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Various lower and upper bounds (eqs 9, 15, 16, 26, 27, 28, 
34, 40 and 41 are obtained for the Hiickel total it-electron energy. 
There exists a rather accurate linear correlation between the bounds 
16 and 26 and the Hiickel total it-electron energy (eqs 31 and 32, cor­
relation coefficients 0.9995). 

Total n-electron energy (E) as calculated on the basis of the Ruckel mole­
cular orbital (HMO) approximation is a reactivity index, the -applicability of 
which is nowadays firmly established and well documented in theoretical 
organic chemistry.1•2 In spite of the fact that the actual physical meaning of 
E is not yet completely understood,4 numerous efforts have been made to 
elucidate its dependence on molecular topology.5 Mathematical properties of 
E were also extensively studied.5 

McClelland6 was the first who found lower and upper bounds for E. 
Thereafter various additional bounds have been discovered,1- 9 some of which 
enable the estimation of E within an interval of only few hunderdths of B.9 

In the present work we offer some further inequalities for E. In addition, some 
of our estimates exhibit a fairly good linear correlation with the exact values 
of E. 

The following notation and terminology will be used. We consider a conju­
gated molecule G possessing N conjugated centers and etiher N = 2n or N = 
= 2n + 1. Let P(G, x) be the HMO characteristic polynomial of G. For reasons 
which will become clear later we shall write P(G, x) in the form 

P (G, x) = ~ (- l)J a2i xN-2J + ~ (-l)J a2i+1 xN-2J-• (1) 
j j 

Let the roots of this polynomial be x 1 ~ x 2 ~ ••• ~ XN. Then 

n 

2 ~xi for even N 
j=l 

E= (2) 
n 

2 ~ xi+ xn+i for odd N 
j = l 

Of course, in the above formulas E and P(G, x) are expressed in B units (i. e. 
it is assumed as usual that a = 0 and B = 1). Without losing the generality of 
our considerations, it can be written10 
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N 

E=-a + ~ lx· J 1 · I 
(3) 

j = l 

Note that in the case of hydrocarbons one has a 1 = 0. For further details about 
the meaning of the parameter a1 see ref. 22. 

There exist integral formulas enabling one to express E as a function of 
the coefficients of the characteristic polynomial.11 For our purposes the following 
identity is important.12 

E = - a
1 

+ <x-2 ln [(~ a2i x'i)2 + (~ a2i+i x21+1)2] 1"2) (4) 
j j 

Here and later we use the abbreviated notation 

+oo 

--;-- S F(x) dx = (F(x)) = (F ) (5) 

-oo 

THE FIRST INEQUALITY 

Let us define the alternant polynomial Pair (G, x) of a conjugated system 
Gas 

Palt (G, x) = ~ (-1)1 a2i x N-' 1 (6) 
j 

It is easily seen that Patt (G, x) is obtained from P(G, x) by formally deleting all 
coefficients a 2i + i in eq 1. We conclude13 therefrom, that for alternant hydro­
carbons (and only for them), the alternant polynomial coincides with the 
characteristic polynomial. 

Let zi (j = 1, 2, .. ., N) be the roots of the alternant polynomial, which are 
not necessarily real numbers. Then the quantity 

N 

Ealt = ~ 1 1 zi I 

j = l 

(7) 

will be named »the alternant part of the Ruckel n:-electron energy«. Taking 
into account the formal analogy between eqs 3 and 7 it follows immediately that 

Ealt = <x-2 ln ~ a2i x'i) 
j 

Comparision of the formulas (4) and (8) yields our first inequality 

(8) 

(9) 

with the equality sign only in the case of alternant hydrocarbons. In other 
words, the coefficients a2i + J. in eq 1 increase the value of E. Therefore,15 the 
presence of odd-membered cycles and heteroatoms'. results in a stabilizing 
effect in all conjugated molecules. This phenomenon was first discovered by 
Aihara.26 

THE SECOND INEQUALITY > 

In this section lower bounds will be derived for the Hilckel n:-electron 
energy of alternant hydrocarbons. However, because of the inequality (9), all 
our results can be simply extended to arbitrary conjugated systems. 
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Now, let G be an alternant hydrocarbon containing N = 2n carbon atoms. 
Eq 4 reduces then to 

n 

E = <x-2 ln ~ a
2
i x2i ) 

j = O 
(10) 

which, of course, is nothing else but formula (8). Another important property 
of alternant hydrocarbons is12 a 2i ~ 0 for all j = 1, 2, ... , n. 

The dependence of a/s on molecular topology is well known, but is rather 
complicated in the general case.15 However, relatively simple topological expres­
sions 11- 14 are known for a 2, a 4, a N and a N_2• In addition a 0 = 1.15 

a 2 = M 

where M is the number of carbon-carbon bonds in the molecule.15 

a = 4 

N 

M (M + 1) - _!__ ""' d 2 - 2 n 
2 2 L, J 4 

j = l 

(11) 

(12) 

where di is the number of carbon atom neighbours of the j-th carbon atom 
and n 4 is the number of four-membered cycles in the molecule. 16 

aN = (ASC(G)) 2 (13) 

where ASC(G) denotes the algebraic structure count of the molecule G. 17 

a N_2 = ~ (ASC(G,5))2 (14) 
r , s 

where G,5 denotes the conjugated system obtained by deletion of the centers 
r and s, and the summation goes over all pairs of conjugated centers.18 

Eq 10 shows that E is a monotonously increasing function of all a/s. We 
conclude therefrom that for arbitrary parameters ci> such that 0 ::;;; cj ::;;; a 2i> 

<x-2 ln ~ (a2i - 1) x21 ) :::;; E :::;; <x-2 ln ~ (a2i + 1) x 2!) (15) 
j j 

In particular, if we set ci = a 2i for certain selected values of j and ci = 0 
otherwise, the left hand side of (15) may become essentially simplified. 

We can extend this argument by noting that the main contributions to 
the integral (10) come from the first coefficients (a0 , a2 , a4 , ••• ) when J x J « 1 
and from the last coefficients (aN, aN_2, ... ) when J x J » 1. Then it follows 

where 

and 

0 1 

E = 2/:rr: S + S x-2 1n ~ a2i x
21 

;;;,, 11 + 1
2 

1 00 

1 

11 = 2/:rr: S x -2 ln (1 + a2 x
2 + a4 x 4

) dx 
0 

(16) 

(17) 

1
2 
= 2/:rr: S x-2 1n (aN xN + aN_

2 
x .v-2) dx (18) 

1 

The latter two integrals can be calculated by straightforward methods. Hence 
one derives 

11 = 4/:rr: (A arctg A + B arctg B) - 2/:rr: ln (1 + a
2 

+ ".I ) (19) 
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with 
(20) 

(21) 

and 
12 = 2/:n: [N - 2 + :n:T- 2T arctg T + ln (aN_2 + aN)] (22) 

where 
(23) 

Substitution of (19) and (22) back into (16) results in our second bound for E, 
which depends exclusively on the coefficients a 2 , a4 , aN and aN_ 2• Because of 
the relations 11-14, one can express this lower bound in purely topological 
terms. The explicit form of this cumbersome expression will, however, not be 
given here. Because of its rather complex nature one can hardly follow the 
actual dependence of our estimate on the particular topological invariants of 
the molecule. 

Considerable simplification is gained if one neglects the coefficient a4 in 
(17) and/or aN·-2 in (18). Elementary calculation yields then 

1 

11 ' = 2/:n: S x-2 ln (1 + a2 x
2) dx = 2/:n: [2 y~ arctg y a2 - ln (1 + a)] (24) 

0 
00 

1/ = 2/:n: J x-2 ln (aN xN) dx = 2/:n: [N + ln aN] 
1 

Now, in addition to the inequality (16) we have also 

E ~ 1/ + 12 

E ~ 11 +12' 

(25) 

(26) 

(27) 

(28) 

There is, of course, no physical basis for neglecting the coefficients a4 and 
aN_ 2 in eqs 17 and 18. The same is true for the deletion of a6, a8, . •. , aN_4 in 
eq 16. This procedure is, however, justified for purely mathematical reasons. 
Namely, the integrals I1 , I~, I/ and I/ can be calculated by means of analytical 
methods, in contrast to the exact integral given by eq 16. It is natural to expect 
that the coefficients which are omitted have a relatively small contribution to 
the value of the Hiickel :n:-electron energy. The validity of the obtained bounds 
and the.ir reliability can be seen from the data given in the Table. The question 
whether the disregarded coefficients are significant or not will be answered 
by eqs 31 and 32. 

It is to be noted here that for the majority (but not for all) of conjugated 
systems the term a 2

2 - 4 a4 is negative and therefore the quantities A and B 
given by the equations 20 and 21 are complex numbers. Expression 19 has, of 
course, real values, but in the case of complex A and B it is to be evaluated 
according to the series expansion 19 

00 

J!..-""' • cos 2k e 
11 = (a4)'i• cos 0 - :n: L._, (-1) (2k + l) (a

4
)'/ ' (29) 

k=O 
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where 
0 = arctg [(2 y a4 - a2)/(2 -VU. + a2)]'f• (30) 

This latter formulas are certainly not adequate for hand calculation. 

TABLE 

Molecule E bound bound 
(16) (26) 

butadiene 4.472 4.432 4.352 
hexatriene 6.988 6.848 6.534 
2-vinyl-butadiene 6.899 6.744 6.476 
benzene 8.000 7.867 7.465 
styrene 10.424 10.103 9.466 
stilbene 18.878 17.514 16.072 
naphthalene 13.683 13.066 12.088 
anthracene 19.314 17.878 16.359 
phenanthrene 19.448 18.043 16.525 
naphthacene 24.931 22.432 20.420 
1,2-benz-anthracene 25.101 22.666 20.654 
chrysene 25.192 22.785 20.774 
triphenylene 25.274 22.892 20.880 
pyrene 22.505 20.569 18.759 
perylene 28.245 25.162 22.881 
coronene 34.572 30.233 27.444 
bi phenyl 16.383 15.437 14.220 
benz-cyclobutadiene 10.381 10.023 9.351 
biphenylene 16.505 15.499 14.233 
p-xylylene 9.925 9.571 8.961 
o-xylylene 9.954 9.604 8.993 

The estimates (16) and (26) for an arbitrarily chosen class of 21 alternant 
hydrocarbons are presented in the Table together with the exact E values. 
It can be immediately seen that the Ruckel total n:-electron energies are con­
siderably underestimated and that the difference between E and the lower 
bounds rapidly increases with increasing size of the molecule. This might be 
understood as an indication that the practical applicability of our results is 
poor. Fortunately, a more detailed examination shows that there exists a 
surpr isingly good linear correlation between our bounds and E. Thus we 
obtain by least squares fitting 

(31) 
and 

E = 1.300 (I/ + I 2) - 1.743 (32) 

The correlation coefficient is in both cases 0.9995 . 

The high accuracy of the semiempirical formulas (31) and (32) implies 
that the coefficients a2 , a4 , aN and aN_ 2 determine the main part of E. Since 
we know the dependence of these coefficients on molecular topology (eqs 
11-14) it is to be expected that the most important topological contributions to 
E are quantitatively reproduced in eqs. (31) and (32). Our results are also in full 
agreement with previous qualitative findings in this area.20 
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THE THIRD INEQUALITY 

Let Gr denote the conjugated system obtained by deletion of the atom r 
from the molecule G. Let Er be its I-Hickel :rt-electron energy. According to the 
well-known Cauchy inequalities,21 one has 

(33) 

where x/s are the roots of P(G, x) while y/s are the roots of P(Gn x). From (33) 
it is evident that for an arbitrary G and Gn 

(34) 

Let G h be an alternant conjugated molecule with a (single) heteroatom in 
the position labeled by r . If the Coulomb integral corresponding to the site r is 
given by ar = a + h fJ, we have22 

P(Gh, x) = P(G, x) - h P(Gr, x) (35) 

where G denotes the parent hydrocarbon of Gh. Let Eh and E be the Hiickel total 
:rt-electron energy of G1z and G, respectively. It can be shown that22 

Eh= h + E + 1/2 (ln (1 + h2 V2)) (36) 

with V = V(x) = - iP(G0 ix)IP(G, ix) and i = y - 1. Since G1z was assumed to 
be alternant, G and Gr represent alternant hydrocarbons and the pairing theo­
rem applies. 13•14 Thus 

(x2 + x/) ... (x2 + xn-12) (x2 + x n2) 
V(x) = " 2 2 • 

x (x- + Y1 ) ... (x + Yn_1-) 
(37) 

and from the Cauchy inequalities (33) we deduce 

x/(x2 + x/) :( V(x) :( x/(x2 + xn2) (38) 

for x ~ 0. Note that x 1 and Xn are the energies of the lowest and the highest 
occupied molecular orbital, (the so called LOMO and HOMO), respectively. 
Their topological properties are nowadays extensively studied.23 

Substitution of inequalities (38) back into (36) yields lower and upper 
bounds for the energy change caused by the introduction of a heteroatom into 
an alternant hydrocarbon. Hence, 

1 1 
- ( ln [1 + h2 x 2/(x2 + x

1
2) 2J) :( E1z - E - h :( - ( ln [1 + h2 x 2/(x2 + x 11

2)2] ) (39) 
2 2 

which after proper integration results in our third inequality (40). 

(40) 

A special case of this result is 

(36 + h 2)'1•-6 < Eh-E-h :( h (41) 

which is a simple consequence of the fact24 that x1 < 3 and Xn ~ 0. 

Using the Cauchy inequalities (33) and the relation (38) it is possible to 
derive bounds for various other reactivity indices of conjugated molecules. 
These results have been reported elsewhere.25 
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SAZETAK 

Granice za Hiickelovu ukupnu it-elektronsku energiju 

Ivan Gutman 

Dobiveno je nekoliko donjih i gornjih granica za Hi.ickelovu ukupnu it- elektron­
sku energiju (jedn. (9), (15), (16), (26), (27), (28), (34), (40). i (41)). Izmedu granica (16) 
i (26) i tocn€' vrijednosti Hi.ickelove ukupne it-elektronske energije postoji veoma 
dobra linearna korelacija (jedn. (31) i (32), korelacijski koeficijenti 0,9995). 
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