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The Hilckel method, which can be considered an SCF method 
on the orthogonalized Lowdin basis, is extended to the UHF model. 
Some applications to :re-radicals and to metallic clusters are given. 
A strong magnetization can appear, even in small size clusters. 
Correlation with the Hund rule is discussed. A calculation carried 
out on a tetrahedral cluster explains the origin of the strong 
magnetization in elements located in the middle of the transition 
elements period. Examples of antiferro- and ferrimagnetic clusters 
are given. 

INTRODUCTION 

The self-consistent field (SCF) method1 is certainly, at the present time, the 
best procedure for studying molecular systems. Nevertheless, the complexity 
and size of the numerical calculations involved in this method make its ap­
plicatron diff.icult and very expensive when the system exceeds a certain size, 
Therefore, not only do earlier empirical methods continue to be utilized, but 
new empirical or semiempirical methods have also been proposed. Owing to 
the fact that the larger the system is, the simpler the procedure must be in 
order to be applicable, in extreme cases, the only procedure which remains 
practicable is the one devised fifty years ago by Ruckel, Hund and Mulliken -
usually known as the Ruckel method. 

This method is often considered as an empirical model owing to the simpli­
fying hypothesis on which it is built. Therefore, all the possibilities of this 
method have not been utilized. In particular, its adaptation to the unrestricted 
Hartree-Fock model has never been attempted. Such an adaptation should allow 
a consideration of the problem of magnetic properties in metallic clusters, 
generally investigated in terms of the Hubbard model2 or more recently by 
means of the Xr1. - method3 (SCF simplified procedure). 

Before describing this extension of the classical Ruckel method, it is neces­
sary to recall the theoretical status of this method as a simulated SCF 
procedure4 • 

THE THEORY 

Notations and Classical SCF Results 
Let us consider a 2n-electrons system. Generally, it is possible to describe 

the ground state by means of a single Slater determinant biult up on molecular 
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orbitals CfJi successively multiplied by each of the spin-functions a or /J: 
'ljJ = ctet I · .. rr/i, r:pJJ, . . . I (i = 1 to n) (1) 

{the cpi' s being orthonormal). This st ructure is called the restricted Hartree-Fock 
model (RHF). 

The electronic Hamiltonian operator can be written; 

/\ /\ 1 
H = L 1 (~t) + L -- (2) 

µ (µv) r µv 

1 being a monoelectron operator (kinetic energy + attraction energy between 
the nuclei or the cores, and the electron ,u). 

If we developp the CfJi molecular orbitals on the XP atomic orbitals: 

rp i = L cip Xp 
p 

the total electron energy is5 : 

where: 
/\ 

Ii= (r:pi!r:p) 

and where ei is the root of the secular equation 

det JFpq-espq 'I = o 

corresponding to the CfJi orbital. 

Spq = ( Xp l.q) (overlap integral) 
Fpq = Ipq + Gpq 

n 
= ( Zp 1 Zq) + L L L cjrcjs [2 (pq, rs) - (ps, rq)] 

j=l r s 

1 
with (pq, rs) = ( l.p (µ) Xq (µ) - Xr (:>.:) Xs (:>.:) ) 

Tµv 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

The terms Ipq (7) can be explicited as functions of the energies Wq of the 
electrons in the corresponding atom cores Q+q, and the (R+r, pq) integrals, cor­
responding to the interaction between the R+r core and the electron density pq: 

rpq = w qspq + L CRH, pq) 
R~Q 

= w qspq - L nr (TT, pq) + L (R, pq) (9) 
r~q R~Q 

where nr = positive charge of the core R+1', 

R = potential created by the neutral atom R. 

If we replace the basis atom orbitals x, generally not orthogonal, by ortho­
gonalized atom orbitals x' obtained by the Lowdin procedure6, the new bi­
electronic integrals (8) are practically equal to zero, except for p = q and r = s; 
in this case, they are equal to the initial corresponding integrals: 

(p'q', r's') - (pq, TS) Opq Ors (10) 
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If we neglect the S2 terms, the charges of the atomic orbitals are respect­
ively equal in both bases: 

In the orthogonalized basis (x'), the charge expression is the following: 

n 

q'r = 2 ~ C;/ 
i = l 

(11) 

(12) 

Under these conditions, the expressions (7) are simplified. They become: 

with: 
I cpp = + qp cpp + ~ qq cpq 

Q?"'P 

_ _ l_ Zpq Cpq 
Gpq - - 2 

Cpq = (pp, qq) and lpq = 2 ~i C;p Ciq (bond order) 

In the orthogonalized basis, the secular equation (6) becomes: 

det I Lpq - e opq I = 0 
where: 

LPP = WP+ _l_ qp CPP + ~ (qr-nr) Cpr + ~ (R, pp) 
2 r?"'P R¥P 

(13) 

(14) 

(15) 

(Hi) 

In this expression, we can neglect the (R, pp) terms because these terms are 
small and because the value of the summation is practically the same for all 
the atoms P. Consequently, if the values of the net charges (nr - q r) are equal 
to zero or are very small, we obtain: 

(17) 

Consequently, the diagonal elements Lpp do not depend on the molecule, 
they depend practically only on the nature of the corresponding atomic orbital. 
These elements are transferable from one molecule to another. In order to 
conform to usage we shall write: 

(18) 

Likewise, it is possible to show that the off-diagonal elements 

- 1 L pq - I pq - _ zpq c pq 
2 

(19) 

depend practically only on the nature of the Xv and xq orbitals, and on their 
respective positions. These terms are also transferable. They are equal to zero 
if the P and Q atoms are not bonded. If Lpq or= 0, we shall write: 

Lpq = {Jpq 

The electron energy (3) becomes7 : 

(20) 

ERHF = 2 ~ e- - __!_ ~ q 2 c + - 1- ~ Z'pq cpq - ~ qP q 'I c pq (21) 
i l 4 p p pp 2 (pq) (pq) 
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In conclusion, we see that the transferability of the Fock-matrix elements 
in the orthogonalized basis allows us to write directly the secular equation 
(15), and to obtain the orbital energies ei and the molecular orbitals <pi with 
good accuracy. We have rediscovered the old Hiickel method. But the expres­
sion of the electron energy is more complicated than in the Hiickel method 
(EHu = 2 ~ ei)· 

i 

Generalization to the UHF Procedure 
If the number of the electrons is odd, or if the system has degenerated 

levels, each molecular orbital <pi cannot be used twice. In these cases, we have 
two possibilities. At first, we can keep the Hartree-Fock model with twice 
utilized molecular orbitals and singly utilized orbitals. The second possibility 
is the unrestricted Hartree-Fock procedure (UHF), where all the space-functions 
are different. In this case, the functions <p corresponding to the same spin­
-function (a or fJ ) are orthogonal, but no relation exists between the two <p 
functions corresponding to different spin-functions. The orthogonality is auto­
matically obtained owing to the spin-functions orthogonality. For example: 

(22) 

The principle of the general treatment is well known8. It is necessary to 
make alternative iterations on the two matrices F"pq and F~pq, corresponding 
respectively to the two molecular orbitals families. 

In order to avoid confusions between the Hiickel parameters a and fJ (18, 
20), and the spin-functions, we shall note subsequently the latter functions by 
means of the symbols t (up) for the a functions, and t (down) for the fJ functions . 

For the t family, for example, we have: 

(23) 

with: 

Gtpq = ~t ~ ~ ctir ctis (pq, rs) + ~i ~ ~ dir dis (pq, rs) - ~t ~ ~ ctir ctis (pq, rs) 
irs jrs irs 

(24) 

where i = 1, 3, ... a, and j = 2, 4, . . . b. The superior indices Ct or t) indicate the 
family to which the corresponding molecular orbitals belong. 

In the Lowdin basis, the expressions (24) become: 

with: 

and 

itpq = ~t ctip ctiq 
i 

GtPP = ~t ~ (ctir>' Cpr + ~i ~ (dir)' Cpr- ~t ~ (ctir) 2 (pr, pr) 
i r j r i r 

(25) 

(26) 

~i (djp)' cpp + ~ cpr [ ~t (ctirl 2 + ~i (djr)2] = qip cpp + ~ qr cpr (27) 

with : 
j r i j r;>!P 

qtP = ~t (ctip)2
; 

i 
qiP = ~i (diP)' and qP = qtP + qiP 

j 

(28) 
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Consequently, if we neglect the (R, pp) terms: 

Ltpp=Wp+q.I.pCpp+ l: (qr-nr)Cpr 
r>"'p 

= (WP+_!___ np Cpp) + (q.l.P- _!_np Cpp) + l: (qr-nr) Cpr 
2 2 r>"'p 

If the net charges are small or equal to zero, np ,..., qP and: 

Lt pp= Lpp + + (q.l.p- qtp) cpp = Lpp- ! l?p cpp 

339 

(29) 

(30) 

Lpp being the diagonal matrix element of the RHF model (17) corresponding to 
the neutral atom P. 

is the spin density. 

Likewise, we have: 

For the off-diagonal elements, we obtain: 

( 

Ltpq = Ipq - ztpq cpq = Lpq + + (ZJ.pq - ztpq> cpq 

LJ.pq = Lpq + _l_ (ltpq - z.I.pq> cpq 
2 

We should note (cf 14) that: 

In short, we shall write: 

l fll,,: P,, + : ,,,,. - !IM) c,, 

p.i.pq - ppq - 2 (Z.!.pq - ztpq> cpq 

(31) 

(32) 

(33} 

(34) 

(35) 

where the Up and ~pq are the RHF-Hilckel parameters, corresponding to the 
neutral atoms. Consequently, this formalism appears as an iterative Hilckel 
procedure. Starting from the RHF molecular orbitals, we must built up the 
secular equations correspondi:ng to both t and t families. The molecular orbitals 
obtained allow us to obtain improved secular equations. And so on, up to the 
convergence. 

The electron energy is: 

E = _ l_ l:t (It. + et.) +-1- l:.I. (I.I.. + e.I..) 
e 2 • I I 2 . J J 

l J 

(36) 

Taking into account the above equations, the UHF energy can be written: 

EuHF = l:t eti + l:.!. e.I.j- l: qtp q.l.p cpp + l: [(ltpq)' + (l.l.pq) 2
] cpq - l: qp qq cpq (37) 

i j p (pq) (pq) 

Moreover, we have for the ~t e.l.i summation the relation: 
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~t et;= ~Lt PP qtp + 2 ~ Ltpq itpq (38) 
i p (pq) 

This general relation gives: 

~teti = ~ [LPP +-1
- (qtP-qtP)Cppl qtP + 2 ~ [Lpq +-

2
1 

i p 2 (pq) 

atpq - rtpql cpql rtpq = ~ Lpp qtp + 2 ~ rtpq +-1-
P (pq) 2 

~ [qtp qtp - (qtpl'l cpp + ~ ntpq ripq - mpql2J cpq (39) 
p ~aj 

and the analog expression for Lt et. 

The UHF electron energy (37) becomes : 

_ _ 1_ ~ (qtp - qtp)2 cpp - _ l_ ~ (ltpq - rtpql 2 cpq 
4 p 2 (pq) 

(40) 

This expression generalizes the RHF expression (21), that is valid even if 
all the qJ space-functions are not used twice, under the condition that the 
factor 2 in the (12) and (14) relations is replaced by the number ni (1 or 2) 
of molecular orbitals corresponding to the orbital energy ej. 

In so far as we can consider that the UHF procedure results from a per­
turbation in the RHF procedure, the charges (12) and the bond orders (14) are 
not changed. From equations (21) and (40) , we conclude that the corresponding 
energy variation is : 

ERHF - EuHF - -
1
- ~ ll2 p cpp + _.!___ ~ (It pq - rtpql2 cpq 
4 p 2 (pq) 

(41) 

(the spin densities and the bond orders correspond to the RHF model) . This 
difference is positive. The breakdown of the spin restriction produces a decrease 
of the energy, as we had to wait. 

Remark on the S2 Operator 

It is well known that in the UHF model the single determinant function is 
not the eigenfunction of the S2 operator. This operator can be explicated as a 
function of the monoelectronic spin operators : · 

82 = ~ 82 (p) + 2 ~ s (f<) • s M (42) 
µ (µ v) 

If we take N as the total number of used molecular orbitals, the average value 
of sz is: 

< s2 > =_l~+ ~ (2si si - Si/) 
4 (ij) 

(43) 

where i and j are the used space-molecular orbitals, Si and si the corresponding 
eigenvalues of the operator S,, and Sii the overlap integral ( ([Ji ({Jj ). If we take 
Nt and Nt as the respective numbers of the spin-orbitals t and .J,, we obtain : 

< s2 > =~+ -1-(Nt-Nt)2 -~ s .. 2 
2 4 (ij) !J 

(44) 
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·rn the RHF model, where the space functions are twice or singly utilized, 
this average value coincides with the eigenvalue of S2 : 

S (S + 1) = v (v + 2) 
4 

with v = Nt - N.j, (on the assumption that Nt > NJ-) 

In the UHF model, we have: 

(45) 

(46) 

<S'>-S(S+l)=N.j,-~Sl (47) 
(ij) 

The UHF wave function is not an eigenvalue of the S2 operator; the value 
of the difference (47) can be used as a criterion for testing the validity of the 
model. Since the S2 and H (2) operators commute, the smaller this difference, 
the more valid the single determinant approximation. Under this condition, it 
appears that it is not necessary to use the spin projection operators9 to improve 
the description of the system. Moreover, this laborious operation is carried out 
only exceptionally. In particular, the standard UHF programmes used by 
chemists do not allow this operation. 

SOME APPLICATIONS TO RADICALS AND METALLIC CLUSTERS 

The Allyl Radical (reduced to the n-system) 

We start from the RHF-Huckel functions10 : 

at _ .j, _ 1 . 1 . 1 . 
P 1 - q; 1 - - X1 + ----= X, + - .%3 

2 v 2 2 

1 
q;t., = ,, <x1 - Xal 

- v 2 

The corresponding charges and bond orders are: 

qtl = qt3 = 3/4; q.j,1 = q.J.3 = 1/4; qt2 = q.i.,, = 1/2 

(!;\ = 1?3 = 0.5; 1?2 = 0) 

rt12 = rt23 = rii.2 = r.i.,3 = v 2/4 

According to the relations (35), the new parameters are: 

{ 
a.1 1 = at3 = C'.-'YJ 

at"= a {
a.i.1 = a.i.3 = a + r; 
a.i.2 =a 

In the numerical calculations, we shall use the following values11 : 

C
11 

= 9.8 eV, (J = 0.8 (J0 with (J0 (ethylen) = -6.5 eV. 

Only two repetitions are necessary to obtain the convergence. The orbital 
energies values are: 

Family t : a + 1.65 (J; a + 0.55 (J; 

Family .j,: a+ 1.26 (J; a- 0.55 (J; 

a-1.26 (J 

a-1.65 (J. 
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Consequently, we obtain the same utilization of the orbitals as the one 
which we have postulated at the start: <p\ giJ.1 cpt2. The n-electron charges are 
practically equal to 1: 

q
1 
= q

8 
= 1.01 and q 2 = 0.98. 

The spin densities: 
l\ = ea = 0.57 and e2 = -0.13. 

The bond orders zt and z.i. remain practically equal. The average value of 
S 2 is 0.76. (The eigenvalue corresponding to a doublet state is 0.75). According 
to (41), the energy decrease is equal to 0.23 C11 ,.., 2.3 eV. 

An open-shell SCF calculation12 gave Qi = (!a ,.., 0.8 and Q2 ,..., -0.6. These 
values were obtained from non-reduced electron integrals (C11 = 16.9 eV for 
example). Necessarily, the electron densities are greater than in this present 
work. 

Square Molecules. Correlation with the Hund Rule 
First, let us consider a symmetrical square system (cyclobutadien reduced 

to their n-electrons, Li4 cluster). In the RHF model, according to the Hund 
rule, the utilized molecular orbitals are10 : 

rpt1 = rpJ.1 = _!_ (X1 + X2 + Xs + X.) 
2 

1 
<pt2 = ---=- (X1 - Xa) 

-../ 2 

1 
rpt3 = -../ 

2 
(X 2 - x.) 

The orbital energies in the UHF model are: 

Family t : a + 2 fJ -17; a -17 (twice); a - 2 fJ-17 

Family J. : a + 2 fJ + 17; a + 17 (twice); a - 2 fJ + 17 

with 17 = C11/4. 

The e:x:pressions of the molecular orbitals are unchanged. We obtain the 
same structure cpt~ cpJ.1 cpt2 cpt3 as in the RHF model, but without it being necessary 
to use the Hund rule. The spin density is equal to 1/2 for all the atoms. The 
decrease in energy is equal to 1J, i.e. ,..., 2.5 eV in the cyclobutadien and ,..., 1.2 
eV in Li,. The average value of S2 is equal to 2; that is the eigenvalue for a 
triplet state. 

Li-Na 
The situation becomes more complex in the I I cluster. If we take 

Na-Li 

a, = a + ~ fJ and a 2 = a - ~ fJ as the diagonal elements corresponding respe­

ctively to Li and Na atoms a2 > a 1. because Li electronegativity (0 .9) is greater 
than that of the Na atom (0.8). (fJ < 0, c5 > 0). 

According to the reference13: 

a 1 - -3.0 eV 

fJ - -2.0 eV 

a2 - -2.8 eV 

ca - 0.1) 
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In the usual Ruckel model, we obtain the orbital energies: 

e _ 0 + 0 R· ?- - a -p, 
- 2 2 

e - 0 R· s-a--1-', ... 
2 

which lead to a ground state for the diamagnetic RHF structure: 

iptl ipil q;t2 cpJ.2 

343 

In this structure, a large asymmetry appears between the Li and Na atoms· 

qL. - _l__ + _L and qN - - 1- - _L 1 2 4 a 2 4 

This asymmetry is physically unacceptable because the difference between 
the Li and Na electronegativities is very small. Moreover, at the limit, if (~ 
tends to zero, these charge values do not converge on the values corresponding 
to the symmetrical situation, which we have obtained above for Li1 . 

In return, the results become acceptable in a structure which would gene­
ralize the Hund rule, extended to levels considered as sufficiently neighbouring'. 
cpt1 cpt1 cpt2 cpt3 • The corresponding electron charges become: 

0 
qL. - 1 +-

1 4 
0 and qN - 1- -

a 4 

1 
On this assumption, the highest level t (et3 = a 2 - 2 C22 "' -4.0 eV) is 

1 
located over the lowest level ..!, (et2 = a1 +4 c11; "' -1.8 ev) . This relative 

disposition leads quite to the postulated structure. 

In other words, the quasidegeneracy obtained in the RHF model for 
the levels 2 and 3, would permit the application of the Hund rule. Conse­
quently, like Li4 , Li2Na2 would be paramagnetic. 

This example shows clearly that the Hund rule (extended if necessary) is 
only a palliative which is indispensable in the RHF model, but to which it 
is not necessary to appeal in the more general UHF model. 

One point remains a mystery. Owing to the Hund iule, at least in atoms, 
the system is in the state which corresponds to the grep.test spin-multiplicity. 
That does not signify, as it is often said, that the electron spins are parallel. 
For example, in the triplet state, we have not only the . two t t and ..!, ..!, com­
ponen:ts, but also the (t ..!, + ..!, t)I y 2 component corresponding to the eigenvalue 
zero of Sz. The UHF model does not deal with the states corresponding to 
non-maximum spin components. It knows only the two states which con·espond 
to a maximum magnetization. The question is whether the other states exist 
in reality. We shall return subsequently to this problem later. 

The K 15 BCC Cluster 

Let us consider the K15 cluster representing the bee structure, built up 
upon a potassium atom 1, surrounded by their eight nearest-neighbours (2 to 9) 
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and their six second neighbours (10 to 15). We shall use the following par ameters 
obtained from a systematic study of the alkali metals11 : 

{ 
c11 : 3:8 eV; 

/J1 2 - {J, 

C 23 = 1.6 eV 

fJ23 = 0.42 fJ 
(R

1 2 
= 4.62 A) 

with fJ = -1.0 eV 

Starting from the RHF molecular orbitals, after tw o iterations, ws obtain 
the following orbital energies: 

Family t : a + 5.237 (J ; a + 2.340 fJ (threefold) ; a - 0.027 (J; 

a - 0.044 fJ (twofold) ; a - 0.118 fJ (threefold) ; .. . 

Family.!. : a + 5.058 (J; a + 2.112 fJ (threefold) ; a + 0.044 fJ (twofold); 

a + 0.027 fJ; a - 0. 722 fJ (threefold) ; . . . 

Consequently, 8 t levels and 7 t levels are utilized by the 15 electrons. 
The electron charges and the spin densities are : 

q
1 
= 1.55; q 2 = ... = q

9 
= 0.68; q1 0 = . .. q15 = 1.33 

I?, = - 0.01; 122 = ... = 129 = 0.15 ; 1210 = .. · 1215 = - 0.03 

The cluster is weakly paramagnetic. The average value of S 2 is 0.75 as 
in a doublet state. 

In the RHF model: (!1 = fh o = . .. = (!15 = 0 

and (! 2 = ... = (!9 = 0.125. 

Tetrahedral Clusters 

At first, we consider an alkali M, cluster (Li, for example). The RHF 
molecular orbitals are: 

.:pt" = .:pi" = + <x1 + x~ - X3 - x.> 

cpt s = 'P,i,3 = 1 <x1 - Xa) 
-.../ 2 

.:pt = <p,i, = - I_ (X - x ) 
4 4 V2 .. z .. 4 

According to the Hund rule, in order to respect the equivalence of the 
four corners, we must use in the Hilckel method the molecular structure: 
qit , qi!-1 (qit2)Zi3 (<pf 3 )* (<pt 4 ) '

13, in which the net charges are equal to zero and 
the bond orders equal to one another. Such a scheme corresponds to the 
linear combination 
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In the UHF model, the orbital energies are the following: 

Family t : a + 3(3 - r;; a - r; (threefold) 

Family t : a + 3/3 - r;; a - r; (threefold) r; = C1 /4). 

The situation is the same as in the RHF model. We have three molecular 
orbitals t, threefold degenerate, for two electrons. The spin density is equal 
to 1/2 for each atom. The electron charges are equal to 1. The energy decrease 
is equal to - 1.2 eV. Here, again the average value of S2 (0.75) coincides with 
the eigenvalue corresponding to a quartet state. 

Now assume that each atom M carries three equivalent atomic orbitals­
-p-like for example - pointing in the directions of the neighbouring corners 
of the cube in which the tetrahedron can be drawn: 

2 y 

x z 

z 
x 

4 y 

We shall call these orbitals Px, Py, Pz, in accordance with the direction 
of their axes. 

We have three kinds of fJ term: 

(Pz1 ,Pz2 )=/3; (Px1 ,Px,l=/3' and (Px1 ,Py2 )=/3" 

If we assume that the (J's are proportional to the corresponding orbital 
overlap integrals, we can write: 

(3' = (k - 1) (3/2 and (3" = (k + 1) /3/2 

k being the ratio of the overlap integral corresponding to the two p-orbitals 
carried by the atoms 1 and 2, pointing at one another along the nuclei line 
(aa-like), and the overlap integral corresponding to the parallel orbitals pz1 

and pz2 (nn-like). The coefficient k is greater than the unity. In the calculation 
we have used k = 2. Consequently: 

(3' = (3/2 and (3" = 3/3/2. 
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In the RHF model, we obtain the twelve orbital energies: 

a + 5 {J; a + 2.386 fJ (threefold); a + 0.5 fJ (twofold); 

a -1.386 fJ (threefold); a - 0.5 fJ (threefold). 

If each atom brings two electrons (= 8 electrons for the whole cluster), the 
molecular structure corresponds to (<Pi2 <P2

2 <P3
2 <P4

2). The cluster is diamagnetic. 
Likewise, if each atom brings three electrons ( = 12 electrons for the whole 
cluster) the structure corresponds to: (<P1

2 <P 2
2 <P3

2 <P4
2 <P5

2 <p6
2

) . In neither case it 
is necessary to use the UHF model. 

The situation becomes completely different if each atom brings four 
electrons (16 electrons for the system). According to the Hund rule, the sym­
metrical structure corresponds to: 

'P/ 'P22 rp/ <{!42 'P/ 'P/ 'P1t <fist 'P0t (<p1t)1fa (<pst)1/a (<p9t)1/a 

i. e. with 9 t orbitals and 7 ;f orbitals. Consequently, Y (46) is equal to 2 and 
the spin density to 1/2 per atom or 1/6 per orbital. It is necessary to start the 
calculation again in the UHF model. 

Respectively, the diagonal elements become a+ 1J in the t and i families, 
and the off-diagonal elements are practically unchanged. 

Three cases can arise according to the values of the ratio ). = nl I fJ I which 
determines the relative positions of the levels for both the t and i families 
(Table I). 

TABLE I 

Evolution of Electronic Characteristics Versus the Ratio A = 11/l ,8 I. 

A = 11/l .BI 0 0.3 1.5 

Nt 9 10 12 

Nt 7 6 4 

v = Nt-Nt 2 4 8 

(! (per orbital) 1/6 1/3 2/3 

!'at (in µB) 1.1 1.7 2.8 

1] C11/12 C11/6 C11/3 

ERHF-EUHF C11/12 C11/3 4C11/3 

In the three ranges (0 < l < 0.3), (0.3 < l < 1.5) and (1.5 < l), the values 
of the ratio r = C11/I fJ I are respectively. 

0 < y < 3.6; 1.8 < y < 9 and 4.5 < y. 

Taking into account the energy decreases, the ground states correspond 
respectively to 'V = 2 if 0 < r < 1.8, to 'V = 4 if 1.8 < r < 4.5, and to JI = 8 if 
4.5<y. 
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In other words, when the ratio C11/I fJ I is small, we obtain the same spin 
density as in the RHF model (Y = 2), and when this ratio increases, we obtain 
successively Y = 4 and y = 8. The paramagnetism of the cluster is strongly 
increased. The spin density can become equal to that found in bulk ferro­
magnetic metals (about 2.2 µB per atom in iron for example). 

If each atom brings five electrons (20 electrons for the whole cluster), 
according to the Hund rule, the RHF structure corresponds to: 

r:p/ r:p/ 'P3? 'P42 'P/ 'Ps2 'P/ 'Ps2 'P92 (r:p10t)2/3 (r:p11t)2/a (r:pt12)2fs. 

We have 11 orbitals t and 9 orbitals t (v = 2, e = 1/6). 
By means of calculations similar to those made in the previous case, one 

sees that Y = 2 ((2 = 1/6) when 17/l,BI < 0.6, and Y = 4 (Q = 1/3) when 17/lfJI > 0.6. 
The decreases in energy are respectively equal to C11/12 and C11/3. When the 
ratio C11/J fJ I increases, the paramagnetism increases, but in a proportion 
not as strong as in the previous case. 

Finally, if each atom brings six electrons, the cluster is diamagnetic. 
The results obtained in the case of the tetrahedron show clearly that the 

breakdown of the spin restriction does not produce only a decrease irr energy. 
Sometimes, it can provoke a modification of the respective number of t and 
t molecular orbitals, larger than that the classical Hund rule would require. 
Moreover, it is interesting to remark that the values of the paramagnetism 
which results from this modification can be equal, even in small size clusters, 
to those in ferromagnetic metals. Thus the properties of the Weiss domains 
should be explained. According to the classical theory, these domains have 
the maximum magnetization; the effect of the exterior magnetic field is not 
to create this magnetization, but only to allow its observation14• Perhaps that 
is the answer to the question which we posed at the end of the previous 
section. Irr a finite size cluster, only the states given by the UHF model, for 
which the Sz - components are maximum, should exist. 

However, the schematic example of the tetrahedral cluster can help us 
to understand the evolution of the magnetic properties in the transition ele­
ments. In this group, J fJ I is in the range 1 to 2 eV, and the integral C11 varies 
from 6 to 8 eV, from scandium to nickel. Consequently, the ratio y is located 
in the neighbourhood of a value which is approximatively equal to the 
critical value 4.5 obtained in a system having a weaker number of orbitals 
per atom. The first transition elements are weakly paramagnetic. Those located 
in the middle of the group have a strong magnetization, which decreases in 
the last elements. By means of X a-calculations the V1 5 cluster is obtained as 
weakly paramagnetic, the Fe15 whole cluster as strongly paramagnetic3 • The 
average value of the magnetic moment is about 2.6 /lB per atom. This value 
is close to the one observed in bulk iron (2.2 p 13). Analogous results are obta­
ined for the tetrahedral clusters15• 

Antiferro- and Ferrimagnetic Clusters 
The above example shows that the method is able to explain the ferro­

magnetic properties. This method allows also to study antiferro - or ferrima­
A-B 

gnetic systems. As an example, we have choosen a square molecule '. I in 
B-A 
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which the A carry atoms only an s-orbital and the B atoms two p-orbitals 
pointing respectively towards the A atoms. We shall suppose that each A atom 
brings two electrons, and each B atom, n electrons. We shall use the following 
parameters (in e V): 

ap =as+ 2; flsp = -1; css = 8; cpp = 4. 

(the other parameters fJ are assumed equal to zero). 

In the RHF model, we have three pairs of degenerated levels. Consequently, 
if the total number of electrons is equal to four (n = 0), we obtain all the spin 
densities equal to zero. The molecular energies corresponding to the utilized 
levels are: 

e1 t = e1t = e2t = e2t = - 0.732. 

In the UHF model, starting from slightly different Lt and 0 values, the 
differences between the diagonal elements increase, and finally converge to 
the structure corresponding to the orbital energies: 

e1t = e2t = - 2.722 and e1t = e2t = 0.400 

The obtained total energy is about 1.8 eV lower than the energy of the initial 
RHF structure. This situation arises from the instability of the diagonal 
elements Ipp· The corresponding spin densities are different from zero: 

(!A= -(!B = 0.6 

These values correspond typically to an antiferromagnetism (cf. NiO). The 
breakdown of the spin restriction is necessary to obtain this situation. 

If each atom B brings n = 1 electron, we have 4 molecular orbitals t and 
2 molecular orbitals l The spin densities are respectively (!A = - 0.5 and (!B = 
= 1.5. These values correspond to a ferrimagnetism (cf. spinels) . 

CONCLUSION AND OUTLOOKS 

The above applications show clearly the possibilities of the Hiickel method 
extended to the UHF model. Still, owing to the simplicity of the method, its 
principal interest is to allow the study of clusters having a great number of 
atoms (many hundreds), which are, at the present time, unapproachable by 
means of the other methods. 
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SAZETAK 

Neogranicena Hartree-Focko'va samouskladena Hiickelova metoda. 
Primjena na magnetska svojstva radikala i metalnih grozdova 

A. Julg i 0. Julg 

Hiickelova metoda, koja se moze smatrati samouskladenom metodom u Lowdi­
novoj bazi, prosirena je u UHF model. Opisane su neke primjene te m etode na 
-radikala i metalne grozdove. Diskutira se korelacija s Hundovim pravilom. Poka­
zano je podrijetlo jake magnetizacije elemenata smjestenih u sredinu periode prije­
laznih elemenata. Dani su primjeri antiferimagneticnih ferimagneticnih grozdova. 
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