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The ideas of Mallion and Rouvray (1978), concerning the rele
vance of molecular topology to the prospects of obtaining, on the 
basis of the Aufbau Principle, a unique, n:-electronic ground-state 
configuration for an existent or hypothetical conjugated-system, 
are extended by considering a series of networks introduced by 
Balaban in 1978. It is shown by exploiting the properties of the 
eigenvalues of circulant matrices that the graph spectrum of a 
general member of this series may be found analytically in closed 
form. From this it is further deduced that application of the Aufbau 
process to the »Balaban graphs«, BN, will lead to the establishment 
of a unique, ground-state configuration if, and only if, N is 
divisible by 4. The Balaban graphs are thus shown to constitute a 
series in which networks that give rise to a unique, ground-state 
configuration when the Aufbau Principle is invoked alternate with 
ones that do not. As a result of these observations, it is emphasised 
that, despite what is often assumed to the contrary, the existence of 
a unique and unambiguous »n-electronic, ground-state configu
ration« for an arbitrary network should not be taken for granted. 

1. INTRODUCTION 

Rouvray and the present author have previously pointed out1•2 that the 
a-bond connectivity of the carbon atoms in a hypothetical, neutral, conjugated 
hydrocarbon predetermines whether or not it is possible, on the basis of the 
Aufbau Principle, to assign a unique, ground-state configuration from energy 
levels calculated via Hiickel-molecular-orbital {HMO) theory. Such 'molecular 
topology* ' is relevant because it influences the relative ordering amongst the 
eigenvalues of the associated molecmlar-graph (see, for example, refs. 9, 5, 7 
and 8). It was shown by direct numerical calculation1 that networks which, 
on chemical grounds, could not possibly represent actual molecules may, 
nevertheless, have eigenvalue spectra that constrain application of the Aufbau 
process to occasion a unique :rt-electronic, ground-state configuration; (natu
rally, all known conjugated systems are associated with molecular graphs that 
have this property.) It was speculated1 that certain hypothetical conjugated
systems may not exist because their very topology* precludes their having an 

* Presented at The IUP AC International Symposium on Theoretical Organic 
Chemistry, held in Dubrovnik, Croatia, August 30 - September 3, 1982. 

9f The somewhat unfortunate adjective 'topological' is used in this paper to· 
describe any property or quantity that is derivable solely from the eigenvalues and/or 
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·energy-level family that will lead to a unique, ground-state configuration, 
when the Aufbau Principle is . invoked. 

Eigenvalues of graphs are, however, somewhat capricious entities (ref. 
10 - but see also refs. 11 and 12) and it is not, in general, possible to obtain 
the latent roots of an arbitrary network in closed form and hence to give an 
analytical demonstration of the ideas that were introduced in refs. 1 and 2. A 
·specific series of networks that do, however, nicely illustrate these points is one 
recently discussed, in quite another context, by Balaban13. Examples of three 
:members of this series are shown in the Figure. These networks could not, 

Ba 

2 2 

9 

5 6 . 5 7 

(I) (D) cm> 
-0f course, represent the atom connectivity of conjugated systems, although 
they indirectly have a chemical significance for they arise in Balaban's graph
-theoretical treatment13 of the constitutional isomers of cyclo-alkanes; because 
they were introduced by Balaban, I shall for convenience in this discussion 
call them 'Balaban graphs' and denote the Balaban graph on N vertices by 
'BN'·'** (A precise algorithm for the construction of the graph BN will be given 
in § 2, below; from this it will be evident that N is always even and that 
·such graphs are defined only for N ;:::::: 6). 

It will be shown by exploiting the rather pleasant properties of the eigen
values of circulant matrices (refs. 14 and 7) that the spectrum of a general 
member of this series may be found analytically in closed form. From this it 
will be deduced that application of the Aufbau process to the Balaban graph 
BN will lead to a unique, ground-state configuration if, and only if, N is 
·divisible by 4. As a result of this deduction, the Balaban graphs B6, B8, B 10, ••• 

etc. will be seen to constitute a pedagogically rather illuminating series in 

-eigenvectors of a vertex adjacency-matrix of the graph representing the carbon-atom 
·connectivity of the (extant or hypothetical) conjugated hydrocarbon under discussion. 
Hence, in the present context, 'molecular topology' is essentially a synonym for 'the 
o--bond connectivity of the carbon atoms', and the former term is adopted here not 
·because the author considers it particularly apt, but as a concession to what has 
become common usage in this field. (See also refs. 1, 3-8). 

** I am very grateful to Professor Balaban for his kind permission allowing me 
to do this; (A. T. Balaban, personal communication, August 17th., 1980). I also thank 
Professor Frank Harary and Dr. R. J. Wilson for helpful correspondence on the 
nomenclature of the graphs depicted in the Figure. 
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which networks that give rise to a unique ground~state configuration on 
application of the Aufbau process alternate with ones that do not. 

2. CONSTRUCTION OF THE GRAPH BN 

The Balaban graph BN is a cycle of N vertices (N even, N ;::::: 6) that has, 
in addiUon, » ... edges between each vertex i and the two vertices adjacent to 
the vertex opposite to i; thus, each vertex has degree 4«; (this is Balaban's 
definition, quoted from ref. 13). Effectively, therefore, if the vertices are 
labelled 1 to N in sequence around the perimeter, each vertex i, in addition 
to being adjacent to the vertices i -1 and i + 1 (MOD. N), is joined by an 
·edge to the ones labelled 

1 
(i + -N + 1) 

2 
and 

. 1 
(i + - N-1) 

2 
(MOD. N). 

As examples of this construction, the graphs B6, B8 and B10 are illustrated in 
1 

the Figure.*** It will be seen that graphs BN where - N is even are bipartite, 
2 

:since they contain no odd-membered cycles, while if+ N is odd, BN is non

--bipartite; i. e., BN is bipartite if and only N = 4p, p any (odd or even) 
integer;::::: 2. 

3. EIGENVALUES OF THE GRAPH BN 

The kth member of the eigenvalue list of N (not-necessarHy-distinct) eigen
·values, Lhh=1,2,3,. .. ,N, of a circulant N X N matrix (refs. 14 and 7) in which 
the elements in the first row are 

is given by 

(1) 

where Wk is an Nth root of unity, - i.e., one of the N roots of the scalar equation 

(2) 

*** Professor Frank Harary (personal communication, November 15th., 1980) has 
:kindly answered a previous enquiry about the nomenclature of the graphs discussed 
in this paper by informing me that Frucht15 has defined the following notation for 
.a certain class of graphs: n (a, b) for a< b < n is the graph with vertex set (0, 1, 2, ... , 
·n -1) (MOD. n), where each vertex i is adjacent to the vertices i + a and i + b 
·(MOD. n). In this notation: 

in general, 

B6 = 6 (1, 2) 

B 8 = 8 (1, 3) 

B10 = 10 (1, 4); 

1 
BN ==: N (1,2 N -1), 

:and the { B N} are thus seen to be a special case of Frucht's more-embracing clas
osification.15 (Of course, in addition - as a very special member, in its turn, of {BN }
- BA is the octahedral graph2). 
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which has solutions { Wk}k=1,2,3, .. .,N, with 

(
2kn) (2kn) 

wk = cos ~ + j sin ~ {3) 

(It may be noted that, in spite of the reference to j (= v -1) in equation (3), 
we shall not in this discussion encounter any eigenvalues other than those 
that are purely real; this is because we are dealing only with graph adjacency
-matrices which, being real-symmetric, will necessarily have entirely real 
characteristic-roots. (See, for example, refs. 9, 5, 7 and 10).) 

Armed with equation (1), we now observe that 

(i) a vertex adjacency-matrix of a Balaban graph is circulant; 

(ii) in the graph BN, the vertex labelled 1 on the labelling scheme adopted 
in the Figure is joined by an edge to the vertices labelled 

(a) 2 (b) N 
1 

(c) - N 
2 

(d) 2_ N + 2; 
2 

(iii) the elements (ai, a2, a3, •• ., aN) of the first row of the vertex adjacency
matrix of the Balaban graph BN, labelled as in the Figure, are thus 

a2 = 1, aN = 1, a 1 = 1, 
- 2- N 

a 
-

1
- N +2 
2 

= 1, 

all the other elements in the first row being zero. (It will be recalled that a 
circulant matrix is completely defined once the elements in the first row have 
been specified; see, for example, ref. 7). 

Insertion of these values into equation (1) gives the k th eigenvalue, Ab of the 
graph BN as 

l N _!_N+l 
N-1 2 -l 2 

A.k = (wk + wk ) + (w k + w k (4) 

The fil'st bracket in equation ( 4) simplifies via equation (3)) to 2 cos ( Z~n), exac

tly as in the case of the circuit graphs, CN, representing the carbon-atom con
nectivity of the annulenes14•7 ; the second bracket, after application of equation 

·(2kn ) (3) and some trigonometric identities, amounts to 2 cos N+ kn . Hence, 

equation (4) may more explicitly be written: 

A.k = 2 { cos ( 
2 ~ n) + cos ( 

2 ~ n + kn)} (5) 

or, as a product, rather than a sum, of two cosines: 

( 
2 kn kn) (kn) A.k = 4cos ~ + -

2
- cos -

2
- (6) 
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This formula has been applied to the graphs B6, B8, B10, •• ., B20 and the 
numerical results obtained are collected and displayed in Table I. It may be 

TABLE I 

Eigenvalue Spectra of the Graphs B 6 to B20 

N Eigenvalue Spectrum of B 1N 

6 { 4, 0, 0, 0, -2, -2}2 
8 { 4, 0, 0, 0, 0, 0, 0, -4}2 

Numbers of eigenvalues 
that are 

zero + ve - ve 

3 1 2 
6 1 1 

10 { 4, 1.2361,3 1.2361, 0, 0, 0, 0, 0, -3.2361,3 -3.2361} 5 3 2 
12 { 4, 2, 2, 0, 0, 0, 0, 0, 0, -2, -2, -4} 6 3 3 
14 { 4, 2.4940, 2.4940, 0, 0, 0, 0, 0, 0, 0, -0.8901, 

-0.8901, -3.6039, -3.6039} 7 3 4 
16 { 4, 2.8284,4 2.8284, O, 0, 0, O, O, O, 0, O, 0, 0, 

-2.8284, -2.8284, -4} 10 3 3 
18 { 4, 3.0642, 3.0642, 0.6946, 0.6946, 0, 0, 0, 

0, 0, 0, 0, 0, 0, -2, -2, -3.7588, -3.7588} 9 5 4 
20 { 4, 3.2361, 3.2361, 1.2361, 1.2361, 0, 0, 0, 

0, 0, 0, 0, 0, o, 0, -1.2361, -1.2361, 
-3.2361, -3.2361, -4} 10 5 5 

• The bipartite Balaban-graphs (1/2N even) 
Coulson-Rushbrooke theorem11. 

exhibit 'paired' eigenvalues, in accord with the 

2 These numbers agree with those obtained by 'brute-force' computer-evaluation of the spectra 
of B8 and B8, incidentally reported in refs. 1 and 2. 

a 1.2361 ls the four-decimal-place approximation of vs -1; 3.2361 is a similar approximation 
to v5+ 1. 

• 2:a2s4 is the four-decimal-place approximation of 2v2. 

noted in passing that 
N 

}; A.k = o (7) 
k=l 

in all cases, in accord with the fact that the diagonal elements of an adjacency 
matrix of a vertex-unweighted graph are conventionally - and conveniently 
- taken to be zero (see, for example, ref. 16); the trace of such a vertex adja
cency-matrix is thus also zero, and this accounts for equation (7). The latter 

1 
does, of course, apply equally whether the graph BN is bipartite (2 N even) or 

1 
non-bipartite ( 2 N odd). The spectra of the bipartite Balaban-graphs B8, B12, 

B16, B20, ••• ) will be seen to consist of eigenvalues that are symmetrically dis
posed about zero, as is to be expected from the graph-theoretical generalisation16 

of the Coulson-Rushbrooke17 'pairing' theorem. The occurrence of 4 as the 
highest eigenvalue in all the Balaban graphs - bipartite and non-bipartite - is 
a natural consequence of (i) the observation (see ref. 13 and § 2) that BN is a 
regular graph of degree 4, and (ii) the Perron-Frobenius theorem on non
-negative matrices (see, for example, refs. 18 and 19). From equation (6), it is 

evident that ,h = 4 will always arise (whether+ N is odd or even), when the 

running integer k takes on its final and maximum value, N. 
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4. MULTIPLICITY OF THE ZERO EIGENVALUES IN THE SPECTRUM OF B ,v 

A knowledge of how many times the zero eigenvalue ·occurs in the spectrum 
of BN will be seen to be particularly material to a discussion of the feasibility 
of applying the Aufbau process to the eigenvalue family belonging to these 
graphs. Such a discussion will be presented in § 6 but, as a preliminary to 
this, the multiplicity of the zero eigenvalue in the general Balaban-graph BN 
will be established in the present section, and the distribution of positive and 
negative eigenvalues in the non-bipartite Balaban-graphs will be examined in 
the next section. 

It is immediately evident from equation (6) that an odd value of k leads to 
,h = O; hence, exactly half the eigenvalues of BN will always be zero by virtue 
of the second cosine term in equation (6). To ascertain whether any other zero 
eigenvalues will arise, via 'the first cosine term in (6), it is necessary to investig
ate the conditions under which this cosine term is zero, for even k. This does 
in fact occur whenever k and N conspire to make 

2k:n k:n ' :n -- + -- =r -
N 2 j 2 

(8) 

where r. is an odd integer (k is even). Manipulation of equation (8) shows that 
this requirement is met when there exists k (k even and 2 ~ k ~ N) such that 

k (N + 4) 
is an odd integer. 

N 

By using arguments that, for integers, odd X odd = odd, odd X even= even, 
and even X even = even, it is easy to show that this latter constraint is satisfied 
only when N is divisible by 8. Furthermore, if N = Sp, where p is an (odd or 
even) integer, it can be deduced in a similar manner that there are two, and 
only two, values of (even) k in the range 2 ~ k ~ N that make 

k (N + 4) 

N 

1 3 
an odd integer: these are k = - N and- N (both n ecessarily even, when N is 

4 4 
divisible by 8). 

This result may be seen in another way, and the equations that are intro
duced thereby will be of use in § 5. Equation (6) may be expanded as 

lk = 4 { cos ( 
2 ~ :n ) cos ( \:n )- sin ( 

2 ~ :n ) sin ( \:n)} cos ( k2:n) (9) 

As has been observed, when k is odd, this is zero, because of the multiplicat

ive cos ( k
2
:n) term; but when k is even, although Ak is not in general zero, the 

term in equation (9) involving the product of two sines is zern. For even k, 
therefore, equation (9) reduces to 

(2k:n)· (kn) (2k :n ') lk = 4 cos ~ cos2 -
2
- = 4 cos ~ , (for even k****) (10) 

**** This is superficially similar (apart from a further factor of 2) to the 'an-
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The predictions of equation (6) may thus be simulated by two, simpler equat
ions : 

;.k = 0 

lk = 4 cos ( 
2 ~ n ) 

(k odd) ) 

(k even) ' (11): 

The argument about when zero eigenvalues arise for even k is then entir
ely analogous to the one used for the circuit-graphs C N that represent the car
bon-atom connectivity of the annulenes.7,14 ,h will be zero if there exist values 
of k = 2p and k = 2q (p, q integers) in the range 2, 4, 6, .. ., k, . . ., N, such that. 

( 
2 (2 p) n ) ( 2 (2 q) n ) 

cos N = 0, and cos N = O 

i.e. 

4pn n 
when - - = - (this implies the condition N = 8 p, as before) 

N 2 

and when -- = -- (that is, q = 3 - = 3p) 4qn 3n (N) 
N 2 8 

leading to the values k = ~ N and k = 
4
3 

N, obtained previously, as the ones. 
4 I 

that yield ,h = 0, when k is even. 

It is therefore concluded that, in the spectrum of B N, there are ex-
1 1 

actly2 N zero eigenvalues if N ,c Sp, p an odd or even integer, and (TN+ 2} 

zeros if N = Sp. This result is illustrated numerically in Table I, where the 
multiplicity of the zero ei:genvalue in the spectra of the graphs B6 to B20 is 
listed in the right-hand section. 

5. DISTRIBUTION OF POSITIVE AND NEGATIVE EIGENVALUES IN THE SPECTRA OF THE 
NON-BIPARTITE BALABAN- GRAPHS 

We have seen that the bipartite Balaban-graphs (BN, ~ N even) have ( + N 

1 + 2) zero eigenvalues if N = Sp, and2 N zero eigenvalues if N = 4p but 

N ,c Sp. Because the eigenvalues of bipartite graphs are symmetrically paired 
about zero17, it can be said immediately that the spectrum of B N, where N = Sp, 

1 1 
will contain, in addition to its ( 2 N + 2) zero eigenvalues, ( 4 N - 1) positive 

eigenvalues and ( ! N - 1) negative ones, and that the spectrum of BN where 

nulene' (CN) eigenvalue-formulat4,7 

l k = 2 cos ( 
2 ~ n) . 

It should be noted, however, that in the above formula for the spectrum of CN, k 

takes on the value 1, 2, 3, ... , N, but in equation (10), k = 2, 4, 6, ... , N. 
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. 1 1 
N = 4p but N ~ 8p will compnse2 N zero eigenvalues, 4 N positive eigen-

1 . 
·values and4 N negative ones. 

Because the Coulson-Rushbrooke 'pairing' theorem17 does not hold for 
non-bipartite graphs, the distribution of positive and negative eigenvalues in 

the spectra of the non-bipartite Balaban-graphs BN, ~ N odd - i. e., N = 
= 4p + 2) is by no means immediately obvious and it will be necessary to state, 
and prove, the following two Rules. 

1 
Rule 1. - If T (N - 2) is even (i. e., N = 4p + 2, p even), the spectrum of 

-the non-bipartite Balaban-graph BN contains 

1 1 
- ( - N - 1) strictly positive eigenvalues 
2 2 

1 1 2 ( 2 N - 1) strictly negative eigenvalues 

1 
(and2 N zero eigenvalues). 

Proof 
2k:n: :n: 

(a) Consider k-values such that O ~ -- < -
N 2 

2kn 
·For an even k to yield --yv- in this range (which would then give rise, via equ-

ation (11), to a strictly positive ,h), k must take on the values 2, .. ., ~ (N - 2). 

N-2 
·There are 

8 
such even values of k. 

:n: 2 k :n: 
(b) -<-- ~:n: 

2 N 

2kn 
For an even k to make N lie in the above range (which, via equation (11), 

·would then ocassion a strictly negative Ak), k must assume any of the following 
'Values: 

1 1 
- (N + 6), .. ., ( - N-1). There are 

4 2 

1 1 1 N-2 
- { ( - N - 1) - - (N + 6)} + 1 = -- such even values of k. 
2 2 4 8 

2k:n: 3:n: 
,(c) :n:~ --< -

N 2 
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2 k:n; 3:n; 
N will be between :n: and2 (giving ri,se, via equation (11), to strictly ne-

1 1 
gative .h) when k takes on the values ( 2 N + 1), ... , 4 (3N - 6). There are 

1 1 1 N-2 
- { - (3 N - 6) - ( - N + 1)} + 1 = - - such even values of k . 
2 4 2 8 

(d) 
3n 2kn 

<--"(2n 
2 N 

For an even k to give rise to an angle 
2:n in this range (thus causing equat-

1 1 
ion (11) to yield a strictly positive .h), k must be one of 4 (3N + 2), 4 (3N + 
+ 10), ... , N. There are 

1 1 N + 6 
- {N- - (3 N + 2)} + 1 = 
2 4 8 

such even values of k. 

From (a)-(d), above, it is, therefore, seen that when! (N - 2) is even, the 

spectrum of BN contains 

N-2 N+6 1 1 --- + --- = - ( - N + 1) strictly positive eigenvalues 
8 8 2 2 

and 

N-2 N-2 1 1 - - - + --- = - ( - N-1) strictly negative eigenvalues 
8 8 2 2 

Hence, Rule 1, stated above, is proved. 

By an entirely analogous argument, it is possible to prove 

1 
Rule 2. - IfT (N - 2) is odd (i.e., N = 4p + 2, p odd) there are 

1 1 
- ( - N-1) strictly positive eigenvalues, 
2 2 

1 1 
- ( - N + 1) strictly negative eigenvalues 
2 2 

(and ~ N zero eigenvalues) in the spectrum of BN. 

(IFor brevity, the reader is left to confirm Rule 2). Rules 1 and 2 (and the 
arguments leading to Rule 1) can be verified in the case of B8, B10, B14, and B18 

by consulting Table II, which shows explicitly which values of even k cause 
equation (11) to occasion positive, and which constrain it to predict negative, 
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eigenvalues, ,h, for these graphs. Overall numbers of positive and 'negative 
eigenvalues in the spectra of B6 - B20 are given in the right-hand section of 
Table I. 

TABLE II 

Distribution of Strictly Positive and Negative Eigenvalues (as Calculated via 
equation (11)) in the Non-bipartite Balaban-Graphs, BN ( __!_ N odd) 

2 
Value of k in ).k 

2 4 6 8 10 12 14 16 

Value 6 + 
of 10 + + + 
N 
in 14 + + + 
BN 18 + + + + 

6. FEASIBILITY OF THE AUFBAU PROCESS FOR BN 

18 

+ 

We now consider the feasibility of applying the Aufbau procedure to the 
eigenvalue ('energy-level') families of the Balaban graphs BN. Because these 
networks do not represent the carbon-atom connectivities of actual conjugated
-systems, the ,idea of builditng up a 'ground-state n-electronic configuration' 
on the basis of the Aufbau Principle is a somewhat academic one; in fact, we 
do best to regard this whole exercise as a completely abstract process, along 
the lines described in ref. 1, in which N particles (which will, however, still 
be called 'electrons') are assigned to the N eigenvalues associated with the 
graph BN, the largest eigenvalue (numerically equal to 4, in all cases - see § 3) 
being dealt with first.t In view of the varying multiplicities of zeros in the 
spectra of BN (§ 4), and the provisions of the Coulson-Rushbrooke theorem17 (see 
also refs. 7, 5 and 16), separate arguments will have to be advanced for the 
bipartite and non-bipartite Balaban-graphs, as follows: 

(i) The Bipartite Balaban-graphs, BN (with+ N even) 

If N = 4p (p any odd or even integer ~ 2), BN is bipartite'(§ 2); two cases 
in which this condition is fulfilled must be considered: 

(a) N ~ 8p, and (b) N = 8p. 
1 

(a) If N = 4p, but N r= 8p, there are preciselyT N zero eigenvalues in the 

1 
spectrum of BN (§ 4); there are thus also 2 N non-zero eigenvalues. By virtue of 

the Coulson-Rushbrooke 'pairing' theorem17, exactly one half of those~ N non-

t The largest eigenvalue is considered first in the Aufbau process because, on 
the simple HMO-model (see, for example, refs. 7-10, 5), an eigenvalue ).k of the as-
sociated molecular-graph corresponds to a molecular orbital of energy c:k =a+ ).k fl; 
since fl is negative the lowest energy-level arises when ).k is largest. Hence, the high
est eigenvalue is quite properly the first to be 'filled' in an Aufbau scheme. 
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-zero eigenvalues (i. e., ~ N of them) will be positive and ~ N of them will be 

negative. The Aufbau process does then always yield a unique configuration 
1 

since, if two 'electrons' are put into each of the 4 N positive eigenvalues, 

1 
and one electron is assigned to each of the ( 2 N) zero eigenvalues, this accounts 

1 1 
for (2 X 4 N) + (1 X 2 N) = N electrons - i. e., the N particles that were to be 

distributed amongst the available eigenvalues have been used to form a unique 
and unambiguous ground-state configuration. 

{b) If N = 8p, there are ( ~ N + 2) zero eigenvalues (§ 4) , and therefore 

1 ( 2 N -2) non-zero ones. As before, though, because of .the Coulson-Rushbrooke 

'pairing' theorem,17 there are exactly ~ X ( ~ N - 2) = ( ! N -1) eigenvalues 

that are greater than 0. Again ,therefore, placing two electrons in each of 
the positive eigenvalues and assigrning one to each zero eigenvalue uses up 

1 1 
(2 X { 4 N - 1)) + (1 X ( T N + 2)) = N electrons to form a unique, ground-

-state configuration. 
Hence, defining an unambiguous, ground-state, n-electronic configuration 

by application of the Aufbau process is possible for both types of bipartite 
Balaban-graphs, B N, N = 4p. 

(ii) The Non-Bipartite Balaban-Graphs (with 2_ N odd) 
2 

If N = 4p + 2 (p any odd or even integer ~ 1), BN is non~bipartite (§ 2): 
two cases must be considered (§ 5). 

(a) p even, and (b) p odd. 

(a) If N = 4p + 2, pan even integer, the arguments of§§ 4 and 5 determine 
that the eigenvalue spectrum of B N is composed as follows: 

1 1 2 ( 2 N - 1) negative eigenvalues 

J__ N zero eigenvalues 
2 

1 1 2 ( 2 N + 1) positive eigenvalues. 

In attempting an Aufbau process (with N electrons to dispose of) on this family 
of eigenvalues, the first stage would be to assign two particles to each 

of the positive eigenvalues; this uses up 2 X-2__ ( -2._N + 1) =(IN+ 1) elec-
2 2 2 

trons. ( ~ N - 1) electrons thus remain to be distributed amongst the ~ N zero 
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eigenvalues. There is therefore a short-fall of one electron that prevents our 
1 

being able to half-fill the T N zero eigenvalues exactly. Hence, a unique, 

ground-state electronic-configuration1 cannot be defined. 

(b) If N = 4p + 2, p an odd integer, the spectrum of BN contains (see §§ 4 
and 5): 

1 1 
- ( -- N + 1) negative eigenvalues 
2 2 

_..!_ N zero eigenvalues 
2 

1 1 2 ( 2 N - 1) positive eigenvalues 

Again, an attempted Aufbau scheme, with N electrons in hand, would start 

by assigning 2 X + ( ~ N -1) = ( ~ N -1) of them to fill completely the 

~ ( ~ N -1) positive eigenvalues. This leaves (}N + 1) particles to be distri-

1 
buted amongst the2 N zero eigenvalues. There are thus too many to half-fill 

these zero eigenvalues exactly, and yet too few to fill them entirely. Again, 
therefore, an unambiguous, ground-state n-electronic configuration cannot be 
defined.1 

Application of the Aufbau process to establish a unique ground-state is thus 
1 

not possible with either type of non-bipartite Balaban-graph, BN (TN odd). 

7. CONCLUDING REMARKS 

In ref. 1, only by direct numerical calculation of the energy levels was 
it possible to show that some networks which, on chemical grounds, could 
not conceivably represent actual molecules may, nevertheless, still be assigned 
a unique »ground-state :n-electronic configuration« on the basis of the Aufban 
Principle, while others - no more unlikely, on the face of it, to represent 
the carbon-atom connectivity of extant or viable conjugated-systems - may 
not. In the present paper, this has been done analytically, rather than by 
'brute-force' evaluation of eigenvalues. Furthermore, by focussing attention 
on the Balaban graphs, BN, we have encountered (albeit serendipitously!) a 
series of networks which, though arguably somewhat artificial, has the rather 
entertaining property that members of it giving rise to well-defined ground
-state configurations on application of the Aufbau process alternate with 
others of the series that do not - a unique, :n-electronic, ground-state con-

figuration may be established for the bipa;tite Balaban-graphs BN ( 1 N even), 

1 
but not for the non-bipartite Balaban-graphs BN (with T N odd) (§ 6). 
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The intrinsic pleasure which the author (and, it is hoped, the reader!) 
has derived from the very aesthetic algebraic properties displayed by the 
eigenvalues of the Balaban graphs should not, however, be allowed to obscure 
the essential message of this paper (and that of ref. 1), which is earnestly 
stated as follows: in the ever-growing Literature on graph-theoretical aspects 
of simple molecular-orbital calculations, too little attention is paid to the 
possibility that, even after having calculated the eigenvalues and eigenvectors 
of the graph that is considered to represent the carbon-atom connectivity of 
a hypothetical, conjugated system (and these quantities have been properly 
associated with the HMO energy-levels and LCAO-MO weighting-coefficients, 
respectively, -0f that system), we still may find that an unambiguous, ground
-state configuration is not attainable when the Aufbau Principle is invoked. In 
other words, the existence of a unique, well-defined, »n-electronic, ground
-state configuration« for an arbitrary network should not be taken for granted. 
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SAZETAK 

AnalitiCka ilustracija znacaja molekularne topologije u Aufbau procesu 

R. B. Manion 

!deja Malliona i Rouvraya (1978) o znacaju molekularne topologije za dobivanje 
jedinstvene Jt-elektronske konfiguracije osnovnog stanja za postojece i hipotetske 
uveo Balaban (1978). Pokazano je da se koristenjem vlastitih vrijednosti cirkulantne 
konjugirane sustave, na osnovi Aufbau principa, prosirene su na niz mrefa koje je 
matrice moze odrediti analiticki izraz za spektar opceg Clana ovog niza. Iz toga je 
dalje zakljuceno da primjena Aufbau postupka na "Balabanove grafove" BN dovodi 
do jedinstvene konfiguracije osnovnog ;i:-elektronskog stanja ako i samo ako je N 
djeljivo s 4. Na taj nacin pokazuje se da Balabanovi grafovi obrazuju niz u kojem 
se naizmjenicno pojavljuju mreze, koje na osnovi Aufbau principa imaju odnosno 
nemaju jedinstvenu elektronsku konfiguraciju u osnovnom stanju. Polazeci od ovog 
zapafanja pokazano je da se (bez obzira sto se cesto pretpostavlja suprotno) ne moze 
opravdati shvacanje o postojanju jednoznacne konfiguracije osnovnog stanja u proiz
voljnom Jt-elektronskom sustavu. 




