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ABSTRACT
Stock markets play an important role in spurring economic growth 
and development through diversification opportunities. However, 
diversification cannot be truly achieved if we continue to ignore 
additional dimensions of risk, namely skewness and kurtosis. This 
study incorporates higher moments of risk to form a mean-variance-
skewness-kurtosis based framework for portfolio optimisation. 
Inclusion of higher moments in optimisation framework acknowledges 
the risk of asymmetric returns and fat-tail risk and can help investors 
in formulating optimal portfolios of stocks which can be significantly 
divergent from the ones they obtain through the Markowitz mean-
variance optimisation. Our results confirm the presence of tradeoff 
between returns and additional dimensions of risk in Pakistan 
Stock Exchange (PSX) and strongly suggest including them in the 
optimisation framework to avoid sub-optimal decisions and to curtail 
exposure towards higher moments of risks.

1. Introduction

The role of stock markets in spurring economic growth and development is almost undeni-
able. Stock markets have a tendency to affect economic activities of a country by providing 
several functions, such as secondary trading of equity securities that helps businesses and 
industries raise capital because of the liquidity created in these markets. Stock markets 
also provide investors with the means to invest effectively and efficiently thanks to the 
diversification they can have by investing in different securities, asset classes or categories. 
Diversification also helps investors in improving asset allocation decision which ultimately 
leads to high long-term economic growth for both the country and the investors (Levine 
& Zervos, 1996).
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One of the key features of diversification is to create a balance between the risk and 
rewards of different investments for which the gold standard is the modern portfolio theory 
(MPT), introduced by Markowitz (1952). The MPT provides a mean-variance framework 
to minimise risk for a given level of expected return, or to maximise expected returns for a 
given level of risk. Over the years, the Markowitz mean-variance framework has been widely 
accepted for portfolio optimisation and is a vital practical tool for practitioners. Nonetheless, 
one of the major loopholes in this framework is the assumption of normally distributed 
asset returns, which implies that expected value and variance should accurately represent 
the returns distribution. This assumption makes the entire process of optimisation prone to 
severe underestimation of investment risk, as it conveniently assumes the second moment 
(variance) is capable to proxy the risk of any investment in its entirety. However, several 
studies in empirical finance confirm that asset returns distributions are characterised by 
negative skewness and excess kurtosis, and so the assumption for a normal distribution is 
continuously being violated (Aggarwal, Rao, & Hiraki, 1989; Beedles, 1986; Lux & Marchesi, 
2000). If portfolio returns are negatively skewed, the probability of getting negative returns 
is higher than the positive returns and vice versa. Similarly, the presence of excess kurtosis 
indicates the higher probability of extreme events also known as fat-tail risk. The presence 
of these two phenomena gives rise to a need for the inclusion of higher moments of risk to 
describe portfolio behaviour, otherwise the portfolio optimisation based on mean-variance 
under the normality assumption may lead us to underestimate the true investment risk and 
might end up with an inefficient portfolio rather than the efficient one.

In the presence of skewness and kurtosis, the major hurdle in the expansion of a 
mean-variance framework to include higher moments of risk is the difficulty in finding 
a tradeoff among the four objectives. This creates a non-convex and non-smooth multi- 
objective problem and due to this, many studies in portfolio selection mainly focus on the 
first three moments and often neglect kurtosis. Additionally, most of the models only consider 
the distribution of asset return and ignore investor’s risk preferences and trading strategies.

In this study we use a polynomial goal programming (PGP) approach with a multi- 
objective method developed by Lai, Yu, and Wang (2006) to deal with this very issue. The 
multi-objective function is capable to incorporate investor preferences while finding an 
optimal solution based on multiple criteria. We incorporate the investor’s weighted prefer-
ences for skewness and kurtosis in addition to the conventional criteria of expected returns 
and variance at Pakistan Stock Exchange (PSX) and found that additional dimensions of 
risk play an important role in determining the yields of optimised portfolios. Our results 
suggest that investors with the intention to minimise these additional dimensions of risk 
would probably have to settle for lower expected returns.

The remainder of the article is organised as follows. Section 2 includes a brief review of 
the literature. Section 3 describes the data and methodology used for this study. Sections 4 
and 5 include the empirical results and conclusion, respectively.

2. Literature review

A portfolio is a suitable combination of securities that individual investors and institutions 
possess with the objective of earning a profit. In the financial world, portfolio optimisation 
is plagued with several problems. Investors want an optimal combination of securities that 
maximises returns at the minimum level of risk. The MPT solves this problem through the 
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diversification of investments (Aracioglu, Demircan, & Soyuer, 2011; Markowitz, 1952; 
Singh, Sahu, & Bharadwaj, 2010).

Markowitz (1952) proposed a mean-variance framework for portfolio optimisation which 
focused on the first two moments of return distributions. The primary assumption was that 
asset returns are normally distributed, or that the utility function is quadratic and only 
depends on the first two moments.

In a serious contradiction to the assumptions of MPT, a number of studies conducted in 
different markets suggest that financial returns are non-normal. Beedles (1979) concludes 
that returns are significantly positively skewed and uneven with respect to the Australian 
market. Aggarwal et al. (1989) find skewness and kurtosis in returns for the Japanese equity 
market. Lux and Marchesi (2000) confirm lepto-kurtosis in financial time series and also 
confirm that volatility clustering and kurtosis have a positive relationship. Tseng and Li 
(2012) analyse the presence of volatility clustering in financial time series and also find that 
high volatility clustering increases kurtosis risk and asymmetry. They find that an increase 
in volatiltiy also increases kurtosis risk and skewness risk.

The above findings on the presence of non-normality, skewness and kurtosis make it 
necessary to incorporate higher order moments for optimal portfolio construction and 
selection. Kane (1982), Konno, Shirakawa, and Yamazaki (1993), Lai (1991) and Simonson 
(1972) emphasise the importance of incorporating skewness of returns, and suggest that 
the third moment of risk can improve mean-variance portfolio efficiency and portfolio 
selection and optimisation. In recent years, a lot of attention has been directed towards 
kurtosis due to its integral role in portfolio selection. Beardsley, Field, and Xiao (2012), 
Guidolin and Timmermann (2008), Hong, Tu, and Zhou (2007), Jarrow and Zhao (2006), 
Mitton and Vorkink (2007), Martellini (2008), Li, Qin, and Kar (2010), Liu, Liu, and Wang 
(2013) and Wilcox and Fabozzi (2009) have emphasised the importance of kurtosis and its 
inclusion in portfolio optimisation and selection.

Incorporation of higher order moments turns portfolio selection into a non-convex 
and non-smooth optimisation problem that can be characterised by multiple conflicting 
and competing objective functions such as maximising expected return and skewness, and 
minimising variance and kurtosis, respectively. In the past, studies used the mean-variance 
model to reformulate and simplify the solution of quadratic programming. However, finance 
literature is now enriched with various methods to solve this complex task (Smimou & 
Thulasiram, 2010). Although there are approaches like shortage function developed by 
Briec, Kerstens, and Jokung (2007) that uses non-parametric efficiency measurements or the 
evolutionary algorithm approach in an experimental setting by Chiam, Tan, and Al Mamum 
(2008), but in line with Lai et al. (2006) and Mhiri and Prigent (2010), we decided to use PGP 
with a multi-objective approach, to incorporate higher moments of risks while selecting an 
optimal portfolio. PGP, according to the existing literature is considered as highly effective 
and efficient to solve such problems with multiple conflicting risk preferences.

Tayi and Leonard (1988) were the first to introduce PGP, followed by Lai (1991) who 
applied the multi-objective method by incorporating skewness into portfolio selection with 
investors’ preferences. PGP is a method flexible enough to incorporate investor preferences 
which they might have for the higher moments of returns. The superiority of PGP is that it 
allows simultaneous optimisation with reference to variance, skewness and kurtosis without 
explicitly specifying a utility function, however, it still requires that an investor’s preferences 
towards higher moments of risk should explicitly be defined. Chunhachinda, Dandapani, 
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Hamid, and Prakash (1997); Sun and Yan (2003); Canela and Collazo (2007); Hafner and 
Wallmeier (2008) provide at length the superiority and practical efficiency of PGP over other 
approaches. Further improvements in PGP are brought by Prakash, Chang, and Pactwa 
(2003) who use the multi-objective method for construction of an optimal portfolio. Lai et al. 
(2006) also augmented the dimension of portfolio selection from mean-variance-skewness 
to mean-variance-skewness-kurtosis using the multi-objective method. Similarly, Mhiri and 
Prigent (2010) incorporated higher moments of skewness and kurtosis and also Davies, Kat, 
and Lu (2009), who focused on selection of efficient funds from hedge funds.

3. Data and methodology

In this study, we choose eight stocks listed at the PSX. PSX, formerly known as Karachi 
Stock Exchange, is the representative stock market of Pakistan. According to the Bloomberg, 
Morgan Stanley Capital International (MSCI) has officially stated that the market index 
would be reclassified to emerging market status from its present status of frontier market in 
May 2017. Although the PSX is comprises of 33 sectors with 578 listed companies, its per-
formance is usually evaluated by KSE-100 index recently been declared as best performing 
Asian market index after yielding 14% returns in 2016. The market capitalisation of PSX is 
about PKR 8.4 trillion (80 billion US$) and it is expected that the recent performance and 
the inclusion in MSCI emerging market index would bring a huge demand for the securities, 
listed on PSX, by the investors seeking healthy returns and therefore this is the right time 
to analyse in-depth the structure of this market to identify the impact of any ignored risk 
that might lead new investors towards sub optimal decisions.

The semi strong inefficiency of PSX has been reported by several researchers. Nazir  
et al. (2010) and Asghar et al. (2011) have reported strong predictive power of dividend in 
subsequent returns and the volatility of stocks listed in PSX. This is one of the reasons most 
of the investors in PSX favours dividend yielding stocks. Another reason is the regular cash 
flows associated with these stocks taken positively by the investors. Keeping in view the 
above market sentiments, we select two stocks on the basis of highest dividend yield over 
the last 52 weeks (GASF and AGTL), top two over the last 52 weeks with highest average 
volume traded and dividend yield (GHNL and HCAR), top two with highest dividend yield 
in cement sector (FCCL and MLCF), one from the food sector based on highest dividend 
yield (CLOV) and one from commercial banks based on average volume traded and highest 
dividend yield (NBP). Additional attention has been paid while selecting these stocks to the 
sectors preferred by investors and are attracting significant proportion of investment, so that 
they should not be left out. Monthly closing prices of the selected stocks for the last 10 years, 
from May 2006 to April 2016, have been used to estimate monthly returns by taking natural 
log of price ratios, in line with Biglova, Jašić, Rachev, and Fabozzi (2004). The data has been 
taken from the data base of Standard Capital (a local brokerage house) that maintains finan-
cial data of companies listed in PSX for analysis purpose. The preference has been given to 
monthly returns over daily returns due to several factors. First of all, monthly returns are free 
from the noise factor which is prominent in daily returns and has a potential to distort real 
inferences about the investment strategy by increasing the volatility many folds. Secondly, 
the usage of monthly returns makes the results of this study more comparable to the per-
formance of several mutual funds that usually report their performance on monthly basis.

Rit = log(Pit∕Pit−1)
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These calculated returns have been used in the optimisation process, which is explained 
below.

3.1. Optimisation and incorporation of higher moments

The first two equations represent the portfolio’s expected return and variance which are 
also the first two moments of the returns distribution and are the essential components of 
optimisation process;
 

 

Equation 3 represents portfolio skewness which is the weighted sum of individual coeffi-
cients of skewness and co-skewness among returns. Similarly, equation 4 defines portfolio 
kurtosis which is the weighted sum of individual coefficient of kurtosis and co-kurtosis 
among equity returns.

 

 

The notation for variance-covariance matrix used in equation 2 is as follows:
 

For the calculation of Skewness and co-skewness matrix we use the following structure 
where Siii is the skewness coefficient for an individual stock, Siij is the coefficient of co-skew-
ness for two stocks portfolio, while for a three stocks portfolio the coefficient of co-skewness 
is Sijk:
 

 

 

Similarly, Kurtosis – co-kurtosis coefficient are kiiii, kiijj, kijjjand kijkl and are defined below:
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Finally, to consolidate multiple objectives, we use the PGP approach used by (Aracioglu  
et al., 2011; Lai et al., 2006; Mhiri & Prigent, 2010). With the intention to maximise portfolio 
return and skewness and minimise variance and kurtosis:
 

 

 

 

Each Solution conditions with XT I = 1, X ≥ 5% and X ≤ 50%1

R*, V*, S* and K* are the optimised portfolio parameters for four moments, also called 
as aspired values (Lai et al., 2006). R is the returns distribution with the expected value of 
R̄ . XTin equations 13 to 16 is the transpose of weight vector, where the weights represent 
the proportion of funds allocated to different assets included in the portfolio.

To model and incorporate various investor’s preferences towards mean, variance, skew-
ness and kurtosis, we use four parameters λ1, λ2, λ3, λ4 respectively. By using lambda param-
eters, we turn the multi-objective portfolio selection into single-objective (Equation 17) for 
various investor’s preferences, which is a general way to solve the multi-objective problem. 
This is primarily because multi-objective problems can be solved in two steps: (1) non-dom-
inated solution, independent from investors’ preferences; and (2) selection of most suitable 
solution among the given solutions according to risk preferences which included higher 
moments solutions:

 

The goal variables in the above objective function are d1, d2, d3 and d4 which are the estimates 
of the deviation of actual moments (under achievement) with their respective aspired values. 

(9)kiiii = E
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This study uses Visual Basic for Applications (VBA) coding in excel to compute Variance-
Covariance, skewness- CoSkewness and Kurtosis-CoKurtosis matrices. We then used solver 
function in Excel to optimise Z (the objective function) to estimate weights associated with 
each optimal portfolio given the investor’s preferences (λ1, λ2, λ3, λ4).

4. Empirical results

A curious reader must seek a justification of such a huge emphasis on usually ignored dimen-
sions of risk. Table 1 below provides the answer of it. We report in Table 1 the descriptive 
statistics of monthly USD and PKR returns earned by KSE-100 index during the last 10 years. 
Annualised returns are although very impressive, about 11.71% (USD) and 17.03% (PKR) 
but the cost to yield those returns in terms of risk is enormous. Not only that the annualised 
volatility is very high, about 30% in USD and 27.6% in PKR, the values of kurtosis and skew-
ness also reveal the true risk embedded in the market. Kurtosis is 2.5–3 times greater than 
what it should have been if the returns were normally distributed, indicating a leptokurtic 
distribution with the significantly higher probability of extreme events. Moreover, negative 
skewness, both in terms of USD and PKR, is making this leptokurtic phenomenon worse 
implying higher chances of having extreme losses (fat-tail risk).

Table 2 shows the descriptive statistics of each selected stock at PSX (KSE100- index). 
The last two columns provide a ranking of these stocks based on coefficient of variation, 
a relative measure of riskiness. It seems that CLOV is at the top (worst) with the highest 
risk per unit return followed by GASF and NBP while AGTL is at the bottom (best) with 
the lowest risk per unit of return. This is one way of looking things and the similar sort of 
ranking based on standardised skewness and kurtosis have been provided in the last two 
columns of Table 2 showing significantly different ranks compared to the ranking based on 
Coefficient of Variation (CV). Such discrepancies are the true motivation for the inclusion 
of higher moments of risk in the process of portfolio optimisation.

As a first step in applying the PGP approach, we calculate the individual aspired levels 
by solving equation 13, 14, 15 and 16 separately and the results can be seen in Table 3. The 
upper panel of Table 3 shows the weights allocated to eight stocks while creating a portfolio 
providing optimal values of selected moment of mean, variance, skewness and kurtosis, all 
reported in lower panel.

Table 1. Descriptive statistics of ksE-100 returns (may 2006–april 2016).

source: authors’ Estimations and calculations.

KSE 100 Returns (USD) KSE 100 Returns (PKR)
mean 0.009759696 0.014194215
standard Error 0.007751045 0.00728352
median 0.022121096 0.023220758
mode #n/a #n/a
standard Deviation 0.084908445 0.079786963
sample variance 0.007209444 0.00636596
kurtosis 8.129780115 10.46559779
skewness −1.473962619 −1.670225169
Range 0.709188718 0.706450316
minimum −0.466480632 −0.461051644
maximum 0.242708086 0.245398671
sum 1.171163576 1.703305779
count 120 120
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A maximum mean return an investor can get by solving equation 15 is 0.01149, and to 
get this level of return they must invest almost 50% of the funds in HCAR, 20% in GHNL 
and 5% each in the remaining six stocks. The minimum level of risk an investor can enjoy 
is 0.00657, obtained by solving equation 16. Equation 17 gives us the maximum value of 
skewness investor can have in a portfolio based on these stocks. And similarly, equation 
18 solves for the minimum level of kurtosis (fat-tail risk) an investor has to deal with. It is 
important to note that the aspired levels for each moment have been calculated in a complete 
isolation and are of little use for an investor whose decision is based on multiple moments 
simultaneously with differing preferences towards each moment.

To incorporate simultaneous and varying preferences towards different criteria we esti-
mate 11 portfolios with different preferences and the results are reported in Table 4.

Table 4 shows the Investors’ preferences λ1, λ2, λ3, λ4 which are importance given by the 
investor to mean, variance, skewness and kurtosis, respectively. Higher value designates 
higher importance to selected moments while estimating an optimal portfolio. Portfolio 
1 is a benchmark mean-variance portfolio and used to make comparison with the other 
portfolios with multiple objectives. Portfolios 2, 4 and 5 are based on the preference structure 
of (3, 1, 1, 0), (3, 1, 2, 1) and (3, 1, 3, 1) which reflects strong linking of investors towards 
maximisation of returns. While in portfolios 3, 6, 7, 9 and 10 with preference structure of  
(1, 3, 1, 1), (1, 1, 1, 3), (1, 3, 1, 3), (1,1,3,0) and (1,1,0,3) the investor seems keen in optimising 
different dimensions of risk (variance, skewness and kurtosis).

Table 2. Ranking of selected stocks based on coefficient of variation.

*coefficient of variation (c.v) = standard deviation / mean; **Ranking based on coefficient of variation; ***Ranking based 
on standardised skewness, reversed to get the highest value for most negatively skewed stock; ****Ranking based on 
standardised kurtosis.

source: authors’ Estimations and calculations.

Stocks Mean
Standard 
Deviation Skewness Kurtosis

Sharpe 
Ratio C.V*

Ranking 
1**

Ranking 
2***

Ranking 
3****

GasF 0.00209 0.13877 −1.865 10.3474 −0.01228 66.3971 2 1 1
aGtL 0.01108 0.10782 −1.1488 7.62417 0.067568 9.73105 8 3 4
hcaR 0.01533 0.1492 0.02449 0.88923 0.077314 9.73255 7 6 8
GhnL 0.01246 0.18264 −0.146 2.09682 0.047444 14.6581 6 4 6
FccL 0.00636 0.10913 −0.0091 0.70964 0.023506 17.1588 5 5 7
mLcF 0.0078 0.15185 0.63549 1.45833 0.026376 19.4679 4 7 5
nBP 0.00222 0.12483 −1.4163 6.60074 −0.01262 56.2297 3 2 2
cLov 0.00127 0.16178 0.3604 1.6982 −0.01561 127.386 1 8 3

Table 3. individual aspired levels of higher moments with weights.

source: authors’ Estimations and calculations.

Aspired Levels of Higher Moments 

Stocks Mean Variance Skewness Kurtosis
GasF 5.00 5.00 5.00 23.93
aGtL 5.00 32.95 5.00 11.53
hcaR 50.00 5.00 6.10 5.00
GhnL 20.00 5.00 18.90 5.00
FccL 5.00 23.85 5.00 5.00
mLcF 5.00 5.00 5.00 12.42
nBP 5.00 5.04 5.00 11.18
cLov 5.00 18.16 50.00 25.94
aspired Levels 0.01149 0.00657 0.4475048 3.03



1602   B. NAQVI ET AL.

Portfolio 8, however, with the preference structure (3,1,2,3) seems to achieve an ambi-
tious objective with higher importance to several competing criteria, like maximisation of 
returns and minimisation of kurtosis and skewness.

To make this tradeoff more visible and comprehendible, we pick three portfolios, 2, 9 and 
10 from Table 4 and create their sub-portfolios 2A, 9A and 10A by changing preferences 
for only one moment and leaving rest of the preferences constant.

Table 5 shows the results of six portfolios explained above. In portfolio 2A we leave 
preferences for expected return and variance similar to portfolio 2 and a higher preference 
is assigned to the maximisation of skewness. Results show that it helps in increasing port-
folio skewness (desirable phenomenon) but it also increases portfolio kurtosis (undesirable 
phenomenon) showing a tradeoff even in this simplified situation. In portfolio 9A where 

Table 4. asset allocation with weights and different preferences for optimal portfolios.

source: authors’ Estimations and calculations.

Portfolios 1 2 3 4 5 6 7 8 9 10 11
λ1 1 3 1 3 3 1 1 3 1 1 1
λ2 1 1 3 1 1 1 3 1 1 1 1
λ3 0 1 1 2 3 1 1 2 3 0 1
λ4 0 0 1 1 1 3 3 3 0 3 1

GasF 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050
aGtL 0.432 0.140 0.050 0.050 0.050 0.062 0.059 0.064 0.176 0.050 0.055
hcaR 0.094 0.075 0.090 0.096 0.099 0.050 0.050 0.050 0.099 0.070 0.115
GhnL 0.059 0.139 0.050 0.050 0.050 0.052 0.050 0.061 0.150 0.070 0.055
FccL 0.159 0.050 0.050 0.050 0.050 0.083 0.050 0.135 0.050 0.399 0.050
mLcF 0.050 0.050 0.275 0.274 0.276 0.224 0.254 0.182 0.050 0.050 0.274
nBP 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050
cLov 0.107 0.445 0.385 0.379 0.375 0.429 0.437 0.408 0.375 0.260 0.351

mean 0.0085 0.006 0.01 0.006 0.006 0.005 0.005 0.005 0.007 0.006 0.006
variance 0.007 0.01 0.01 0.01 0.01 0.01 0.01 0.009 0.009 0.008 0.01
skewness −1.171 0.374 0.26 0.249 0.242 0.321 0.34 0.277 0.255 −0.123 0.194
kurtosis 5.0484 1.038 0.41 0.408 0.405 0.507 0.503 0.503 1.045 0.511 0.405
sharpe Ratio 0.056 0.022 0.062 0.022 0.022 0.012 0.012 0.013 0.034 0.025 0.022

Table 5. change of moments with investor’s preferences.

source: authors’ Estimations and calculations.

Portfolios 2 2A 9 9A 10 10A
λ1 3 3 1 2 1 2
λ2 1 1 1 1 1 1
λ3 1 2 3 3 0 0
λ4 0 0 0 0 3 3

GasF 0.050 0.050 0.050 0.050 0.050 0.050
aGtL 0.140 0.161 0.176 0.170 0.050 0.253
hcaR 0.075 0.050 0.099 0.114 0.070 0.112
GhnL 0.139 0.115 0.150 0.181 0.070 0.137
FccL 0.050 0.054 0.050 0.050 0.399 0.083
mLcF 0.050 0.050 0.050 0.050 0.050 0.050
nBP 0.050 0.050 0.050 0.050 0.050 0.050
cLov 0.445 0.471 0.375 0.335 0.260 0.266

mean 0.00573 0.00532 0.00653 0.00703 0.00577 0.00748
variance 0.00994 0.00994 0.00907 0.00907 0.00779 0.00779
skewness 0.37438 0.38101 0.25542 0.20986 −0.1234 −0.1234
kurtosis 1.03784 1.05 1.04525 1.04525 0.51056 1.48703
sharpe Ratio 0.019 0.015 0.029 0.034 0.022 0.042
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we leave preferences for variance and kurtosis similar to portfolio 9, we see that the higher 
preference to maximisation of returns yields us higher expected return, but at the cost 
of accepting lower positive skewness (undesirable phenomenon). Finally, when we try to 
change the preference parameter of portfolio 10 towards returns by holding preferences 
for variance and skewness constant in portfolio 10A, results show that the returns could be 
increased by almost 50% of the base value but at the cost of increasing fat-tail risk (kurtosis) 
to almost three times to its base value.

These results clearly indicate that the additional dimension of risk, namely skewness and 
kurtosis, plays an important role in determining the yields of optimised portfolios. And 
the investors with the intentions to minimise these additional dimensions of risk would 
probably have to settle for lower expected returns.

The above results are important in a way that they challenge the entire paradigm of Mean-
Variance optimisation where variances are considered sufficient for the estimation of risk 
and no consideration is given to the additional dimensions of risks. To make the tradeoff 
between returns and the additional dimensions of risk more visible in an old-fashioned 
way, we take an indirect way pursuing Mean-Skewness and Mean-Kurtosis optimisation.

We first construct seven portfolios by optimising returns for different levels of risk 
through mean variance optimisation (Table 6) to obtain the baseline Markowitz Mean-
Variance efficient frontier. We then hold the level of variance constant for each portfolio 
and optimise them for the third and fourth moment of risk (Table 7 and 8). Results show 
while optimising for higher moments of risk, the expected return goes down substantially, 
especially in the case of Mean-skewness case. This reduction in expected returns further 
substantiates the results we obtained in previous section and also indicates that the optimal 
portfolios in PSX are overpriced and the higher returns generated by them coming at the 
cost of additional risk embedded in skewness and kurtosis.

Figure 1 below shows the efficient frontiers based on Mean-Variance, Mean-Skewness 
and Mean-Kurtosis optimisation. Risk is on x-axis while y-axis shows respective returns. A 
clear downward shift in Mean-Skewness and Mean-Kurtosis efficient frontiers is observable 
compared to the base case of Mean-Variance efficient frontier. These results further con-
firm our apprehensions about the severe overpricing of emerging markets like PSX. Under 
the conventional framework of Mean-Variance optimisation, markets like PSX seem very 
attractive offering a substantially high reward to risk ratio visible thorough a higher efficient 

Table 6. Benchmark mean-variance optimisation.

source: authors’ Estimations and calculations.

Portfolios 1 2 3 4 5 6 7
GasF 0.050 0.050 0.050 0.050 0.050 0.050 0.050
aGtL 0.431 0.450 0.466 0.415 0.358 0.314 0.277
hcaR 0.090 0.137 0.174 0.255 0.323 0.376 0.420
GhnL 0.057 0.074 0.087 0.080 0.069 0.060 0.053
FccL 0.163 0.112 0.071 0.050 0.050 0.050 0.050
mLcF 0.050 0.050 0.050 0.050 0.050 0.050 0.050
nBP 0.050 0.050 0.050 0.050 0.050 0.050 0.050
cLov 0.109 0.077 0.052 0.050 0.050 0.050 0.050

mean 0.008441 0.009213 0.009831 0.010385 0.010788 0.011 0.011249
variance 0.007001 0.007501 0.008001 0.008501 0.009001 0.009501 0.010001
sD 0.083672 0.086608 0.089448 0.092201 0.094874 0.097473 0.100005
skewness −1.17211 −1.14003 −1.08357 −0.91458 −0.77805 −0.67896 −0.59948
kurtosis 5.03965 5.100087 5.007513 3.979445 3.125349 2.576206 2.185254
sharpe Ratio 0.056 0.063 0.067 0.071 0.074 0.074 0.075



1604   B. NAQVI ET AL.

Table 7. mean-skewness optimisation.

source: authors’ Estimations and calculations.

Portfolios 1 2 3 4 5 6 7
GasF 0.050 0.050 0.050 0.050 0.050 0.050 0.050
aGtL 0.216 0.238 0.239 0.207 0.161 0.122 0.086
hcaR 0.050 0.064 0.111 0.155 0.194 0.231 0.263
GhnL 0.050 0.119 0.141 0.164 0.182 0.195 0.203
FccL 0.245 0.142 0.073 0.050 0.050 0.050 0.050
mLcF 0.050 0.050 0.050 0.050 0.050 0.050 0.050
nBP 0.050 0.050 0.050 0.050 0.050 0.050 0.050
cLov 0.290 0.287 0.286 0.274 0.262 0.252 0.248

mean 0.006102 0.006765 0.007311 0.007781 0.008086 0.008354 0.008546
variance 0.007001 0.007502 0.008002 0.008502 0.009002 0.009501 0.010002
sD 0.083672 0.086614 0.089454 0.092206 0.094879 0.097475 0.10001
skewness −0.23494 −0.10335 −0.03296 0.02016 0.056399 0.076255 0.095811
kurtosis 1.312269 1.344273 1.339685 1.205788 1.049371 0.942245 0.86471
sharpe Ratio 0.028 0.034 0.039 0.043 0.045 0.047 0.048

Table 8. mean-kurtosis optimisation.

source: authors’ Estimations and calculations.

Portfolios 1 2 3 4 5 6 7
GasF 0.050 0.050 0.050 0.050 0.056 0.071 0.156
aGtL 0.323 0.340 0.361 0.368 0.334 0.294 0.161
hcaR 0.111 0.163 0.205 0.272 0.328 0.377 0.391
GhnL 0.078 0.100 0.118 0.086 0.067 0.051 0.050
FccL 0.165 0.115 0.074 0.058 0.053 0.051 0.050
mLcF 0.064 0.063 0.050 0.050 0.052 0.051 0.050
nBP 0.050 0.050 0.050 0.050 0.056 0.055 0.092
cLov 0.160 0.119 0.092 0.066 0.055 0.051 0.050

mean 0.008005 0.008761 0.009421 0.009897 0.010263 0.01048 0.01058
variance 0.007001 0.007501 0.008001 0.008501 0.009001 0.009501 0.010001
sD 0.083672 0.086608 0.089448 0.092201 0.094874 0.097473 0.100005
skewness −0.76657 −0.7843 −0.75903 −0.80426 −0.78266 −0.74256 −0.85016
kurtosis 3 3.149999 3.209999 3.319999 3.049999 2.749999 2.869999
sharpe Ratio 0.050 0.057 0.063 0.066 0.068 0.069 0.068

0

0.002

0.004

0.006

0.008

0.01

0.012

0 0.002 0.004 0.006 0.008 0.01 0.012
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Risk
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Figure 1. Efficient portfolios with mean-variance, skewness and kurtosis optimisation. source: authors’ 
Estimations and calculations
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frontier. However, the extra ordinarily high returns are coming at a cost of being highly 
exposed to the negative skewness and high value of kurtosis, the kind of risks most of the 
investors are unaware of. These results strongly suggest the inclusion of higher moments 
in the process of optimisation to gauge the reward to risk ratio properly which could lead 
investors towards a truly optimised portfolio and save economy from the unintended losses 
in case of volatile periods.

5. Conclusion

The assumption of normality of stock returns which is usually considered as the cornerstone 
for mean variance optimisation is no longer a valid phenomenon. This assumption makes 
the entire process of portfolio optimisation prone to severe underestimation of investment 
risk as it conveniently assumes the second moment (variance) is capable to proxy the risk 
of any investment in its entirety.

Researchers from the various backgrounds, however, confirm the presence of negative 
skewness and excess kurtosis in diverse set of financial assets. The presence of these two 
phenomena gives rise to a need for the inclusion of higher moments of risk to describe 
portfolio behaviour otherwise the portfolio optimisation based on mean-variance under 
the normality assumption may lead us to underestimate the investment risk and might end 
up with an inefficient portfolio rather than the efficient one.

This study adopts the PGP approach to include higher moments of returns distribution 
in portfolio optimisation process on the data of portfolio of eight stocks listed on the PSX. 
The study confirms the presence of negative skewness and excess kurtosis both in the index 
and the portfolio and concludes in the presence of skewness and kurtosis risk, Markowitz 
Mean-Variance portfolio optimisation at the PSX may not provide a workable solution for 
the investors with preferences towards additional dimensions of risk.

Our results are broadly aligned with the studies confirming the presence of skewness 
and kurtosis risk in different markets such as Aggarwal et al. (1989), Aracioglu et al. (2011), 
Beedles (1986), Canela and Collazo (2007) and others, and clearly show strong tradeoffs 
between returns and additional dimensions of risks (skewness and kurtosis) which was tra-
ditionally assumed to be present only between returns and variance. The investors aware of 
these new dimensions of risks would have to accept lower returns if they chose to optimise 
these risks (skewness and kurtosis) in addition to the risk captured through the variance. 
This means that the observed efficient frontier based only on Mean-Variance optimisation 
is not a true efficient frontier and could lead investors towards sub-optimal decisions due 
to the misallocation of resources. Ignoring the risk embedded in skewness and kurtosis 
of returns distribution would lead the overpricing of the market and would expose inves-
tors and economy towards unintended and uninformed risks affecting overall growth and 
development.

Note

1.  The conditions, X ≥ 5% and X ≤ 50%, restrict the funds allocated to each security to move 
within this threshold to ensure diversification and avoid short selling.
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