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ABSTRACT

Continuous network design problem (CNDP) is searching 
for a transportation network configuration to minimize the 
sum of the total system travel time and the investment cost 
of link capacity expansions by considering that the travellers 
follow a traditional Wardrop user equilibrium (UE) to choose 
their routes. In this paper, the CNDP model can be formu-
lated as mathematical programs with complementarity 
constraints (MPCC) by describing UE as a non-linear comple-
mentarity problem (NCP). To address the difficulty resulting 
from complementarity constraints in MPCC, they are substi-
tuted by the Fischer-Burmeister (FB) function, which can be 
smoothed by the introduction of the smoothing parameter. 
Therefore, the MPCC can be transformed into a well-behaved 
non-linear program (NLP) by replacing the complementarity 
constraints with a smooth equation. Consequently, the solv-
er such as LINDOGLOBAL in GAMS can be used to solve the 
smooth approximate NLP to obtain the solution to MPCC for 
modelling CNDP. The numerical experiments on the example 
from the literature demonstrate that the proposed algorithm 
is feasible.

KEY WORDS

urban transportation network; continuous network design 
problem (CNDP); mathematical programs with complemen-
tarity constraints (MPCC); non-linear complementarity prob-
lem (NCP); user equilibrium (UE);

1. INTRODUCTION
The network design problem (NDP) is seeking of 

a transportation network configuration that minimiz-
es some objective functions, subject to a traditional 
Wardrop user equilibrium (UE) as the constraints. The 
continuous NDP (CNDP) has become one of the most 
computationally intensive problems in the transporta-
tion field [1]. The CNDP is to determine how to expand 
the link capacity to minimize the total system travel 
cost while the users follow the Wardrop’s first principle 

of traffic equilibrium to choose their routes, i.e. no user 
can decrease their travel time by a unilateral change 
of route at equilibrium [2]. The measurement of the 
system performance can be described as the sum of 
total system travel time and the investment cost to ex-
pand the link capacity. Due to different objectives for 
formulating CNDP, it has been modelled as a bi-level 
programming problem with the upper level (a non-lin-
ear programming problem to minimize the total system 
cost or maximize the social surplus) and the lower lev-
el (a UE problem to account for the users’ route choice 
behaviour). Allsop [3] firstly proposed the algorithm for 
addressing CNDP, and subsequently CNDP has been 
continuously studied by many researchers during the 
last five decades. Lots of related publications have 
grown over time including reviews by Yang and Bell [1] 
and Farahani et al. [4]. Various algorithms have been 
proposed to solve CNDP (see Table 1 for details).

In this paper, the CNDP’s objective is to minimize 
the sum of the total system travel time and the in-
vestment cost by expanding the link capacity, while 
route choice behaviour of travellers follows UE, which 
is described by non-linear complementarity problem 
(NCP). Thus, the CNDP model can be formulated as 
mathematical programs with complementarity con-
straints (MPCC). However, solving MPCC is a hard task 
because the Mangasarian Fromovitz constraint qualifi-
cation (MFCQ) does not hold at any feasible point [29, 
30]. To circumvent these problems, some algorithmic 
approaches have focused on avoiding this formula-
tion. Subsequently, researchers have developed spe-
cial-purpose algorithms for MPCC such as the branch-
and-bound method [31], the implicit non-smooth 
approach [32], the piece-wise sequential quadratic 
programming (SQP) method [33], and the perturba-
tion and penalization approach [34] analysed in Ref. 
[35]. Recently, some exciting new developments have 
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programs. Lin and Fukushima [39] have developed a 
hybrid approach with active set identification to com-
pute a solution or a point with some kind of stationarity 
by solving a finite number of non-linear programs. For 
the success of NLP solvers, Leyffer [40] relaxed equiv-
alent condition to replace the usual complementarity 
condition. Through modelling CNDP as MPCC, Ban et 
al. [14] relaxed the strict complementarity condition by 
a relaxation parameter. The relaxed NLP was solved by 
the existing NLP solvers when this parameter was pro-
gressively reduced. Moreover, the relaxation scheme 
proposed in Ref. [14] can guarantee to solve the orig-
inal MPCC successfully under certain conditions [41, 
42]. In addition, Fletcher and Leyffer [43] considered 
solving MPCC as NLP using standard NLP solvers. They 
demonstrated the numerical experience on a large  

demonstrated that the gloomy prognosis about the use 
of transforming MPCC to a well-behaved NLP may have 
been premature. Several algorithms are proposed for 
solving MPCC by transforming it to a well-behaved NLP. 
In particular, Fukushima and Pang [36] considered a 
smoothing continuation method for the mathematical 
programming with equilibrium constraints (MPEC). 
And, under MPEC-linear independence constraint 
qualification and the asymptotic weak non-degener-
acy, they proved that an accumulation point of KKT 
points is a B-stationary point of the original problem 
when it satisfies the second-order necessary condi-
tions for the perturbed problems. Subsequently, sim-
ilar schemes were presented by Scholtes [35] and 
Lin and Fukushima [37, 38]. However, these meth-
ods need to solve an infinite sequence of non-linear  

Table 1 – Some algorithms for solving CNDP

Abbreviation Name of the algorithm Sources  

IOA Iterative optimization-assignment algorithm Allsop [3] 

HJ Hooke–Jeeves algorithm Abdulaal and LeBlanc [5] 

EDO Equilibrium decomposed optimization Suwansirikul et al. [6]  

MINOS Modular in-core nonlinear system Suwansirikul et al. [6] 

BDA Bilevel descent algorithm Kim and Suh [7] 

SA Simulated annealing algorithm Friesz et al. [8] 

SAB Sensitivity analysis-based algorithm Yang and Yagar [9]  

BLABG Bileve linear approximation based on gradient Yang [10]; Gao et al. [11] 

AL Augmented Lagrangian algorithm Meng et al. [12] 

GP Gradient Projection method Chiou [13] 

CG Conjugate gradient projection method Chiou [13] 

QNEW Quasi-Newton projection method Chiou [13] 

PT PARATAN version of gradient projection method Chiou [13] 

RELAX Relaxation method Ban et al.[14]; Wang et al. [15, 16] 

PSO Particle swarm optimization Gao et al. [17] 

GA Genetic algorithm Sumalee [18] 

CSP Conjugate Subgradient Projection Chiou [19] 

PMILP Path based mixed-integer linear program Wang and Lo [20] 

LMILP Link based mixed-integer linear program Luathep et al.[21] 

GOM A global optimization method Li et al. [22]; Liu and Wang [23]

HS Harmony search algorithm Baskan [24]

MODE Modified Differential Evolution Algorithm Baskan and Ceylan [25]

CCA cutting constraint algorithm Wang et al. [26]

DDIA Dimension-Down Iterative Algorithm Liu and Chen [27]

AFW Genetic algorithm and Frank-Wolfe (FW) algorithm Sun [28]
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       a!A, δa
n=-1 if node lies at the entrance of link  

       a!A, and δa
n=0 otherwise. To ensure  

       feasibility, assume that there exists at least 
       one directed path for every OD pair in the  
       network
Ew     - vector indicating the origin and the  
       destination for OD pair w!W, and has  
       exactly two non-zero components: one has  
       value 1 in the component corresponding  
       the origin node of OD pair w, and the other  
       has value of -1 in the component for the  
       destination
b      - relative weight of the investment cost on  
       the link capacity expansion and total  
       system travel time in the objective function,  
       or the dual variable for the budget  
       constraint ,g y B

,
ij ij

i j A
#

!

^
^

h
h
/ where B is the  

       value of the predetermined budget for 
       network capacity expansion.

Next, some assumptions used in this paper are 
presented as follows [6]: 
1) The link travel time function tij(vij,yi),(i,j)!A is strict-

ly increasing and continuously differentiable with 
respect to the link flow vij,(i,j)!A, for any fixed link 
capacity expansion yij,(i,j)!A. 

2) The link travel time function tij(vij,yi),(i,j)!A and  
,

, ,y
t v y

i j A
ij

ij ij ij
2

2
!

^ ^h h are all continuous with re-

spect to (vij,yij). 
3) The capacity expansion cost function gij(yij),(i,j)!A 

is continuously differentiable with respect to yij.

2.2 Reformulation of traffic assignment 
problem

Using the above notations, the set containing all 
feasible flow distributions for the network, Ω, in terms 
of link-flow can be described as follows: 

( ) , ,

, , ,

v v v x x E d
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ij ij ij
w w w

w
w W

w
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w

/
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&

,
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Ω is a bounded polyhedron because it is comprised of 
a set of linear equality constraints [21]. Here, travellers 
are assumed to use the Wardrop’s UE to describe their 
route choice behaviour in the transportation network 
[47]. Within each OD pair, a traveller chooses a route 
to minimize their travel cost. Here, the NCP is used to 
represent this UE condition. In the link-flow feasible re-
gion, Ω, the NCP problem describing UE is to find v and  
ρw ("node potential" in Ref. [48]) such that 

, ,
, ,

t v y x
i j A w W

0 0ij ij ij
w

i
w

j ij
w=
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^
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h
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collection of MPCC test problems, called by MacMPEC, 
to indicate the suitability of SQP methods for solving 
MPCC and its out-performance over interior-point solv-
ers regarding speed and reliability. In this paper, the 
complementarity constraint in MPCC is substituted 
by a non-smooth equation U(v,xw,y,ρw)=0 using Fisch-
er-Burmeister (FB) function {FB proposed in Ref. [44]. 
Then, the Φ is smoothed by introducing a parameter-
ization W(v,xw,y,ρw,θ) that is differentiable if the scalar 
θ is non-zero but coincides with Φ when θ =0 [45]. 
Consequently, the standard NLP solvers such as LIN-
DOGLOBAL in GAMS [46] can solve the problem reli-
ably and efficiently. Finally, the numerical experiments 
on the example from the references demonstrate the 
feasibility of our model and algorithm. 

This paper is organized as follows. An MPCC formu-
lation describing CNDP model is presented in Section 
2. Section 3 discusses the algorithm for the proposed 
MPCC model. Section 4 provides numerical exper-
iments on the example from the references to show 
the feasibility of the MPCC model with the algorithm. 
Finally, conclusion is given in Section 5. 

2. PROBLEM FORMULATION
2.1 Notations

In this section, the notations are stated: 
G=(N,A) - transportation network with nodes  
       and links
N     - set of nodes in G, where N={1,2,...,n} and  
       n denotes the node
A      - set of links in G, where (i,j)!A denotes the 
       link, i,j!N
W     - set of OD pairs, and w!W denotes the OD 
       pair
yij     - incremental capacity on expanded link  
       (i,j)!A, and y=(yij),(i,j)!A denotes the  
       incremental capacity vector
lij, uij   - lower and upper bounds for capacity  
       expansion of link (i,j)!A, respectively. and  
       l=(lij), u=(uij),(i,j)!A
gij(yij)   - cost of incremental capacity, yij, on  
       expanded link (i,j)!A, and g=(gij),(i,j)!A
dw     - travel demand between the OD pair w!W, 
       and the OD demands are given and fixed in  
       this paper 
xij

w     - flow of link (i,j)!A on the OD pair w!W, and  
       xw=(xij

w),(i,j)!A, w!W
vij     - aggregate flow on link (i,j)!A, v=(vij), (i,j)!A
tij(vij,yi)  - link travel time function on link (i,j)!A
/					  - node-link incidence matrix associated with 
       the network, where 
       

1with if node lies at the exit of link
n
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where z=(v,xw,y,ρw)
Now, let us focus on solving the MPCC Problem 6.

3. SOLUTION ALGORITHM
Here, function {:R2→R is called an NCP-func-

tion if {(a,b)=0,ab=0,a≥0,b≥0. One popular 
choice of an NCP-function is the FB function [44]: 

( , )a b a b a bFB
22{ + += - . The FB function has many 

interesting properties that {FB is a convex NCP-func-
tion and differentiable on R2 expect the origin, and {2

FB 
is continuously differentiable on R2 [50]. FB function 
has been used to solve the traffic equilibrium problem 
[51, 52]. By using {FB, the complementarity constraint  
0≤r ┴ s≥0 can be equivalently transformed into the follow-
ing non-smooth equation: , .r s r s r sFB

2 2{ = + - +^ h
Then, using the smooth function, 
( , , ) ,a b a b a bFB

2 2 2{ i i= + - + + for FB function {FB, 
the {FB(r,s) is smoothed by introducing a parameter-
ization W(r,s,θ) that is differentiable if the scalar θ is 
non-zero but coincides with Φ when θ=0 [45]. The 
introduction of the smoothing parameter θ has three 
consequences [53]: non-smooth problems are trans-
formed into smooth problems, except when θ=0; 
well-posedness can be improved in the sense that fea-
sibility and constraint qualifications, hence stability, 
are often more likely to be satisfied for all values of 
θ; and the solvability of quadratic approximation prob-
lems is improved. Therefore, the smooth and approx-
imate equation for the complementarity constraint is 
obtained as follows: , , r sr s r s 2 22i iW += + - +^ h .

Hence, Model 3 for CNDP formulated as MPCC can 
be transformed into the following smooth and approx-
imate problem: 

, ,
( )
( )
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z s
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We define Ω(θ)={(r,s)|W(r,s,θ)=0}. We analyse the 
convergence of the smoothing perturbation-based ap-
proach by demonstrating the convergence of Ω(θ) to 
Ω(0) as θ→0.
Theorem: For Ω(θ)={(r,s,)|W(r,s,θ)=0}, we have 
lim 0

0
iX X=

"i
^ ^h h  

Proof: For any , ,limsupr s
0

! iX
"i

^ ^h h  then there exist 

θk→0 and (rk,sk)!Ω(θk) such that (rk,sk)→ (r,s). 
(rk,sk)!Ω (θk) implies 

, , .r s r s r s 0k k k k k k k k2 2 2
i iW = + - + + =^ ^ ^ ^h h h h

Thus, we have
, , ,r s r s r s r s0 0FB

2 2{ W= + - += =^ ^h h  

where symbol "┴" is the "perp" operator such that  
a ┴ b,aTb. The complementarity constraint [30] re-
quires a product of two non-negative variables to be 
zero, consequently making their values complementa-
ry, i.e. when one variable is positive, the other must be 
zero. It is also possible for both variables to be zero, a 
case in which the complementarity condition does not 
hold strictly [49].

2.3 The MPCC formulation for the continuous 
network design problem

In this research, the objective of the CNDP is to 
minimize the sum of the total system travel time and 
the investment cost to expand the link capacity, while 
route choice behaviour of travellers follows UE de-
scribed by NCP. The CNDP model can be formulated as 
the following MPCC: 

,
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For simplicity, the following notations are intro-
duced. 
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, , ( , ) ,
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Then, Problem 3 can be simplified into the follow-
ing form: 

,
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Let us rewrite Problem 5 in the following form:

,
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Otherwise, set ek+1=l ek and k=k+1, then go to Step 2. 
Step 4: Solution Report

The optimal solution is (v*,xw,y*,ρw*)=z* and the ob-
jective function value is f*=f(zk). 

4. NUMERICAL EXAMPLES

4.1 The 16-link network example

In this subsection, the 16-link network, which was 
first presented by Harker and Friesz [54], is chosen 
as the numerical example. The network has been  
extensively tested in the CNDP literatures such as Ref. 
[6, 8, 12, 13, 14, 20, 21]. As shown in Figure 1, the 16-
link network consists of two OD pairs, six nodes and   
links. All input information by Suwansirikul et al. [6] for 
the test network is presented in Table 2. The travel de-
mand of (1,6) is assumed to be d, which is half of that 
for (6,1). 

In this paper, the numerical experiments consist of 
three parts. In the first part, we compare the optimal 
solutions and the objective function values by our pro-
posed algorithm with those by other algorithms in lit-
erature. In the second part, we present the results for 
the test network with different OD demand to make fur-
ther test on our model and algorithm. In the last part, 
we consider the total investment cost for link capacity 

from θ→0 and (rk,sk)→ (r,s). That is, (r,s)!Ω(0).
Therefore we have limsup 0

0
1iX X

"i
^ ^h h

For any (r,s)!Ω(0), let I+={i|riz>}, J+={i|si>0},  
I0={1,2,...,|A|}\(I+,J+), where |A| is the number of 
links in the transportation network G.
For any θ>0, (ri(θ), si(θ)) is defined by 

( ( ), ( ))
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Then , ,r s r s r s 0i iii
22 2
ii iiW = + - + =+^ h  for 

i=1,2,...,|A| and equivalently , ,r s 0i i iW =^ ^ ^h h h or  
, .r s !i i iX^ ^ ^ ^h hh h

Obviously ((r(θ),s(θ))→(r,s) and this implies that 
.liminf 0

0
2iX X

"i
^ ^h h Therefore Ω(θ)→ Ω(0) as θ→0.

Hence, the solution to the problem (7) converges 
to the solution the model (3) as θ→0.

Consequently, the standard NLP solvers to obtain 
the global solution such as BARON, COIN-OR, LINDO-
GLOBAL, LGO, MSNLP and OQNLP in GAMS [46] can 
be used to deal with Problem 7 reliably and efficiently. 
The steps of algorithm to solve Model 3 are as follows: 
Step 1: initialization
The parameters are set as follows: θ0>θ,e1,e2>0 the 
iteration limit M, l!(0,1). 
Step 2: Major Iteration
Solve the current relaxed problem (7) for θ=θk. The ob-
tained solution is zk. 
Step 3: Stop Condition
If k≥M, stop and go to Step 4. Otherwise, compute   

z
z z

k

k k1 -+
and 

z
f z z

f k

k k1 -+^
^
^h
h
h . If 

z
z z

k

k k1

1# f
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or 
f z

f z z
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2# f
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^
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h , stop and go to Step 4.
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Figure 1 – The 16-link network

Table 2 – Parameters in the 16-link network

Link (i,j) Aij Bij Kij dij Link (i,j) Aij Bij Kij dij

1 1.0 10.0 3.03.0 2.0 9 2.0 8.0 45.0 2.0

2 2.0 5.0 10.0 3.0 10 3.0 3.0 3.0 5.0

3 3.0 3.0 9.0 5.0 11 9.0 2.0 2.0 6.0

4 4.0 20.0 4.0 4.0 12 4.0 10.0 6.0 8.0

5 5.0 50.0 3.0 9.0 13 4.0 25.0 44.0 5.0

6 2.0 20.0 2.0 1.0 14 2.0 33.0 20.0 3.0

7 1.0 10.0 1.0 4.0 15 5.0 5.0 1.0 6.0

8 1.0 1.0 10.0 3.0 16 6.0 1.0 4.5 1.0

t A B K y
v

ij ij ij
ij ij

ij 4
= + +b l f t d y

,
ij ij ij

i j A
$= +

!

^
^

h
h
/
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algorithm nearly equals that of RELAX. The difference 
in the objective function values between our algorithm 
and RELAX is less than 0.02%. 

In the second part of the experiments, the model 
is solved under different OD demand cases. The link 
capacity expansion with different d of CNDP is shown 
in Table 4. The upper bound of capacity expansion for 
each link under these cases are also different. 

It is obvious that the objective function values in-
crease with the increase of d. From Table 4, it can be 
seen that the links y6 and y16 are the most necessary 
ones, whose link capacity should be enhanced. And, 
y6 reaches the largest link capacity expansion when 
d=25,30,35,40,45,50. The capacity improvement on 
link y16 reaches the largest link capacity expansion 
when d=10,15,30.

In the third part of the experiment, the objec-
tive function only considers the total travel times, 
i.e. ,T v t v y

,
ij ij ij ij

i j A
=

!

^
^

h
h
/ , while the total investment 

cost to expand the link capacity is considered as a con-
straint, i.e. g y B

,
ij ij

i j A
#

!

^
^

h
h
/ , where B is the value of 

predetermined budget for total investment on link ca-
pacity expansions. Therefore, the model is solved with 
different values of B. Table 5 presents the link capac-
ity expansions for the different B of CNDP. The upper 
bound of capacity expansion for each link under these 
cases is identical. 

It is obvious that the total travel times decrease as 
the value of predetermined budget for the total invest-
ment cost of link capacity expansions increases. While 
links y6 and y16 are also the targets to enhance link ca-
pacity expansions for decreasing the total travel times.

However, links y6 and y16 cannot be selected to en-
hance the link capacity expansions when the value of 
predetermined budget for total investment cost of link 
capacity expansions is large enough, such as when 
B=350,400,450,500.

expansion as a constraint by removing it from the ob-
jective function to be a constraint function. Then, the 
model is solved with different values of predetermined 
budget for total investment on link capacity expansion. 
In these experiments, a personal computer with Intel 
Core i5, 3.20 GHz CPU, 4.00 GB RAM, and Windows XP 
operating system was used for all numerical tests. In 
addition, GAMS23.5.2 and our familiar LINDOGLOBAL 
solver was used for solving the smooth approximate 
problems [46]. In numerical experiments, the initial 
parameters are chosen as follows: θ0=1, e1=1e-4, 
e2=1e-6, M=15, l=0.2. 

In the first part of the experiments, we compare our 
proposed algorithm with those in the references. A low 
travel demand level with d=5 and a high travel demand 
level with d=10 are considered for the tests, which are 
the same as those in references. Table 3 presents the 
results of the link capacity expansions under the low 
and high travel demand cases, respectively obtained 
by our proposed algorithm and those in the previous 
studies. Notice that the upper bound of capacity ex-
pansion for each link in these two cases is different. 
The links with zero capacity expansions under all algo-
rithms are not presented in tables for the purpose of 
space saving. 

For the case with low travel demand, the objective 
function value 199.625 achieved by our algorithm is 
higher than that by SA, CG, QNEW and LMILP. Among 
all the previous models, SA, which is regarded to pro-
duce the global optimal solution [54], achieves the 
lowest objective function value 198.10378 . From the 
value, we can see that the objective function value ob-
tained by our algorithm is very close to that obtained 
by the SA method. The difference in the objective func-
tion values between our algorithm and SA is less than  
8%. For the case with high travel demand, the objective 
function value 522.723 by our algorithm is only higher 
than that by RELAX. The objective function value by our 

Table 4 – The results with different OD demand for test network

Link d=5 d=10 d=15 d=20 d=25 d=30 d=35 d=40 d=45 d=50

y2 4.600 10.950 19.114 26.478 33.608 41.035 48.429 55.736 63.065  

y3 9.911 16.744 20.146 22.740 25.952 35.873 42.424 48.986 55.546  

y6 5.195 7.379 17.842 34.839 50.000 60.000 70.000 80.000 90.000 100.000  

y8 0.584 5.353 11.120 16.449 21.647 27.009 32.353 37.649 42.957  

y9 1.398 6.069 20.602 30.159 39.749 49.331  

y12 5.243 15.135 25.902 35.492 38.154 44.301 50.432 56.567  

y14 1.313 11.832 22.614 33.280 43.911 54.587 65.257 75.914 86.575  

y15 1.499 30.131 32.895 9.603 46.919 53.916 60.924 67.929  

y16 7.596 20.000 30.000 15.722 26.015 60.000 37.738 43.608 49.471 55.337  

f 199.625 522.723 937.702 1,378.497 1,797.937 2,216.156 2,643.823 3,066.105 3,488.883 3,911.537  

Note: The lower bound of y is set as 0. And, the upper bound of y is set as 2d with different d.
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4.2 Sioux Falls network example

To further test the performance of our proposed 
algorithm, we have chosen the Sioux Falls network 
(shown in Figure 2) as another example. This network 
consists of 24 nodes, 76 links and 552 OD pairs. A 
subset containing 10 links (16, 17, 19, 20, 25, 26, 29, 
39, 48, 74) was chosen for capacity improvement. The 
link cost function with the corresponding parameters 
and the OD demand are presented in Tables 6 and 7 
[6]. The experimental environment and the parame-
ters are adopted as the same as those in Subsection 
4.1. We have computed the Sioux Falls network by our 
proposed algorithm and compared the obtained solu-
tion with the corresponding objective function values 
with those by other algorithms in literature, which are 
presented in Table 8. Notice that the upper bound of 
capacity expansion for each link is 25.0. The links with 
zero capacity expansions under all algorithms are not 
presented in tables for space saving. 

Table 6 – The link cost function and parameters in Sioux Falls network

Link (i,j) Tij bij τij Link (i,j) Tij bij τij
1 and 3 0.06 25.9002 33 and 36 0.06 4.9088
2 and 5 0.04 23.4035 34 and 40 0.04 4.8765
4 and 14 0.05 4.9582 37 and 38 0.03 25.9002
6 and 8 0.04 17.1105 39 and 74 0.04 5.0913 34.00
7 and 35 0.04 23.4035 41 and 44 0.05 5.1275
9 and 11 0.02 17.7828 42 and 71 0.04 4.9248
10 and 31 0.06 4.9088 45 and 57 0.04 15.6508
12 and 15 0.04 4.9480 46 and 67 0.04 10.3150
13 and 23 0.05 10.0000 49 and 52 0.02 5.2299
16 and 19 0.02 4.8986 26.00 50 and 55 0.03 19.6799
17 and 20 0.03 7.8418 40.00 53 and 58 0.02 4.8240
18 and 54 0.02 23.4035 56 and 60 0.04 23.4035
21 and 24 0.10 5.0502 59 and 61 0.04 5.0026
22 and 47 0.05 5.0458 62 and 64 0.06 5.0599
25 and 26 0.03 13.9158 25.00 63 and 68 0.05 5.0757
27 and 32 0.05 10.0000 65 and 69 0.02 5.2299
28 and 43 0.06 13.5120 66 and 75 0.03 4.8854
29 and 48 0.05 5.1335 48.00 70 and 72 0.04 5.0000
30 and 51 0.08 4.9935 73 and 76 0.02 5.0785

, .t v y T b y
v

1 0 15ij ij ij ij
ij ij

ij 4
= + +^ bh l; E , , y yf v t v y g

,
ij ij

A
ij ij ij ij ij

i j
ij

2x= =
!

^ ^
^

h h
h
/

Table 5 – The results with different values of predetermined budget for test network

Link B=50 B=100 B=150 B=200 B=250 B=300 B=350 B=400 B=450 B=500
y2 4.752 0.669 4.828 6.830 9.228 8.510 10.083 11.602 13.121  
y3 5.559 10.122 13.512 10.308 13.102 15.569 21.176 23.742 26.219 28.696  
y6 6.661 7.425 12.340 7.796 7.437 6.779
y8 0.694 0.765 2.199 3.936 3.416 4.556 5.657 6.758  
y9 2.851 6.471 10.091  
y12 2.236
y14 1.533 7.398 1.760 4.556 8.045 6.998 9.291 11.507 13.722  
y15 19.623 22.603 25.237 31.225 33.966 36.611 39.256  
y16 15.542 21.029 28.013 0.867 0.682 0.322
T 503.131 422.732 412.131 358.165 323.783 305.510 296.214 283.724 275.193 269.196  

Note: The lower bound of y is set as 0; and the upper bound of y is set as 40
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城市交通连续均衡网络设计问题的MPCC模型及其平
滑化算法

摘要

城市交通连续均衡网络问题是在考虑道路出行

者服从传统Wardrop用户均衡选择路径的基础上最

小化交通网络的总出行时间和道路扩充成本的和。

本文应用非线性互补问题描述用户平衡准则从而建

立带有互补约束的数学规划模型(MPCC)描述城市道

路交通连续均衡网络设计问题。MPCC中的互补约束

使得标准非线性规划的约束规格在该问题的可行域

上不再成立，所以求解MPCC难度很大。本文首先应

用Fischer-Burmeister (FB)函数构造非平滑方程

组以代替MPCC中的互补约束条件。然后引入参数来

平滑化该FB 函数，从而得到的平滑的FB 函数。这

样，MPCC 就可以转化为平滑的非线性规划问题。

因而，我们采用GAMS中标准的非线性求解器LINDO-

GLOBAL等求解松弛的非线性规划问题，得到原MPCC 

模型的最优解。最后我们用两个网络验证了本文的

模型和算法。

关键词
城市交通网络; 连续交通网络设计问题； 带有互补
约束的数学规划问题； 非线性互补问题； 用户均衡

5. CONCLUSION
In this paper, MPCC has been modelled to describe 

the CNDP by describing UE as NCP. We have substi-
tuted the complementarity constraint in MPCC by a 
smoothed equation by introducing parameterization 
W. Therefore, MPCC is transformed into a well-be-
haved non-linear program (NLP), which can be solved 
by LINDOGLOBAL in GAMS because W is differentiable 
if the scalar θ is non-zero but coincides with U when 
θ=0. The numerical experiments on the 16-link net-
work show that our proposed algorithm can obtain 
good solutions under the lower and high-level demand 
cases compared to other algorithms. We have also 
demonstrated the results about the link capacity en-
hancement under different OD demand cases and the 
value of predetermined budget for total investment on 
link capacity expansions. The Sioux Falls network is 
also presented to further demonstrate the feasibility 
of our proposed algorithm.
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Table 8 – The obtained results by different algorithms

Link IOA HJ EDO SA SAB AL GP CG QNEW PT LMILP This 
paper

y16 4.6875 4.8 4.59 5.38 5.7392 5.5728 5.4277 4.7691 5.3052 5.0237 5.362 5.906
y17 3.9063 1.2 1.52 2.26 5.7182 1.6343 5.3235 4.8605 5.0541 5.2158 2.057 2.502
y19 1.2695 4.8 5.45 5.50 4.9591 5.6228 1.6825 3.0706 2.4415 1.8298 5.486 5.906
y20 1.6599 0.8 2.33 2.01 4.9612 1.6443 1.6761 2.6836 2.5442 1.5747 1.895 2.502
y25 2.3331 2.0 1.27 2.64 5.5066 3.1437 2.8361 2.8397 3.9328 2.7947 2.556 2.940
y26 2.3438 2.6 2.33 2.47 5.5199 3.2837 2.7288 2.9754 4.0927 2.6639 2.618 2.940
y29 5.5651 4.8 0.41 4.54 5.8024 7.6519 5.7501 5.6823 4.3454 6.1879 3.741 3.360
y39 4.6862 4.4 4.59 4.45 5.5902 3.8035 4.9992 4.2726 5.2427 4.9624 4.551 4.955
y48 5.4688 4.8 2.71 4.21 5.8439 7.3820 4.4308 4.4026 4.7686 4.0674 3.741 3.360
y74 6.2500 4.4 2.71 4.67 5.8662 3.6935 4.3081 5.5183 4.0239 3.9199 4.489 4.955
T 77.516 76.324 80.068 75.632 73.401 74.623 77.536 76.051 76.534 77.748 75.973 75.030
B’ 6.604 5.079 3.132 5.487 10.796 8.743 6.483 6.629 6.456 6.295 4.910 5.500
f 84.121 81.402 83.200 81.119 84.197 83.366 84.019 82.679 82.990 84.043 80.883 80.530
f’ 87.34 81.25 83.47 80.87 84.21 81.752 82.57 82.53 83.07 82.57 - -

Note: The lower bound of y is set as 0; and, the upper bound of y is set as 25. f is the objective function values from the Ref. [21].  f’ is the 
objective function value from reference. B’ is the value of the investment on adding link capacity.
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