa
usb
usc


−



uca
ucb
ucc


+R



ia
ib
ic


 , (3)

where R is a known resistance.

Based on Park transform, equation (3) transforms from
abc coordinate to dq coordinate and the sum of three-phase
currents is zero in three-phase three-wire system. Math-
ematical model under dq coordinate is defined in equa-
tion (4).

L
di

dt

[
id
iq

]
=

[
−R ωL
ωL −R

] [
id
iq

]
+

[
usd − ucd
usq − ucq

]
, (4)

where L is known electrical inductance, ω is a known pa-
rameter.

Laplace transform is applied to (4) and we can get:

Ls

[
Id(s)
Iq(s)

]
=

[
−R ωL
ωL −R

] [
Id(s)
Iq(s)

]

+

[
Usd(s)
Usq(s)

]
−
[
Ucd(s)
Ucq(s)

]
. (5)

Active current id and reactive current iq coupled to
each other by connection inductance which makes it dif-
ficult to control. To obtain the optimal control effect, it is
necessary to decouple id and iq .

From equation (4), equation (6) can be obtained:





L
dId
dt

= −RId + ω̄d − Ucd

L
dIq
dt

= −RId + ω̄q − Ucq
. (6)

Voltage usd and usq are difficult to measure and uncer-
tainty. ω̄d = ωL · Iq + Usd and ω̄q = −ωL · Id + Usq are
internal disturbances.

Decoupled d, q axis ADRC is obtained. Diagram of
active-reactive decoupling control is shown in Fig. 4.

Reactive power control is described as an example. Re-
active current reference from reaction power detection, i∗q ,
is reference of ADRC. Reactive current flowing through
STATCOM is output. The output voltage, ucq , is the con-
trol signal. The reactive current follows the change of ref-
erence current.
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Fig. 4. Diagram of active-reactive decoupling control

According to equation (4), control system of reactive
power is 1st order and 1st order TD is needed. Supposing
the output of 1st TD is

v1 = −k1 · fal
[
(v1 − i∗q), a1, δ1

]
, (7)

2nd order ESO is built and given as below
{
ż1 = z1 − k21 · fal(ε2, a2, δ2)− Ucq
ż2 = −k22 · fal(ε2, a2, δ2)

, (8)

where ε2 = z1−iq . NLSEF can be obtained from nonlinear
function of system state error feedback, ε = z1 − v1, and
is given

{
u0 = k · fal(ε, a, δ)
ucq = (u0 − z2) · (−1)

, (9)

where k1, a1, δ1, k21, k22, a2, δ2, k, a, and δ are pending
parameters.

4 CONTROL STRATEGY FOR DC BUS VOLTAGE
BALANCE IN CHB MULTILEVEL CONVERT-
ERS

There are mainly two kinds of implementations for DC
side voltage control strategies used: hardware implementa-
tion [2–4, 16] and software implementation [6, 7, 17].

The working principle of hardware implementation is
to use hardware circuit to supply DC energy consumption,
such as the shunt resistance, AC bus energy exchange and
the DC link energy exchange. The aforementioned hard-
wares are PWM rectifier, diode bridge rectifier and in-
verter. The differences between these circuits are topology,
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Fig. 5. Working principle of DC bus balance in CHB mul-
tilevel converters

energy sources and energy path. The voltage balance effect
of hardware implementation method is perfect, however, it
is not easy to use due to its high cost, large volume and,
low efficiency [17].

By adjusting the pulse width or the phase angle of each
cell, software implementation can keep the balance of DC
side capacitance voltage, and it is useful for CPS-PWM.
Pulse width and phase angle change can make the output
voltage of CHB asymmetric, and introduce more harmon-
ics. When the number of cells is higher, it is even worse,
and lower frequency harmonics is introduced.

Given above all, a balance control method based on
ADRC is applied which can be used in both two cells CHB
multilevel inverters and eight cells CHB multilevel invert-
ers in Fig. 5.

The working principle of DC bus balance in CHB mul-
tilevel converters is shown in Fig. 5, where Cb and Rdc are
auxiliary capacitance and current limiting resistor respec-
tively. Then simulation is carried out by MATLAB, and
balanced DC capacitor voltage can be obtained. In a work-
ing period, DC side capacitance exchange energy with the
auxiliary capacitance, Cb and later another DC side capac-
itance exchange energy with the auxiliary capacitance, Cb.
In a word, extra energy of the DC side capacitance can be
send transferred to the auxiliary capacitance, and these the
energy will be used by another DC side capacitance. Fi-
nally, voltage balance will be achieved.

4.1 Time average distribution method

The method is that each unit is assigned the same time
to consume the capacitor energy storage. Based on that, the

voltage is achieved balancing. In this paper, DC side ca-
pacitance sorted in accordance with the sequence of cell,
and the time connecting cell and auxiliary capacitance is
the same, thus the charging and discharging probability of
each module is the same. As long as the parameters are
properly designed, the voltage balance between the mod-
ules can be achieved.

4.2 Extreme value offset method

Extreme value offset method is applied to detect unit
capacitor and voltage in real time, which passing the stored
energy in the capacitor from highest voltage to the lowest
one. In this paper, by detecting the maximum and mini-
mum DC side capacitance voltage, and finding the cor-
responding cell, the energy in the corresponding capac-
itance will be exchanged. The maximum voltage capac-
itance transfer energy to the auxiliary capacitance first,
then auxiliary capacitance transfer energy to the minimum
voltage capacitance. At last, voltage balance between each
module can be achieved.

5 SIMULATION RESULTS

The main goal of the experimental setup is to validate
the structure of 17-level STATCOM and its corresponding
control strategy. Simulation is carried out to demonstrate
the high-voltage reactive power can be accurately and ef-
fectively compensated by the proposed methods. The sys-
tem is established based on MATLAB/Simulink, parame-
ters are described as below: each leg of CHB consists of
eight cells in serial connection, DC power supply voltage
Ud = 5.6 kV, DC side capacitance is 600 µF, rating volt-
age is 700 V, filter inductance L = 8 mH. Suppose that
the main circuit switch is ideal switch, carrier frequency is
10 kHz, and CHB is in star-connection.

Firstly, in order to show the performance of the control
strategy for DC bus voltage balance, the DC side capac-
itance voltage is tested by using time average distribution
method, which is shown in Fig. 6. The DC side capacitance
voltage of each cell can be observed in Fig. 6(a), it obvi-
ously that the DC bus voltage waveforms of each cell is
similar in shape and amplitude. The total voltage of CHB
multilevel converter can be observed in Fig. 6(b) where it
can be seen that the total voltage is at 5600 V, and volatil-
ity is largely controlled within about ±3.57% after 0.06 s.
The voltage shown in Fig. 6 verifies the effectiveness of
time average distribution method.

Secondly, a test of the control strategy for DC bus volt-
age balance is processed; the DC side capacitance voltage
using extreme value offset method has been performed.
Fig. 7 illustrates the voltage of each cell and the total volt-
age of CHB multilevel converters. In Fig. 7(a), it is possible
to see that the voltage of each cell is stable at 700 V which
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Fig. 6. DC side capacitance voltage using time average distribution method
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Fig. 7. DC side capacitance voltage using extreme value offset method
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Fig. 8. Compensation effect of STATCOM at t = 0.2s

is largely controlled within about ±7.14%, and different
from each other. The total voltage varies between 5200 V
and 6000 V after 0.02 s, which can be clearly observed in
Fig. 7(b).

All these show that the sum of the DC side voltage is
robust. Waveforms of capacitance voltage on cell coincide
with each other and a balanced capacitance voltage are
got. According to the results of figs, the DC side capac-
itance voltage using time average distribution method is
better than using extreme value offset method. The relative
voltage ripple of time average distribution method is much
smaller than DC voltage control strategy used in [18, 19].

Thirdly, a test on compensation effect of STATCOM
with putting into it at t = 0.2 s. Although it is not a nor-
mal operation of STATCOM. Fig. 8 shows the compensa-
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Fig. 9. Compensation results when load changes and the change of reactive current at t = 0.4s

tion effect of STATCOM when the STATCOM is accessed.
Where us is grid voltage and Is is grid load current, respec-
tively. It presents that the phase angle of grid volage and
load current are consistent in substantial, which shows that
the power factor of the load side improves significantly,
and the output waveform performs in high quality.

At t = 0.4 s, the load switches from L to C, by this
way, it can be tested that the reactive compensation abil-
ity of CHB multilevel converters when the load changes
from inductive to capacitive. Dynamic simulation wave-
forms are shown in Fig. 9. The waveform of the reactive
current component, iqref is shown in Fig. 9(a). Fig. 9(b)
shows the waveform of grid voltage, us and grid current,
is. The waveform of voltage of CHB multilevel convert-
ers, uca is shown in Fig. 9(c). It illustrates that even in
the present of the load change, the system current and the
CHB multilevel converters output changes. When system
tuning is completed, the CHB multilevel converters output
is consistent with the reactive current component both in
the amplitude and the phase. Dynamic compensation effect
of CHB inverter is better and the correctness of calculation
of reference signals is demonstrated yet.

The diagram of power factor is shown in Fig. 10. At t =
0.2 s, inductive load is larger. At t = 0.4 s, inductive load is
zero and capacitive load exists. from the Simulation result,
it illustrate that the reactive power compensation effect is
obvious and rapid.

6 CONCLUSION
A 17-level high-power STATCOM based on ADRC is

presented in this paper. The proposed framework includes
the schematic of CHB multilevel converter, the operation
principle is given and discussed. CSP-PWM is applied in
STATCOM and the control signal of 17-level CHB multi-
level inverter is obtained by using the active-reactive cur-
rent decoupling control. Secondly, an appropriate reactive
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Fig. 10. Diagram of power factor

current decoupling controller is presented, which compen-
sates in real time and generates ac currents of the CHB
based STATCOM that tracks their references with small
ripples. Thirdly, the method of energy balance inside the
converter is discussed and it shows that the CHB can reg-
ulate DC capacitor voltages at a predetermined level well.
Finally, simulation results show that the switch can work
with low switching frequency.

The proposed controller can perform well in lower
switching power losses and higher energy efficiency, as
well as heat dissipation reduction and smaller dimensions
of the converter. Simulation results verify that the proposed
method is verified as an efficient way of reactive power
compensation, and simultaneous controlling and balancing
the DC side voltages during the working states.

ACKNOWLEDGMENT

The authors would like to thank the anonymous re-
viewers for all their constructive comments and insightful
suggestions which greatly improve the presentation of this

899 AUTOMATIKA 57(2016) 4, 893–901



Simulation and Control Strategy of a 5.6 kV 17-level STATCOM Under SVG Condition H. Sun, F. Zhou, Y. Wang

paper. Project supported by the National Nature Science
Foundation of China (No. 61375084) and the Key Pro-
gram of Shandong Provincial Natural Science Foundation,
China (No. ZR2015QZ08)

REFERENCES

[1] Y. Ota, I. Joao, Y. Shibano, et al. A Phase-Shifted-
PWM D-STATCOM Using a Modular Multilevel Cas-
cade Converter (SSBC)—Part I: Modeling, Analysis,
and Design of Current Control. IEEE Transactions
on Industry Applications, vol. 51, no. 1, pp. 279-288,
2009.

[2] C. Ying, G. Qiang, X. Dianguo. Control and perfor-
mance of a medium-voltage cascade H-bridge STAT-
COM// Power Electronics and Motion Control Confer-
ence (IPEMC), 2012 7th International, pp.2995-2999,
2012.

[3] Y. Hu, J. Ren, J. Wang, et al. Control Strategy of Trans-
formerless Connected Cascade STATCOM under Un-
balance and Asymmetrical Condition// Power and En-
ergy Engineering Conference (APPEEC), 2012 Asia-
Pacific. IEEE, pp.1-4, 2012.

[4] M. Zhang, X. Zha, J. Sun, et al. Passivity-based Con-
trol of Cascade D-STATCOM. Proceedings of the
Csee, 2011, 31(15):33-39.

[5] F. Filho, H. Maia. Z, T H A. Mateus, et al. Adaptive
Selective Harmonic Minimization Based on ANNs
for Cascade Multilevel Inverters With Varying DC
Sources. IEEE Transactions on Industrial Electronics,
vol. 60, no. 60, pp.1955-1962, 2013.

[6] S. -L. Shen, J. -C. Chen. Study on STATCOM Based
on New Hybrid Cascade Multilevel Inverter. Electrical
Measurement & Instrumentation, 2013.

[7] C. -D. Townsend, T. -J. Summers, R. -E. Betz. Multi-
goal heuristic model predictive control technique ap-
plied to a cascaded H-bridge StatCom. IEEE Trans-
actions on Power Electronics,vol. 27, no. 3, pp.1191-
1200, 2012.

[8] K. Wang, M. -L. Crow. Power system voltage regu-
lation via STATCOM internal nonlinear control. IEEE
transactions on Power systems, vol. 26, no. 3, pp.1252-
1262, 2011.

[9] Y. Li, B. Wu. A novel DC voltage detection technique
in the CHB inverter-based STATCOM. IEEE Transac-
tions on Power Delivery,vol. 23, no. 3, pp.1613-1619,
2008.

[10] S. Agarwal,S. -R. Deore. Level shifted SPWM of
a seven level cascaded multilevel inverter for STAT-
COM applications// 2015 International Conference on
Nascent Technologies in the Engineering Field (IC-
NTE).pp.1 - 7, 2015.

[11] X. Shi, Z. Wang, Tolbert. L. M, et al. A compari-
son of phase disposition and phase shift PWM strate-
gies for modular multilevel converters// Enrgy Con-
version Congress and Exposition (ECCE), 2013 IEEE,
pp.4089-4096, 2013.

[12] Q. Tu, Z. Xu, L. Xu. Reduced Switching-Frequency
Modulation and Circulating Current Suppression for
Modular Multilevel Conveners, IEEE Transactions on
Power Delivery, Vol. 26, No. 3, pp. 2006-2017, Mar.
2011.

[13] U. -N. Gnanarathna, A. -M. Gole, R. -P. Jayasinghe,
Efficient Modeling of Modular Multilevel HVDC
Converters(MMC) on Electromagnetic Transient Sim-
ulation Programs, IEEE Transactions on Power Deliv-
ery, Vol. 26, No. 1, pp. 3l6-324, Jan. 2011.

[14] M. Guan, Z. Xu. Modeling and Control of a Mod-
ular Multilevel Converter-Based HVDC System Un-
der Unbalanced Grid Conditions. IEEE Transactions
on Power Electronics, Vol. 27, No. 12, pp. 4858-4867,
2012.

[15] X. L. Xu, Y. P. Zou, J. Guo, Control System of Cas-
cade Multilevel Statcom Based on Auto-disturbance
Rejection Controller[J]. Proceedings of the CSEE, Vol.
31, No. 27, PP. 40-44, 2007.

[16] M. Saeedifard, R. lravani, Dynamic Performance of
a Modular Multilevel Back-to-Back HVDC System,
IEEE Transactions on Power Delivery, Vol. 25, No. 4,
PP. 2903-2912, Oct. 2010.

[17] S. Debnath, J. Qin, B. Bahrani, et al. Operation, Con-
trol, and Applications of the Modular Multilevel Con-
verter: A Review. IEEE Transactions on Power Elec-
tronics, Vol. 30, No. 1, pp. 37-53, 2015

[18] Z. Liu, Z. Xu, W. Liu. Novel strategy of capaci-
tor voltage balancing control for cascaded STATCOM
based on advanced carrier phase shifting SPWM. High
Voltage Apparatus, pp.014, Dec. 2012.

[19] B. Wang, C. Bai, H. Chen, et al. Cascade-STATCOM
DC voltage control strategy based on CPS-SVPWM
modulation. High Voltage Apparatus, pp.029 Dec.
2015.

AUTOMATIKA 57(2016) 4, 893–901 900



Simulation and Control Strategy of a 5.6 kV 17-level STATCOM Under SVG Condition H. Sun, F. Zhou, Y. Wang

 

Hongchang Sun was born in 1977 in Shandong
Province, China. He received his M.S. degree in
Control Engineering from the school of control
science and engineering at Shandong University,
Jinan, China. Now he is engaged in the intelli-
gent electric scientific research and design, Jinan,
China. His research interests include electrical in-
telligent.

 

Fengyu Zhou was born in 1969 in Shandong
Province, China. He received his Ph.D. degree
in electrical engineering from Tianjin University,
Tianjin, China, in 2008. He is currently a Pro-
fessor of the School of Control Science and En-
gineering at Shandong University, Jinan, China.
His research interests include robotics and au-
tomation.

 

Yugang Wang was born in 1988 in Shandong
Province, China. He is currently a Ph.D. can-
didate in the school of control science and en-
gineering at Shandong University, Jinan, China.
He received his B.S. degree in Mathematics and
Applied Mathematics from the colleage of sci-
ences at China University of Mining and Tech-
nology, Xuzhou, China, in 2014. His research in-
terests include iterative learning control and ser-
vice robotics.

AUTHORS’ ADDRESSES
Sun Hongchang, M.Sc.
Prof. Zhou Fengyu, Ph.D.
Wang Yugang, M.Sc.
Automation Department,
School of Control Science and Engineering,
Shandong University,
Jing Shi Road 17923, CN-250061 Jinan, Shandong,
China
email: sunhongch@163.com, zhoufengyu@sdu.edu.cn,
1104381659@qq.com

Received: 2016-03-12
Accepted: 2017-08-07

901 AUTOMATIKA 57(2016) 4, 893–901


