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Abstract: The snowmelt process is becoming more complex in the context of global warming, and the current existing studies are not effective in using the short-term 
prediction model to drive the distributed hydrological model to predict snowmelt floods. In this study, we selected the Juntanghu Watershed in Hutubi County of China on 
the north slope of the Tianshan Mountains as the study area with which to verify the snowmelt flood prediction accuracy of the coupling model. The weather research and 
forecasting (WRF) model was used to drive a double-layer distributed snowmelt runoff model called the Tianshan Snowmelt Runoff Model (TSRM), which is based on 
multi-year field snowmelt observations. Moreover, the data from NASA’s moderate resolution imaging spectroradiometer (MODIS) was employed to validate the snow 
water equivalent during the snow-melting period. Results show that, based on the analysis of the flow lines in 2009 and 2010, the WRF-driven TSRM has an overall 80% 
of qualification ratios (QRs), with determination coefficients of 0.85 and 0.82 for the two years, respectively, which demonstrates the high accuracy of the model. However, 
due to the influence of the ablation of frozen soils, the forecasted flood peak is overestimated. This problem can be solved by an improvement to the modeled frozen soil 
layers. The conclusion reached in this study suggests that the WRF-driven TSRM can be used to forecast short-term snowmelt floods on the north slope of the Tianshan 
Mountains, which can effectively improve the local capacity for the forecasting and early warning of snowmelt floods. 
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1 INTRODUCTION 

Flooding is one of the most frequent and devastating 
natural disasters in the World, which has threatened the 
survival and development of China for thousands of 
years. Over the past 50 years, China has made great 
strides towards water conservancy, flood control, and 
disaster mitigation. However, due to the abnormal 
variation of the climate and the impact of large-scale 
human activities on the environment, flooding in China 
remains a very serious problem and flood-related events 
can still occur. China has the most snow in countries 
located at the middle and low latitudes, with the amount 
of winter snow equivalent to 740×108 m3 of water. The 
arid areas in northwest China are extremely short of 
surface water resources, as they cover about 25 % of 
China’s land area while only having 3.3 % of the surface 
water. However, they are the most snow-rich areas, with a 
large amount of seasonal snow. Among the three main 
snow areas in China, two-fifths are concentrated in 
northwest China. In these areas, alpine seasonal snow is 
one of the main sources of rivers, and plays an extremely 
important role in the rational use of water resources. 

Numerous studies show that the snow in Xinjiang is 
more unique, accounting for about one-third of the snow 
water resource in China [1-2]. Furthermore, 50 to 80 % of 
the river runoff in Xinjiang is from seasonal snow. There 
is a very close relationship between seasonal snow and 
the productivity of both agriculture and animal husbandry 
in Xinjiang. A thick snow covering not only can lead to 
wheat being free from frost damage, but can also provide 
favorable conditions for spring agricultural water. 
However, when a thick snow covering is followed by 
continuous warm weather or rain in the Spring, fast snow 
melting will lead to Spring floods in some areas, which 
might destroy farmland, hinder traffic, and threaten 
people’s lives and property. An effective way to solve 
problems related to the ecological hydrology and 
environment in the water basin is by simulating and 
forecasting the process of snowmelt flood formation using 
a distributed hydrological model [3-5]. Furthermore, one 
of the most effective ways to predict the snowmelt runoff 

is to establish a distributed snowmelt runoff model [7-9]. 
Many studies have found that using a distributed 
snowmelt model to predict snowmelt runoff in real time is 
important, especially for the Tianshan Mountains. 
However, it has not been carried out effectively for the 
above-mentioned types of studies. 

In order to specifically set up a snow warning 
platform for the northern slopes of the Tianshan 
Mountains, and meet the requirement to consider the 
proposed mesoscale prediction system based on a 
distributed driving snowmelt model, in this study we 
propose the use of the Weather Research and Forecasting 
(WRF) driven Tianshan Snowmelt Runoff Model 
(TSRM), which provides further validation of prediction 
precision. 

2 STATE OF THE ART 

 Many scholars have developed hydrological models 
that can simulate the snowmelt process, such as the 
variable infiltration capacity (VIC) and soil and water 
assessment tool (SWAT), but these models do not provide 
effective solutions for problems related to snow melting, 
since they are unable to cope with such a large scale or 
suffer from a lack of local data. However, Pei et al. [10] 
proposed the creation of a distributed snowmelt runoff 
model using 3S (Remote Sensing-RS, Geographical 
information System-GIS and Global Positioning System-
GPS) technology in 2007. In addition to the fact that the 
structure of hydrological models need to be improved, the 
lack of meteorological observations in mountainous areas 
is a further limiting factor in accurately forecasting Spring 
snowmelt flooding. The scarcity of data from 
mountainous regions, the particularity of the hydrological 
processes, and the complexity of the related mechanisms 
increase the difficulty of studying various kinds of surface 
processes in mountainous areas during snow-melting 
periods. The atmosphere-hydrology coupled model can be 
used to resolve this problem, and its use for simulating 
and forecasting snowmelt floods has attracted a great deal 
of global research attention. The development of the 
atmosphere-hydrology coupled model can therefore help 
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to improve the prediction accuracy of both the 
atmospheric and hydrological models, and can maximize 
the effective forecast period of snowmelt floods. For 
example, Kenneth et al. [11] coupled the fifth-generation 
Penn State/National Center for Atmospheric Research 
mesoscale model (MM5) and the distributed hydrology 
soil vegetation model (DHSVM), and carried out a 
snowmelt flood forecasting experiment in the Snoqualmie 
River Basin in western Washington, USA. They 
concluded that updating the weather forecast field in real 
time can effectively reduce the runoff output error. 
Furthermore, Evans et al. [12] coupled four regional 
climate models with the same hydrological model to 
predict the alpine snowmelt runoff in the Verzasca Valley 
in Switzerland, thereby providing an important scientific 
reference for an atmosphere-hydrology coupled model’s 
performance on predicting snowmelt runoff in alpine-cold 
areas. Zhao et al. [13] used a WRF-driven DHSVM to 
predict the snowmelt runoff process of the Juntanghu 
Watershed on the north slope of the Tianshan Mountains 
for 24 h and obtained several interesting results. Finally, 
Wu et al. [14] combined WRF and Micromet dynamical 
and statistical downscaling to drive the snow-melting 
model and simulate the Spring snow-making process in 
the Kayiertesi Watershed, demonstrating that combining 
WRF and distributed hydrological models is an effective 
way to forecast high-resolution snowmelt floods in 
mountainous areas. 

Although many studies have forecasted snowmelt 
floods in various alpine-cold areas, any research that has 
used WRF to drive a localized snowmelt runoff model 
based on field observations has not been conducted 
effectively. Based on field observations from the North 
Slope of the Tianshan Mountains, the study reported on in 
this study will establish a better localized forecasting 
system by utilizing a WRF-driven double-layer 
distributed snowmelt runoff model to predict the Spring 
snowmelt floods in this area. This will provide a 

production basis for, and better protection of, the "oasis 
economy" of Xinjiang [15, 16]. 

Water resources are scarce and valuable, and good 
water resource management can lead to their better 
development. However, due to its complexity and 
uncertainty, improving water resource management has 
become a challenge, particularly in arid and cold areas. 
Hydrological models are very important due to their great 
significance in better utilizing current hydrological 
theories for improving or creating new management 
strategies. Although hydrological models have been 
widely used in regional water resource simulation, several 
difficulties are still manifested when they are applied in 
practical applications. For example, the simulation of ice 
and snow resources that are covered by alpine mountains 
is still problematic for simulating water resources 
globally. 

Snowmelt models have yet to be built for many 
specific research areas (e.g., the north slope of the 
Tianshan Mountains). In addition, considering the larger 
topography of this area, the degree of temporal and spatial 
differentiation is extremely large. Therefore, we need to 
use the WRF model to provide accurate weather forecasts 
for the watershed, thus driving the snowmelt model, so 
that we can get more accurate snowmelt flood results. 
Owing to practical limitations, traditional mountain 
meteorological observation stations are very scarce in 
such areas, which makes it difficult to calibrate the 
snowmelt model using the data from traditional 
observation stations. The above limitations have 
prompted us to study the combined WRF-TSRM mode. 

This rest of this study is organized as follows. In 
Section 3, the methodology and input data are described. 
In Section 4, the TSRM is forced by WRF, and several 
validating analyses are carried out, from which 
comparison of the numerical forecasts and the results of 
analysis are obtained. Conclusions are given in Section 5. 

 
Figure 1 The location of the study area 
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3  METHODOLOGY 
3.1   Study Area 

 
The study area (43°43′N-44°06′N, 86°10′E-86°40′E) 

is the Juntanghu Watershed in the Hutubi County, 
Xinjiang. The meteorological observation stations are 
scarce in this area [17]. The Juntanghu River is a small 
river in the western part of the Tianshan Mountains, 
which originates from the north slope of the mountains. 
Through a statistical analysis using geographical 
information system (GIS) tools, the elevation of the river 
basin’s source is about 3400 m, and the elevation of most 
of the river basin is 1000-1500 m. The river network 
converges in Nazha’er in the lower mountain, flows into 
the plain across the front-range hills in the western part of 
Hutubi County, and feeds into the Hongshan Reservoir at 
the mountain pass. The river is about 45.20 km long from 
its source to the Hongshan Reservoir. The catchment area 
above the Hongshan Reservoir is 833.57 2km , and the 
average elevation of the watershed is 1503 m. The 
average slope is 62.5 ‰ above the confluence of the two 
main tributaries and 52.6 ‰ below it. The average annual 
runoff of the river is 3.89×108 m3. From mid-September, 
there is snow in the alpine area, the amount of which 
reaches its maximum level in January with the decrease of 
temperature. In February, the temperature begins to rise 
and the snow begins to melt, with the melting process 
speeding up in March. The runoff of the Juntanghu River 
is not uniformly distributed in different times of the year, 
and it reaches its maximum level in the spring. From 
March to June, the heavy rain in the watershed area and 
the snowmelt water combine and the flooding process is 
rapid, resulting in snowmelt floods occurring almost 
every year and causing significant harm to people’s lives 
and property and to the ecological environment [1]. The 
area’s watershed is fully developed and its features are 
typical. The study area is shown in Fig. 1. 
 
3.2 Tianshan Snowmelt Runoff Model (TSRM)  
 

The double-layer snowmelt model divides the snow 
cover into two layers according to the variations in energy 
and water (see Fig. 2). It can be approximated that when 
the snow depth h  exceeds 0.2 m, the snow layer can be 
seen as two layers, whereas when the snow depth h  is 
less than 0.2 m, the snow layer can be seen as one single 
layer. The upper snow layer absorbs energy through the 
input of factors, such as precipitation, turbulence, and 
solar shortwave radiation, and the energy of the lower 
layer comes mainly from the soil flux. 

When considering the double snow layers, the energy 
balance of the upper snow layer can be calculated as 

 
ln ,net sn p s le cQ Q Q Q Q Q Q= + + + + +                              (1) 

 
where Qnet is the net energy flux going into the upper 
layer per unit time, Qln the net longwave radiation flux, 
Qsn the net shortwave radiation flux, Qp the heat input 
from precipitation, Qcon the heat flux from the lower layer, 
Qs the sensible heat flux, and Qle the latent heat flux. The 
units of the above parameters are (J/m2). 
 

 
Figure 2 Structure of double-layer snowmelt model 

 
The energy balance of the lower snow layer can be 

calculated as 
 

,ground conQ Q Q∆ = −                                                           (2) 
 
where ΔQ is the net energy flux going into the lower layer 
per unit time, Qcon the heat flux from the upper layer 
(J/m2), and Qground the heat flux from the soil layer (J/m2). 

The water balances of the two layers are calculated as 
 

_ _W Surface P E Surface flow= − −                                   (3) 
_ _ - - _W Bottom Surface flow INF Bottom flow=               (4) 

 
where _W Surface  is the variation of snowmelt water in 
the upper layer, _W Bottom  the variation of snowmelt 
water in the lower layer, E the evaporation of the snow, 

_Surface flow  the water infiltration of the upper snow 
layer into the lower layer after melting, P the water input 
through precipitation, INF the infiltration into the soil 
layer, and _Bottom flow  the outflow of the lower snow 
layer. 

The energy balance of the single-layer snow cover is 
calculated as 

 
lnnet sn p s le groundQ Q Q Q Q Q Q= + + + + +                       (5) 

 
where the meaning of each term is the same as in (1) and 
(2). 
 
3.2.1 Net Radiation on Snow Surface 

 
The net short-wave radiation flux Qsn in WRF is 

mainly controlled by the factor of albedo: 
 

(1 )sn sfc sQ A Q= − ⋅                                                      
 
(6) 

 
where Asfc is the surface albedo and Qs the shortwave 
radiation received by the surface. When the snow depth is 
more than 0.1 m, the snow layer will completely block the 
solar radiation and Asfc is equal to the snow albedo (As); 
however, when the snow depth is less than 0.1 m, the 
snow layer will be transmitted through the sunlight, and 
the snow cover and the soil will both have an impact on 
the surface albedo. Consequently: = +(1 )sfc bg sA rA r A− , 
where Abg is the albedo of bare land. 
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The snow age, solar radiation, and average daily 
temperature all have direct impacts on the snow-layer 
albedo. Kendo [18] proposed an exponential equation 
based on snow age, where α(0) is the albedo of the snow 
layer and αmin is its minimum albedo. Winther [19] 
proposed the equation As = 0.90 – 0.92×10−4Tacc − 
0.0042Qs according to the solar radiation and cumulative 
daily temperature, in which Tacc is the maximum 
accumulated temperature in a snowfall day. 

The Qln is estimated through formula (7): 

2 4 4
ln (1 )c a s sQ L L a C T Ts ε s= ↓ + ↑= + −            (7) 

where L ↑  is the outward long-wave radiation from the 
snow surface, L ↓  the incident long-wave radiation from 
the atmosphere, Ta the air temperature (K), Ts the snow 
surface temperature (K), sε  = 0.95 (the emissivity of the 
snow cover), σ = 5.67 K−4×10−8 W∙m−2 (the Stefan-
Boltzmann constant), ac refers to the cloud-type empirical 
coefficient, and C is in the range between 0 and 1. The 
value of ac is as follows: stratus, ac = 0.24; stratocumulus, 
ac = 0.22; cumulus, ac = 0.20; altostratus, ac = 0.20; 
altocumulus, ac = 0.17; stratocirrus, ac = 0.08; cirrus, ac = 
0.04). 

3.2.2 Heat Input from Precipitation 

P
Q  is estimated through formula (8): 

( 273.16) ( 273.16)p w w a r w i a sQ c T P c T Pr r= − + −           (8) 

where ρw is the density of the water (kg/m3), cw the 
specific heat of the water [J/(kg∙K)], cs the specific heat of 
the ice [J/(kg∙K)], Ta the air temperature (K), Ps the snow 
water equivalent, and Pr the amount of rainfall. 

The condition of the snow or rain is decided by the 
air temperature. 

 When ,a s sT T P P< = , and when a rT T> ,   rP P= ; 

ar

sa
r TT

TTpp
−
−

=
)( , and rs pp −=1 , where 276.15 KrT =

(the critical temperature of the rainfall) and  272.15 KsT =  
(the critical temperature of the rainfall of snowfall). 

3.2.3 Sensible and Latent Heat Flux 

The latent heat flux refers to the heat transfer caused 
by evaporation and condensation, and the sensible heat 
flux refers to the heat conduction between the air and 
snow. The latent heat flux and sensible heat flux are 
calculated as follows [20,21]: 

ln 0.622 [ ( ) ( )] /v s a d aQ h e T e T R T r= −   (9) 

( ) /s air g a sQ c T T rr= −     (10) 

2

ln( ) ln( )m h

m h

z x z
z zr

k

m

m

+ +
⋅

=     (11) 

where 6 2.834 10 J/kg vh = ×  is the sublimation latent heat, 
Rd = 287 J∙kg−1/K−1 the dry air constant, e(Ta) and e(Ts) 
the vapor pressure of the air and snow, respectively, 

31.293 kg/mairr =  the density of the air under standard 

atmospheric pressure, 31.0  10 Jgc = ×  the atmospheric 
specific heat capacity, r the aerodynamic resistance, x the 
elevation of the data being obtained, wind is characterized 
by unpredictability and variability [22], μ the wind speed 
which is a time series data [23], and 0.0002hz =  and 

0.001mz =  the dynamic resistance coefficient of heat and 
water vapor, respectively. 

The latent heat of the surface snow is calculated as 

 
0.622 [ ( ) ( )]

( 273.13)
v

le a s
d a as

hQ e T e T
R T r

⋅
= − × −

× + ×
   (12) 

Here, the snow surface is regarded as saturated, and 
the vapor pressure of the snow surface can be regarded as 
the saturation vapor pressure. The vapor pressure of the 
air is a product of the saturation vapor pressure under the 
air temperature and relative humidity (RH): 

( )( )s svp Tse T e=  (13) 

( )( )a svp Tae T e RH= ×          (14) 

where esvp is the saturation vapor pressure, which is a 
function of temperature and can be calculated by the 
Teten equation: 

17.67 /( 243.50)100 6.112 a aT T
svpe e × += × ×    (15) 

3.2.4 Heat Flux from Lower Layer 

In this study, the temperature gradient is used to 
calculate the heat transfer between snow covers: 

conQ q s= ×       (16) 

where q = −keff(dt/dz) is the heat flux density of the snow 
(W∙m−2), s the area of the snow cover grid, and keff is the 
coefficient of the snow’s heat conduction. 

 When the relative density of the snow layer is less 
than 0.156, 2233.3101.1138.0 rr +−=effk ; otherwise, 

2234.0023.0 rr +=effk . The temperature gradient of the 
snow cover (K∙m−1) is (dt/dz) = (bottom_T – 
surface_T)/Δh, where Δh is the difference in elevation 
between the snow layers. 

3.2.5 Heat Flux from Soil Layer 

Compared to the solar radiation, latent heat, and 
sensible heat, the heat flux from the soil layer can be 
regarded as having less impact on the process of snow 
melting. Its value is generally between 0 and 10 W∙m−2 
[24]. In this study, the relationship between the soil layer 
and snow layer used is as shown in the following equation 
[25]: 
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2 1 2/ ( ) / ( ) ( ) /ground g g z g g s g g sQ k dT d k T T z z k T T z= = − − = −  (17) 
 
where dTg/dz is the temperature gradient of the soil layer, 
kg the coefficient of the soil layer’s heat conduction, Ts the 
temperature of the under-layer snow, and Tg the 
temperature of the under-layer soil (with a depth of z2). 
 
3.3  Calculation Flow of Snow Melting 
 

Under the condition of double-layer snow, the 
melting of the surface layer can affect both the lower 
layer and the entire snow cover.  
 

 
Figure 3 Calculation flowchart of the snow-melting process 

 
Therefore, the snow-melting process of the upper 

layer is estimated first, during which there is only 
infiltration without the lateral flow of the snowmelt water. 
The snow-melting process of the lower layer is then 
estimated. Finally, the total outflow amount of the two 
layers is identified as that of the entire snow cover. The 
process is shown in Fig. 3. 
 
3.3.1 Infiltration into Soil Layer 
 

The melting of the frozen soil generally occurs later 
than the melting of the snow. During the melting of the 
frozen soil, the infiltration of the snowmelt water is 
minor, with excess infiltration as the main pattern. As the 
air temperature rises and the melting layer of the frozen 
soil thickens, in addition to the rate of the snow-melting 
increasing, the snow-melting infiltration also increases 
and the runoff becomes a combination of excess storage 
and excess infiltration. The equation for the relationship 
between the snow and the frozen soil is represented by 
[25]: 
 

2.92 0.45 0.44
0 1(1 ) 1.64 [(273.15 ) / 273.15]soilINF CS S T t−= − ⋅ ⋅ − ⋅ (18) 

 
where S0 is the moisture of the soil layer (m3/m3), S1 the 
initial moisture of the soil layer (m3/m3), C = 1.1 the 
infiltration coefficient, Tsoil the temperature of the soil 
layer (K), and t the time interval (h). 
 
3.3.2 Calculation of Confluence 
 

The confluence process is calculated as a gridded 
form and is divided into slopes and rivers along the path. 
The river network is extracted using the digital elevation 
model (DEM) of the study area, and the slopes and rivers 
are determined by the threshold of the catchment grid 

with a field investigation having been carried out to 
validate the data [26]. The corresponding time interval of 
the confluence is then calculated. The river grid is 
numbered, and the flow direction matrix is employed to 
calculate the confluence path and traverse the confluence 
grids, so the confluence time can be estimated. 
 
3.4  Input Data 
3.4.1 DEM data 
 

The DEM data collected by this study are the 30M 
resolution data processed by the Advanced Spaceborne 
Thermal Emission and Reflection Radiometer Global 
Digital Elevation Map (ASTER GDEM) version 1 (V1) 
data. Pretreatment is carried out to reduce the error of 
flow directions in flat areas and the error of no outflow in 
low-lying lands. According to the actual situation in the 
study area, the superposition of the height increment is 
used to calculate and fill the low-lying lands to reduce 
their impact. ArcGIS (Esri, Redlands, CA, USA) is used 
to analyze the pretreated DEM data relating to the flow 
directions, confluence accumulation, river networks, and 
sub-river basins [27]. 
 
3.4.2 Land-Use Data 

 
Land uses can change the drainage conditions of 

watersheds [28]. In this study, the land-use and land-cover 
change (LUCC) data used are the land-cover products 
over China ( 250 250× m2 resolution) provided by the Cold 
and Arid Regions Science Data Center at Lanzhou.  
 
3.4.3 Meteorological Data 

 
The WRF weather forecast data used in this study is 

derived from the China Meteorological Assimilation 
Driving Dataset (CMADS) official website 
(http://www.cmads.org/nr.jsp) [29], Since the latest 
version of the data source has  only been updated through  
2010, the simulation and validation period of this study 
extends through 2010 only (2010 included); the 2016 
datasets will be updated soon. 
 
3.4.4 Soil Data 

 
The Harmonized World Soil Database (HWSD) is 

resampled by ArcGIS and is interpolated into a spatial 
resolution of 30 m, which meets the models’ accuracy 
requirements [30]. 

 
3.4.5 Snow Feature Extraction 
 

The model requires corresponding snow information, 
including the snow area, snow depth, and snow density, 
among which the data relating to the first two are 
interpreted and retrieved by MODIS, while the snow 
density is measured by field observation. 
 
3.5 Snow Area 
 

The snow cover index method and the images from the 
fourth and sixth bands of MODIS are used to calculate the 



Xianyong MENG et al.: Spring Flood Forecasting Based on the WRF-TSRM Mode 

146                                                                                                                                                                                                          Technical Gazette 25, 1(2018), 141-151 

normalized difference snow index; the equation is as 
shown in the following equation [24]: 

 
4 6 4 6( ) / ( )NDSI R R R R= − +                                          (19) 

 
where R4 and R6 are the albedos of the fourth and sixth 
bands, respectively. 
 
3.6  Snow Depth 
 

The snow depth is retrieved through the relationship 
between the snow depth and impact factors, as shown by 
Li’s equation [31]: 

 
1 1 2 2 3 3 ... 1n n nSD A X A X A X A X A= + + + + +                   (20) 

 
where SD is the snow depth; 1 2, ,..., nX X X  are the impact 
factors; and 1 2, ,..., nA A A  are the regression coefficients. 

The study area is covered by grass and a small 
amount of forest; a model that combines the above 
relationship has been derived as follows: 

For the grassland, 
 

1 2 33.739822 2.949741 3.609386 50.333SD X X X= + + − (21) 
 
For the forest, 

 
1 2 33.076262 2.315176 1.987706 31.328SD X X X= + + −  (22) 

 
4  RESULTS AND DISCUSSION 
4.1  Comparison of Numerical Forecasts 
 

The WRF data are compared to the CMA/NMC 
T639L60 (http://www.weather.gov.cn/publish/nwp/t639/n 
-h/mslp.html) simulated data and the observational data 
from weather stations. The main parameters involved are 
the solar shortwave radiation, air temperature, soil 
moisture, soil temperature, relative humidity, and 
precipitation. 

The error of the data is verified by the root-mean-
square error (RMSE), mean absolute error (MAE), 
extreme value, mean, and regression analysis. The RMSE 
and MAE are calculated as follows: 
 

2
si ( ) ( )

1

1 ( )
n

m i obs i
i

RMSD x x
n =

= −∑                        (23) 

( ) ( )
1

1 N

obs i sim i
i

MAE x x
N =

= −∑                     (24) 

 
4.2  Comparison of Shortwave Radiation 
 

In order to analyze the scientific quality of the results 
and consistency of the data, the data recorded during the 
period 01:00–12:00 AM every day between March 1 and 
30, 2010 was selected to compare the shortwave radiation. 
A comparison of the shortwave radiation obtained from 
the WRF simulated values and the observed values are 
shown in Fig. 4. 

 

 
Figure 4 Comparison of shortwave radiation obtained from WRF simulated 

values to that from observed values 
 

It can be seen from Fig. 4 that the WRF simulated 
value was higher on March 18 and 19, which was mainly 
due to the snowfall in the experimental area. In the 
simulation period, the resolution of the elevation data 
used in the WRF was 1000 m, which can also generate 
corresponding errors. 
 

Table 1 Statistical analysis of WRF simulated values and observed values of 
shortwave radiation 

 Radiation (W∙m−2) MAE 
W∙m−2 

RMSD 
W∙m−2  Min Max Total Mean 

Obs 4.145 871.0 127600.2 386.6 93.2 6.9 WRF 0 850.7 124394.3 376.9 
 
It can be seen from Tab. 1 that the differences 

between the WRF and observation values regarding the 
means and extreme values are within 50 W∙m−2, the MAE 
is within 95 W∙m−2, and the overall error of shortwave 
radiation is 2.512 %. 

A regression analysis of the observed values and 
WRF simulated values is conducted using Statistical 
analysis System (SAS) software (Tab. 2), resulting in a 
linear equation of   0.95491   26.71162y x= + . The 
correlation between the equation and the variables was 
verified by the F test with a confidence level of 0.0001, 
which shows that the snowmelt model can meet the 
required level of prediction accuracy. 
 

Table 2 Regression results of WRF-simulated values and observed values of 
shortwave radiation 

 Intercept WRF 
Parameter 26.71162 0.95491 

Standard Error 12.92921 0.02891 
-Valuet  2.07 33.03 
Pr > |t| 0.0396 <0.0001 
-ValueF  1090.70 

Pr > F <0.0001 
2R  0.7688 

 
4.3  Comparison of Air Temperature 

 
The observed temperature 2 m above the ground in 

the experimental field was compared with the variable T2 
in the WRF. The results show that the systematic error of 
the WRF is approximately 3 °C. The corrected simulated 
values of the WRF and the observed values are shown in 
Fig. 5. 

It can be seen from Tab. 3 that the accumulated error 
of simulation is 394.095 °C, and the mean error is about 
0.5 °C. The simulated value of the MAE is 3.471 °C, the 
corrected value is 1.334 °C, and the average correction is 
0.456 °C. These results show that the difference between 
the corrected simulated data and the observed data is not 
large. 
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Figure 5 Corrected WRF simulated values and observed values of air 

temperature 
 

Table 3 Statistical analysis of WRF simulated values, corrected values, and 
observed values of air temperature 

Temperature 
(°C) Observed Simulated Corrected 

Minimum -20.170 -15.013 -18.013 
Maximum 13.787 17.779 14.779 

Accumulation -4543.104 -1557.009 -4149.009 
Mean -5.258 -1.802 -4.802 

Accumulated 
Error / 2986.095 394.095 

ME / 3.456 0.456 
MAE / 3.471 1.334 

 
A regression analysis of the observed values and the 

WRF simulated values is conducted using SAS software 
(Tab. 4), resulting in a linear equation, 

  0.95491   26.71162y x= + . The goodness of fit, R2, was 
0.9409 and the correlation between the equation and the 
variables was verified by the F test with a confidence 
level of 0.0001. 
 
Table 4 Regression analysis of WRF-simulated values and observed values of 

air temperature 
 Intercept WRF 

Parameter -0.30199 1.03210 
Standard Error 0.06858 0.00881 
t-Value -4.40 117.12 
Pr > |t| <0.0001 <0.0001 
F-value 13717.2 
Pr > F <0.0001 
R2 0.9409 

 
4.4 Comparison of Relative Humidity 

 
The relative humidity of air contributes greatly to the 

evapotranspiration of the snow-melting process. A 
comparison of the relative humidity obtained from the 
WRF simulated values and the observed values are shown 
in Fig. 6. 
 

 
Figure 6 WRF simulated values and observed values of relative humidity 

 
It can be seen from Tab. 5 that the maximum error is 

small, the mean error is 2.3 %, and the RMSE is 0.27 %. 
A regression analysis of the observed values and the 

WRF simulated values is conducted using SAS software 

(Tab. 6), resulting in a linear equation, 
0.79963 0.1834y x= + , with a goodness of fit, R2, of 

0.8134, which meets the required accuracy. 
 
Table 5 A statistical analysis of the WRF-simulated values and observed values 

of the relative humidity 
 Relative Humidity (%) MAE 

(%) 
RMSD 

(%)  Min Max Mean 
Obs  29.55 99.69 76.476 6.154 0.2676 WRF 27.84 99.81 74.743 

 
Table 6 A regression analysis of the WRF-simulated values and observed 

values of the relative humidity 
 Intercept WRF 
Parameter 0.18340 0.95491 
Standard Error 0.00971 0.02891 
-Valuet  18.89 33.03 

Pr > |t| <0.0001 <0.0001 
-ValueF  3762.63 

Pr > F <0.0001 
R2 0.8134 

 
4.5 Comparison of Soil Temperature 

 
The soil temperature also contributes greatly to the 

speed of the snow-melting process. A comparison of the 
soil temperature obtained from the WRF simulated values 
and observed values are shown in Fig. 7. 

 

 
Figure 7 WRF simulated values and observed values of soil temperature 

 
It can be seen from Tab. 7 that the maximum error is 

within 0.3 °C, the MAE is 0.18 %, and the RMSE can be 
regarded as zero. 

 
Table 7 A statistical analysis of the WRF-simulated values and observed values 

of the soil temperature 
 Soil temperature (°C) MAE 

(°C) 
RMSD 

(°C)  Min Max Mean 
Obs  -5.86 0.669 -1.3182 0.1826 0.00788 WRF -5.60 0.719 -1.3365 

 
Table 8 Regression analysis of WRF-simulated values and observed values of 

soil temperature 
 Intercept WRF 

Parameter -0.02917 0.99147 
Standard Error 0.00953 0.00412 
-Valuet  -0.306 240.52 

Pr > |t| 0.0023 <.0001 
-ValueF   57849.5 

Pr > F <0.0001 
R2 0.9853 

 
A regression analysis of the observed values and the 

WRF simulated values was conducted (Tab. 8), resulting 
in a linear equation, 0.99147 0.02917y x= − , with a 
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goodness of fit, R2, of 0.9853, which meets the required 
accuracy. 
 
4.6  Comparison of Soil Moisture 

 
It can be seen from Fig. 8 that the observed values 

were not significantly different from the WRF simulated 
values before the melting of seasonal frozen soils. The 
observed values are higher than the simulated values after 
March 24, which can be interpreted as the impact of 
snowmelt water infiltration on the soil moisture due to the 
warming process. Because of the large diurnal 
temperature difference, the snowmelt water infiltration in 
the day increases the soil moisture, while the freezing of 
the water at night decreases it. This is why there are 
diurnal fluctuations in the curve. After March 27, the 
trend became gentler due to the decreasing temperature 
and less snow melting. After that, the soil moisture 
continues to increase and the diurnal fluctuations appear 
again. A comparison of the soil moisture obtained from 
the WRF simulated values and the observed values are 
shown in Fig. 8. 

It can be seen from Tab. 9 that the maximum error is 
within 0.1, the mean error is 0.05, the minimum error is 
within 0.07, and the RMSE is 6.5%. 
 

 
Figure 8 WRF simulated values and observed values of soil moisture 

 
Table 9 Statistical analysis of WRF simulated values and observed values of 

soil moisture. 
 Soil moisture (m3/m3) RMSE 

 Min Max Mean 
Obs  0.202 0.436 0.273 6.5% WRF 0.215 0.332 0.278 

 
A regression analysis of the observed values and the 

WRF simulated values was conducted (Tab. 10), resulting 
in a linear equation, 1.31938 0.09339y x= − , with a 
goodness of fit, R2, of 0.8853, which meets the required 
accuracy. 

 
Table 10 Regression analysis of WRF simulated values and observed values of 

soil moisture 
 Intercept WRF 

Parameter -0.09339 1.31938 
Standard Error 0.00454 0.01616 
-Valuet  -20.59 81.65 

Pr > |t| <.0001 <.0001 
-ValueF  6666.23 

Pr > F <0.0001 
R2 0.8853 

 
4.7  Analysis of Runoff Model 

 
This study not only verifies the accuracy of the 

outflow in the watershed, but also compares the variation 

of the snow water equivalent in the study area with the 
corresponding MODIS remote sensing data. 
 

 
Figure 9 Spatial distributions of snow water equivalent in study area from 

MODIS data and simulation in 2009 
 
4.7.1 Spatial Distribution of Simulated Snowmelt 
 

The snow water equivalent of typical snow-melting 
periods in 2009 and 2010 was simulated and validated.  
 

 
Figure 10 Spatial distributions of snow water equivalent in study area from 

MODIS data and simulation in 2010 
 

The validation was conducted using the mean 
observed snow density at the same time period. The 
simulation and MODIS data of the snow water equivalent 
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for 2009 and 2010 are shown in Figs. 9 and 10, 
respectively. 
 
4.7.2 Simulation of Snowmelt Runoff 
 

The snow-melting process of this model is in an 
hourly resolution, which increases the difficulty of 
observation. Therefore, the observed data during the flood 
peak is used in the experiment, and the observed data 
during other periods is averaged. Comparisons of the 
snowmelt runoff obtained by the simulated and observed 
values for 2009 and 2010 are shown in Figs. 11 and 12, 
respectively. 

 

 
Figure 11 Simulated and observed processes of snowmelt runoff in 2009 

 
It can be observed from Figs. 11 and 12 that the 

simulated snowmelt runoff process line corresponds well 
with that of the observation data. Figs. 13 and 14 show 
that the qualification ratios (QRs) of the forecasted 
snowmelt runoff in 2009 and 2010 were 87 % and 90.85 
%, respectively, and the distortion ratio is less than 20 % 
for the daily snowmelt runoff simulation. 

 

 
Figure 12 Simulated and observed processes of snowmelt runoff in 2010 

 

 
Figure 13 Accuracy of  forecasted snowmelt runoff in 2009 

 
The coefficients of determination of the model are 

0.85 and 0.82 for 2009 and 2010, respectively, showing 
that the model’s accuracy is high. According to the 
requirements of the "Standard for Hydrological 
Information and Hydrological Forecasting (SL250-
2000)", the accuracy of the model has reached Tier 2. 
However, due to the influence of the ablation of frozen 
soils, the forecasted flood peak is overestimated. This 
problem will be solved by an improvement to the 
modeled frozen soil layers. 

 
Figure 14 Accuracy of forecasted snowmelt runoff in 2010 

 
5 CONCLUSIONS 

 
In order to predict the snowmelt flood in the northern 

slope of the Tianshan Mountains in Spring, a two-layer 
distributed snowmelt runoff model (TSRM) has been 
established based on the energy and mass balance for the 
Juntanghu Watershed on the north slope of the Tianshan 
Mountains. A simulation was conducted by coupling 
WRF with the TSRM. The conclusions of this study are 
as follows: 

(1) The WRF-TSRM mode can provide an effective 
forecast and early warning for the snowmelt flood runoff 
on the north slope of the Tianshan Mountains. However, 
the WRF can only provide data with a resolution of 1×1 
km2, which is larger than the hydrological unit on the grid 
scale. The data-matching problem could be the key to 
improving the simulation. 

(2) During verification, it was found the simulation 
tends to overestimate the runoff during the later period of 
the flood peak. This is because the ablation state of the 
frozen soil layer below the snow layer is different. It is 
recommended that the role of the ablation of the frozen 
soil in the runoff become an important area for future 
research. In the future, more modules regarding the 
mechanisms of the frozen soil freeze-thaw process will be 
embedded in the two-layer distributed snowmelt runoff 
model. 

(3) The impact of snowcover and seasonal frozen soil 
is also important. The threshold of the water-conservation 
capacity of snow cover changes with snow layer structure, 
and the infiltration capacity of the snowmelt also changes 
significantly due to the influence of the seasonal frozen 
soil, both of which will increase the uncertainty of the 
forecast. Therefore, it will be necessary to conduct an 
uncertainty analysis to further improve the model. 

The WRF-TSRM mode proposed in this study fully 
combines the advantages of the atmosphere and land 
surface model, which provides important scientific and 
technological support for snowmelt flood forecasting in 
the northern slope of the Tianshan Mountains. However, 
due to the fact that WRF only covered 2010, we did not 
validate and improve the WRF-TSRM mode using more 
observational data. We will make more improvements 
after collecting more data. 
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