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Abstract. One class of linear multistep methods for solving the Cauchy problems of the
form y′ = F (x, y), y(x0) = y0, contains Adams-Bashforth rules of the form yn+1 = yn +

h
∑

k−1
i=0 B

(k)
i

F (xn−i, yn−i), where {B
(k)
i

}k−1
i=0 are fixed numbers. In this paper, we propose

an idea for a weighted type of Adams-Bashforth rules for solving the Cauchy problem for
singular differential equations,

A(x)y′ +B(x)y = G(x, y), y(x0) = y0,

where A and B are two polynomials determining the well-known classical weight functions
in the theory of orthogonal polynomials. Some numerical examples are also included.
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1. Introduction

In this paper, we present an idea for constructing weighted Adams-Bashforth rules
for solving Cauchy problems for singular differential equations.

There are two main approaches to increase the accuracy of a numerical method
for ordinary non-singular differential equations. In the first approach (i.e., multistep
methods), the accuracy is increased by considering previous information, while in
the second one (i.e., multistage methods or more precisely Runge-Kutta methods),
the accuracy is increased by approximating the solution at several internal points.

Multistep methods were originally proposed by Bashforth and Adams [2] (see
also [1, 3, 4]), where the approximate solution of the initial value problem

dy

dx
= F (x, y), y(x0) = y0, (1)
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is considered as

yn+1 = yn + h

k−1∑

i=0

B
(k)
i F (xn−i, yn−i). (2)

Many years later, Moulton [12] (see also, [3, 4]) developed a class of implicit
multistep methods, the so-called Adams-Moulton methods,

yn+1 = yn + h
k−1∑

i=−1

α
(k)
i F (xn−i, yn−i), (3)

which have some better characteristics than the previous ones.

The unknown coefficients B
(k)
i and α

(k)
i in relations (2) and (3) are chosen in

such a way that they have the highest possible accuracy order. These formulas are
indeed special cases of the so-called linear multistep methods denoted by

yn =

k1∑

j=1

ηjyn−j + h

k2∑

i=0

γiF (xn−i, yn−i).

Other special cases of linear multistep methods were derived by Nyström and
Milne [1, 4]. The idea of Predictor-Corrector methods was proposed by Milne [4] in
which yn is predicted by the Adams-Bashforth methods and then corrected by the
Adams-Moulton methods.

It is not fair to talk about linear multistep methods without mentioning the
name of Germund Dahlquist. In 1956, he [6] established some basic concepts such
as consistency, stability and convergence in numerical methods and showed that if
a numerical method is consistent and stable, then it is necessarily convergent.

However, it should be noted that the above-mentioned methods are valid only
for non-singular problems of type (1). In other words, if equation (1) is considered
as an initial value problem on (a, b) in the form

A(x)y′ = H(x, y), y(a) = y0, (4)

such that

A(a) = 0 or A(b) = 0,

then it is no longer possible to use usual Adams-Bashforth methods or other numer-
ical techniques. For this purpose, in this paper, we gave an idea for using a weighted
Adams-Bashforth rule.

For constructing these weighted rules we use a similar procedure as in the case of
non-weighted formulas. Therefore, in Section 2, we give a short account of construct-
ing the usual Adams-Bashforth methods by using linear difference operators and the
backward Newton interpolation formula. Such a procedure is applied in Section 3
for obtaining the weighted rules. By introducing the weighted local truncation error
of such rules, we determine their order. Finally, in order to illustrate the efficiency
of such weighted rules, we give some numerical examples in Section 4.
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2. Computing the usual Adams-Bashforth methods

In this section, we obtain the explicit forms of the coefficients {B
(k)
i }k−1

i=0 in (2) using
the backward Newton interpolation formula for F (x, y) = F (x, y(x)) at equidistant
nodes xn−ν = xn − νh, ν = 0, 1, . . . , k− 1, and in the next section we apply such an
approach in order to get the corresponding weighted type of Adams-Bashforth meth-
ods. Here we use standard linear difference operators ∇ (the backward-difference
operator), E (the shifting operator), and 1 (the identity operator), defined by

∇f(x) = f(x)− f(x− h), Ef(x) = f(x+ h) and 1f(x) = f(x).

Since Eλ = (1−∇)−λ, we have

Eλ =

+∞∑

ν=0

(−1)ν
(
−λ

ν

)
∇ν =

+∞∑

ν=0

(λ)ν
ν!

∇ν , (5)

where

(λ)ν = λ(λ + 1) · · · (λ+ ν − 1) =
Γ(λ+ ν)

Γ(λ)

is Pochhammer’s symbol. Assuming Fn−ν ≡ F (xn−ν , y(xn−ν)) for ν = 0, 1, . . . , k−1
and taking the first k terms of (5) for x = xn + λh we get

F (x, y(x)) = EλFn =

k−1∑

ν=0

(λ)ν
ν!

∇νFn + rk(Fn), (6)

where rk(Fn) denotes the corresponding error term. Using (6) we have

k−1∑

ν=0

(λ)ν
ν!

∇νFn =
k−1∑

ν=0

(λ)ν
ν!

ν∑

i=0

(−1)i
(
ν

i

)
E−iFn

=

k−1∑

i=0

(
(−1)i

i!

k−1∑

ν=i

(λ)ν
(ν − i)!

)
Fn−i =

k−1∑

i=0

C
(k)
i (λ)Fn−i, (7)

where λ = (x− xn)/h and

C
(k)
i (λ) =

(−1)
i

i!

k−1∑

ν=i

(λ)ν
(ν − i)!

= (−1)i
(λ)i
i!

(
λ+ k − 1

k − 1− i

)
, (8)

because, based on induction, we have

k∑

ν=i

(λ)ν
(ν − i)!

=
k−1∑

ν=i

(λ)ν
(ν − i)!

+
(λ)k

(k − i)!

= (λ)i

(
λ+ k − 1
k − 1− i

)
+ (λ)i

(
λ+ k − 1
k − i

)
= (λ)i

(
λ+ k
k − i

)
.
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Now, integrating (1) over (xn, xn+1) and approximating F (x, y) by its backward
Newton interpolation polynomial (7) yield

y(xn+1)− y(xn) =

∫ xn+1

xn

F (x, y)dx ≈ h

k−1∑

i=0

B
(k)
i Fn−i, (9)

where

B
(k)
i =

∫ 1

0

C
(k)
i (λ)dλ =

(−1)i

i!

∫ 1

0

(λ)i

(
λ+ k − 1

k − 1− i

)
dλ. (10)

Table 1 shows the values B
(k)
i in (2) for k = 2, 3, . . . , 8.

k 2 3 4 5 6 7 8

B
(k)
0

3
2

23
12

55
24

1901
720

4277
1440

198721
60480

16083
4480

B
(k)
1 − 1

2 − 4
3 − 59

24 − 1387
360 − 2641

480 − 18637
2520 − 1152169

120960

B
(k)
2

5
12

37
24

109
30

4991
720

235183
20160

242653
13440

B
(k)
3 − 3

8 − 637
360 − 3649

720 − 10754
945 − 296053

13440

B
(k)
4

251
720

959
480

135713
20160

2102243
120960

B
(k)
5 − 95

288 − 5603
2520 − 115747

13440

B
(k)
6

19087
60480

32863
13440

B
(k)
7 − 5257

17280

Table 1: The coefficients of usual Adams-Bashforth formulae

By assuming that all previous values yn−i, i = 0, 1, . . . , k − 1, are exact, i.e.,
yn−i = y(xn−i), i = 0, 1, . . . , k − 1, (9) gives the k-step method (2). This k-step
method, known also as the kth-order Adams-Bashforth method, can be written in
the form

yn+k − yn+k−1 = h

k−1∑

j=0

β
(k)
j Fn+j ,

where β
(k)
j = B

(k)
k−1−j , j = 0, 1, . . . , k − 1.

According to (6), the local truncation error of this method at the point xn+k ∈
[a, b] can be expressed in the form

(Th)n+k =
y(xn+k)− y(xn+k−1)

h
−

k−1∑

j=0

β
(k)
j y′(xn+j) =

∫ 1

0

rk(Fn+k−1)dλ, (11)

where x 7→ y(x) is the exact solution of the Cauchy problem (1). If y ∈ Ck+2[a, b],
then (11) can be expressed as (cf. [7, pp. 409–410])

(Th)n+k = Cky
(k+1)(ξk)h

k = Cky
(k+1)(xn)h

k + O(hk+1), (12)



On weighted Adams-Bashforth rules 131

where xn < ξk < xn+k−1. In the simplest case (k = 1), we have the well-known
Euler method, yn+1 − yn = hFn. The so-called error constants Ck in the main term

of the local truncation error for k = 1, 2, 3, 4 and 5 are

C1 =
1

2
, C2 =

5

12
, C3 =

3

8
, C4 =

251

720
, C5 =

95

288
, (13)

respectively. Details on multistep methods, including convergence, stability and
estimation of global errors en = yn − y(xn), can be found in [4, 7, 11].

Remark 1. These coefficients B
(k)
i can also be expressed in terms of the first kind

Stirling numbers S(n, k), which are defined by

n−1∏

i=0

(x− i) =

n∑

k=0

S(n, k)xk,

(see [5, 8, 9, 13]). Namely, for each k ∈ N, coefficients (10) can be explicitly repre-
sented in terms of the first kind Stirling numbers as

B
(k)
i =

k−1∑

ν=i




ν∑

j=0

(−1)j

j + 1
S(ν, j)

(−1)νν! +
ν∑

j=1

ij(j + 1)S(ν + 1, j + 1)




, i = 0, 1, . . . , k − 1. (14)

3. Weighted type of Adams-Bashforth methods

In this section, we study the Cauchy problem for a special type of differential equa-
tions of the first order given on a finite interval, on a half line or on the real line, which
can be considered, without loss of generality, as (−1, 1), (0,+∞), and (−∞,+∞).
Thus, we consider the following initial value problem on (a, b)

A(x)y′ +B(x)y = G(x, y), y(x0) = y0, (15)

where A and B are two polynomials determining the well-known classical weight
functions in the theory of orthogonal polynomials (cf. [10, p. 122]). Such polynomials
and weight functions are given in Table 2, where α, β, γ > −1.

(a, b) w(x) A(x) B(x)
(−1, 1) (1− x)α(1 + x)β 1− x2 β − α− (α+ β + 2)x
(0,+∞) xγe−x x γ + 1− x

(−∞,+∞) e−x2

1 −2x

Table 2: Classical weight functions and corresponding polynomials A and B

Let again {xk} be a system of equidistant nodes with the step h, i.e., xk =
x0 + kh ∈ [a, b].
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Since the differential equation of the weight function is as (cf. [10, p. 122])

(Aw)′ = Bw,

after multiplying by w(x), our initial value problem (15) becomes

A(x)w(x)y′ +B(x)w(x)y = w(x)G(x, y), y(x0) = y0,

which is equivalent to

(A(x)w(x)y)′ = w(x)G(x, y), y(x0) = y0. (16)

Now, integrating from both sides of (16) over [xn, xn+1] yields

A(xn+1)w(xn+1)y(xn+1)−A(xn)w(xn)y(xn) =

∫ xn+1

xn

w(x)G(x, y)dx. (17)

Let x = xn+λh. Similar to relations (6), (7) and (9), the right-hand side of (17)
can be written in the form

∫ xn+1

xn

w(x)G(x, y)dx = h

∫ 1

0

w(xn + λh)

{
k−1∑

ν=0

(λ)ν
ν!

∇νGn + rk(Gn)

}
dλ, (18)

and approximated as

∫ xn+1

xn

w(x)G(x, y)dx ≈ h

∫ 1

0

w(xn + λh)

k−1∑

ν=0

(λ)ν
ν!

(
ν∑

i=0

(−1)i
(
ν

i

)
Gn−i

)
dλ

= h

k−1∑

i=0

(
(−1)i

i!

k−1∑

ν=i

1

(ν − i)!

∫ 1

0

w(xn + λh)(λ)νdλ

)
Gn−i

= h

k−1∑

i=0

B
(k)
i (h, xn)Gn−i,

where

B
(k)
i (h, xn) =

∫ 1

0

w(xn + λh)C
(k)
i (λ)dλ, (19)

Gn−i ≡ G(xn−i, y(xn−i)), C
(k)
i (λ) is given by (8) and rk(Gn) is the error term in

the corresponding backward Newton interpolation formula for G(x, y) = G(x, y(x))
at equidistant nodes xn−i = xn − ih, i = 0, 1, . . . , k − 1. Hence, the approximate
form of (17) becomes

A(xn+1)w(xn+1)y(xn+1)− A(xn)w(xn)y(xn) = h
k−1∑

i=0

B
(k)
i (h, xn)Gn−i, (20)

where the coefficients B
(k)
i (h, xn) depend on h and xn. As in the case of the

standard Adams-Bashforth methods, by assuming that all previous values yn−i,
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i = 0, 1, . . . , k − 1, are exact, i.e., yn−i = y(xn−i), i = 0, 1, . . . , k − 1, (20) gives our
weighted k-step method

A(xn+1)w(xn+1)yn+1 −A(xn)w(xn)yn = h

k−1∑

i=0

B
(k)
i (h, xn)Gn−i, n ≥ k − 1, (21)

where Gn−i ≡ G(xn−i, yn−i), i = 0, 1, . . . , k − 1.

The mentioned dependence of the coefficients B
(k)
i (h, xn) on the stepsize h and

xn makes these methods fundamentally different from the standard ones.
Similarly to (11), we can here define the corresponding weighted local truncation

error at the point xn+k ∈ [a, b] as

(Tw
h )n+k =

{
1

h
[A(xn+k)w(xn+k)y(xn+k)−A(xn+k−1)w(xn+k−1)y(xn+k−1)]

−

k−1∑

j=0

B
(k)
k−j−1(h, xn+k−1)G(xn+j , y(xn+j))

}
1

A(xn+k)w(xn+k)
,

where x 7→ y(x) is the exact solution of the Cauchy problem (15).
Then, according to (17), with n := n+ k− 1, and using (18) and (20), we obtain

(Tw
h )n+k =

1

A(xn+k)w(xn+k)h

∫ xn+k

xn+k−1

w(x)rk(Gn+k−1)dx.

The first term omitted in the summation on the right-hand side in (18) is a good
approximation of the truncation error. We will call this quantity the main term of

the truncation error and denote by (T̂w
h )n+k.

Proposition 1. Let the exact solution of the singular Cauchy problem (15) be suffi-

ciently smooth, as well as the function x 7→ g(x) = G(x, y(x)). Then, the main term

of the truncation error at the point xn+k can be expressed in the form

(T̂w
h )n+k =

hkg(k)(ξk)

A(xn+k)w(xn+k)

∫ 1

0

(
λ+ k − 1

k

)
w(xn+k−1 + λh)dλ, (22)

where

g(k)(x) = A(x)y(k+1)+[B(x) + kA′(x)] y(k)+k
[
B′(x)+

1

2
(k−1)A′′(x)

]
y(k−1) (23)

and xn−1 < ξk < xn+k−1.

Proof. According to (18), we have

(T̂w
h )n+k =

∇kGn+k−1

A(xn+k)w(xn+k)k!

∫ 1

0

w(xn+k−1 + λh)(λ)kdλ,

where the factor in front of the integral can be expressed in terms of divided differ-
ences as (cf. [7, p. 410])

∇kgn+k−1

k!
= hk [xn+k−1, xn+k−2, . . . , xn−1] g.
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On the other hand, supposing that the function x 7→ g(x) = G(x, y(x)) is suffi-
ciently smooth, we can write

[xn+k−1, xn+k−2, . . . , xn−1] g =
g(k)(ξk)

k!
,

where ξk is between the smallest and the largest of these points. In order to calculate
these derivatives,

g′(x) =
∂G

∂x
+

∂G

∂y
y′, g′′(x) =

∂2G

∂x2
+

[
2
∂2G

∂x∂y
+

∂2G

∂y2
y′
]
y′ +

∂G

∂y
y′′, etc.

we use the relation g(x) = G(x, y(x)) = A(x)y′(x) + B(x)y(x). Since A(x) is a
polynomial of degree at most two and B(x) is a polynomial of first degree, these
derivatives can be calculated much simpler for each k ≥ 0 in the form (23).

In this way, we obtain (22).

Formally, (22) is of the same form as (12), i.e., Ckg
(k)(ξk)h

k, where

Ck = Ck(h, xn) =
1

A(xn+k)w(xn+k)

∫ 1

0

(
λ+ k − 1

k

)
w(xn+k−1 + λh)dλ

and g(k) is given by (23). In the case of standard Adams-Bashforth methods, Ck are
the error constants given by (13) and they are independent of the stepsize h and xn.
Also, instead of g(k), there is only the derivative y(k+1) in (12). Because of these
differences, the actual order of the weighted methods can be reduced (see examples
in Section 4).

In the sequel, we consider the three cases given previously in Table 2.

3.1. Case (a, b) = (−1, 1)

Consider the Cauchy problem of Jacobi type

(1− x2)y′ + (β − α− (α+ β + 2)x) y = G(x, y), y(x0) = y0,

where xn = x0 + nh ∈ (−1, 1).
In this case, relation (20) is reduced to

yn+1 = d(h, xn)yn + h
k−1∑

i=0

D
(k)
i (h, xn)Gn−i, (24)

where

d(h, xn) =
A(xn)w(xn)

A(xn+1)w(xn+1)
=

(1− xn)
α+1(1 + xn)

β+1

(1− xn+1)α+1(1 + xn+1)β+1

and

D
(k)
i (h, xn) =

1

A(xn+1)w(xn+1)

∫ 1

0

w(xn + λh)C
(k)
i (λ)dλ.
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Putting

c(h, xn) =
(1− xn)

α(1 + xn)
β

(1− xn+1)α+1(1 + xn+1)β+1

and

Φ
(k)
i (h, xn) =

∫ 1

0

(1− xn − λh)
α
(1 + xn + λh)

β
C

(k)
i (λ)dλ, (25)

rule (24) can be simplified as

yn+1 = c(h, xn)

(
(1− x2

n)yn + h

k−1∑

i=0

Φ
(k)
i (h, xn)Gn−i

)
. (26)

In the special (Legendre) case α = β = 0, (25) is reduced to

Φ
(k)
i (h, xn) =

∫ 1

0

C
(k)
i (λ)dλ = B

(k)
i , (27)

whereB
(k)
i are the same coefficients as for standard (non-weighted) Adams-Bashforth

formulas given by (10).

3.2. Case (a, b) = (0,∞)

Now, consider the Cauchy problem of Laguerre type

xy′ + (γ + 1− x)y = G(x, y), y(x0) = y0,

in which xn = nh for n = 0, 1, . . ., and the main relation (20) is reduced to the
corresponding equation (24) with

d(h, xn) =
A(xn)w(xn)

A(xn+1)w(xn+1)
= eh

(
xn

xn+1

)γ+1

,

and

D
(k)
i (h, xn) =

B
(k)
i (h, xn)

A(xn+1)w(xn+1)
=

eh

xγ+1
n+1

∫ 1

0

(xn + λh)
γ
e−λhC

(k)
i (λ)dλ.

In other words, we have

D
(k)
i (h, xn) = x−(γ+1)

n d(h, xn)Φ
(k)
i (h, xn),

such that

Φ
(k)
i (h, xn) =

∫ 1

0

(xn + λh)
γ
e−λhC

(k)
i (λ)dλ. (28)

Hence, the relation corresponding to (20) takes the form

yn+1 = eh
(

xn

xn+1

)γ+1

yn +
ehh

xγ+1
n+1

k−1∑

i=0

Φ
(k)
i (h, xn)Gn−i. (29)
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Note that when γ = 0, the coefficients (28) are independent of xn and

Φ
(k)
i (h, xn) = Φ

(k)
i (h) =

∫ 1

0

e−λhC
(k)
i (λ)dλ. (30)

For instance, for k = 1(1)5 and i = 0, 1, . . . , k − 1, relation (30) gives

k = 1 :

Φ
(1)
0 (h) =

1− e−h

h
;

k = 2 :

Φ
(2)
0 (h) =

1 + h− e−h(1 + 2h)

h2
,

Φ
(2)
1 (h) = −

1− e−h(1 + h)

h2
;

k = 3 :

Φ
(3)
0 (h) =

2 + 3h+ 2h2 − e−h(2 + 5h+ 6h2)

2h3
,

Φ
(3)
1 (h) = −

2(1 + h)− e−h(2 + 4h+ 3h2)

h3
,

Φ
(3)
2 (h) =

2 + h− e−h(2 + 3h+ 2h2)

2h3
;

k = 4 :

Φ
(4)
0 (h) =

6 + 12h+ 11h2 + 6h3 − 2e−h(3 + 9h+ 13h2 + 12h3)

6h4
,

Φ
(4)
1 (h) = −

2(3 + 5h+ 3h2)− e−h(6 + 16h+ 19h2 + 12h3)

2h4
,

Φ
(4)
2 (h) =

6 + 8h+ 3h2 − 2e−h(3 + 7h+ 7h2 + 4h3)

2h4
,

Φ
(4)
3 (h) = −

2(3 + 3h+ h2)− e−h(6 + 12h+ 11h2 + 6h3)

6h4
;

k = 5 :

Φ
(5)
0 (h) =

12 + 30h+ 35h2 + 25h3 + 12h4 − e−h(12 + 42h+ 71h2 + 77h3 + 60h4)

12h5
,

Φ
(5)
1 (h) = −

2(12 + 27h+ 26h2 + 12h3)− e−h(24 + 78h+ 118h2 + 107h3 + 60h4)

6h5
,

Φ
(5)
2 (h) =

12 + 24h+ 19h2 + 6h3 − e−h(12 + 36h+ 49h2 + 39h3 + 20h4)

2h5
,

Φ
(5)
3 (h) = −

2(12 + 21h+ 14h2 + 4h3)− e−h(24 + 66h+ 82h2 + 61h3 + 30h4)

6h5
,

Φ
(5)
4 (h) =

12 + 18h+ 11h2 + 3h3 − e−h(12 + 30h+ 35h2 + 25h3 + 12h4)

12h5
.
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Remark 2. According to (30), it is clear that lim
h→0

Φ
(k)
i (h) = B

(k)
i , i = 0, 1, . . . , k−1,

where B
(k)
i are the coefficients of standard (non-weighted) Adams-Bashforth formu-

las given by (10).

Remark 3. Consider the Cauchy-Laguerre problem xy′+(1−x)y = y (i.e., G(x, y) =
y), which is simplified as

y′ = y, y(0) = 1,

with the exact solution y = ex. Considering the simplest method (for k = 1) gives

yn+1 =
eh

1 + h
xn

(
yn +

h

xn
Φ

(1)
0 (h)Gn

)
=

eh

xn+1

(
xnyn + (1− e−h)G(xn, yn)

)
.

Now, substituting xn = nh in the above relation yields

yn+1 =
(1 + nh)eh − 1

(n+ 1)h
yn, with y0 = 1.

For example, we have

y1 =
eh − 1

h
, y2 =

(1 + h)eh − 1

2h
·
eh − 1

h
,

y3 =
(1 + 2h)eh − 1

3h
·
(1 + h)eh − 1

2h
·
eh − 1

h
,

or, in general,

yn =

n∏

ν=1

[1 + (ν − 1)h]eh − 1

νh
.

The method is convergent, i.e.,

lim
n → +∞

(nh = x = const)

yn = lim
n→+∞

n∏

ν=1

[
1 + (ν − 1)

x

n

]
ex/n − 1

νx

n

= ex. (31)

In order to prove (31) we define a sequence {an}n∈N by

an =

n∑

ν=1

log





[
1 + (ν − 1)

x

n

]
ex/n − 1

νx

n





n

and apply the well known Stolz-Cesàro theorem. Namely, if we prove the convergence

lim
n→+∞

an − an−1

n− (n− 1)
= lim

n→+∞

log





[
1 +

(
1−

1

n

)
x

]
ex/n − 1

x





n

= L,
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then the limit lim
n→+∞

an
n

also exists and it is equal to L. Since

1

x

{[
1 +

(
1−

1

n

)
x

]
ex/n − 1

}
= 1+

x

n
+O(n−2),

we conclude that L = log ex = x. Therefore, we obtain (31), because

lim
n→+∞

an
n

= lim
n→+∞

n∑

ν=1

log





[
1 + (ν − 1)

x

n

]
ex/n − 1

νx

n





= lim
n→+∞

log





n∏

ν=1

[
1 + (ν − 1)

x

n

]
ex/n − 1

νx

n



 = x.

3.3. Case (a, b) = (−∞,∞)

Now, consider the Cauchy problem of Hermite type

y′ − 2xy = G(x, y), y(x0) = y0,

in which xn = x0 + nh ∈ (−∞,∞) and the main relation (20) is reduced to the
corresponding equation (24) with

d(h, xn) =
e−x2

n

e−x2
n+1

= ex
2
n+1−x2

n = eh(2xn+h),

and

D
(k)
i (h, xn) =

B
(k)
i (h, xn)

e−x2
n+1

= ex
2
n+1

∫ 1

0

e−(xn+λh)2C
(k)
i (λ)dλ.

In other words, we have D
(k)
i (h, xn) = d(h, xn)Φ

(k)
i (h, xn), such that

Φ
(k)
i (h, xn) =

∫ 1

0

e−(2xnλh+λ2h2)C
(k)
i (λ)dλ.

Hence, the relation corresponding to (20) takes the form

yn+1 = eh(2xn+h)

(
yn +

k−1∑

i=0

Φ
(k)
i (h, xn)Gn−i

)
. (32)

Remark 4. As in the case of non-weighted methods, in applications of these meth-
ods for k > 1, we need the additional starting values yi = si(h), i = 1, . . . , k − 1,
such that lim

h→0
= y0 (cf. [11, pp. 32–36]).
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4. Numerical examples

In order to illustrate the efficiency of our method, in this section we give two nu-
merical examples for singular Cauchy problems on (0,∞) and (−1, 1). In particu-
lar, the weighted Adams-Bashforth methods with respect to the standard Laguerre
weight given in Subsection 3.2 have the simplest form and they can find adequate
application in solving weighted singular Cauchy problems. The third case when
(a, b) = (−∞,∞) is not interesting for applications because equation (15) is not
singular in a finite domain.

Example 1. We first consider a singular Cauchy problem

(1− x2)y′ − 3xy =
y2
((
1− x2

)
tan(x) + 4x+ 1

)
sec(x)

x− 1
, y(−1) = 2 cos 1.

Here,

G(x, y) =
y2
((
1− x2

)
tan(x) + 4x+ 1

)
sec(x)

x− 1
+ xy

and the exact solution of this problem is given by y(x) = (1− x) cos x.
In order to solve the problem for x ∈ [−1, 0], we apply the k-step method (26),

with α = β = 0 (Legendre case) and Φ
(k)
i (h, xn) given by (27). For the sake of

simplicity, in the case k > 1, for starting values we use the exact values. Otherwise,
some other ways must be applied (see Remark 4).

Relative errors obtained by this k-step method when k = 1, 2, . . . , 5, for h = 0.02
and h = 0.01, are displayed in log-scale in Figures 1 and 2, respectively.

1.0 0.8 0.6 0.4 0.2 0.0

10 8

10 5

10 2

k =1

k= 5

k=4

k=3

k =2

Figure 1: Relative errors for methods (26) in Example 1 for h = 0.02 and k = 1, 2, . . . , 5

We consider now the actual errors, |yn+k − y(xn+k)| at a fixed point x = xn+k

obtained by using the k-step method (26) for different stepsize h and different k. We
take x = −0.5 and h = 0.05, 0.02 and 0.01. The corresponding errors are presented
in Table 3. Numbers in parentheses indicate decimal exponents.

Note that the effect of reducing the step-size h to the accuracy of the solution is
greater if k is higher. Assuming an asymptotic relation in the form

e(h, k, x) = |yhn+k − y(xn+k)| ≈ Ckh
αk , (33)
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1.0 0.8 0.6 0.4 0.2 0.. 0
10 9

10 7

10 5

0.001

0.100

k=1

k=2

k=3

k=4

k=5

Figure 2: Relative errors for methods (26) in Example 1 for h = 0.01 and k = 1, 2, . . . , 5

h k = 1 k = 2 k = 3 k = 4 k = 5
0.05 2.27(−1) 1.14(−1) 4.76(−3) 6.68(−5) 1.45(−5)
0.02 4.10(−1) 7.87(−2) 1.20(−3) 1.18(−5) 6.89(−7)
0.01 5.46(−1) 5.77(−2) 4.21(−4) 2.57(−6) 6.34(−8)

Table 3: Absolute errors in the obtained sequences {yn+k}n at the point x = xn+k = −0.5, using
the k-step method (26) for k = 1, 2, . . . , 5 and h = 0.05, 0.02 and 0.01

where xn+k = −1 + (n + k)h = x = const, and Ck and αk are some constants, we
can calculate the following quotient for two different steps h1 and h2,

e(h1, k, x)

e(h2, k, x)
≈

(
h1

h2

)αk

.

Therefore,

αk =
log(e(h1, k, x)/e(h2, k, x)

log(h1/h2)
. (34)

These values are presented in Table 4 for h1/h2 = 2 and h1/h2 = 5. As we can
see, the obtained values for the exponents αk are very similar in these two cases.

h1/h2 α1 α2 α3 α4 α5

2 −0.41 0.45 1.51 2.20 3.44
5 −0.54 0.42 1.51 2.02 3.38

Table 4: The parameters αk obtained from (34) for k = 1, 2, . . . , 5 and different stepsizes

As we can see, the actual order of the method is reduced approximately for one
order of magnitude. This effect is mentioned in Section 3 after Proposition 1.

Example 2. Here we consider again the Cauchy problem of Jacobi type

(1− x2)y′ − 2xy = 1− x− 4x2 − 5x3 + xy, y(−1) = 1,
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whose exact solution is y(x) = x2+x+1. According to Proposition 1, in this simple
case, we have

g(x) = G(x, y(x)) = −4x3 − 3x2 + 1,

as well as

g′(x) = −12x2 − 6x, g′′(x) = −24x− 6, g′′′(x) = −24, g(iv)(x) = 0.

Now, we apply the k-step method (26) for k = 1(1)4, h = 0.05 and h = 0.01 (see
Tables 5 and 6), and for starting values (when k > 1) we use the exact values of the
solution. In these tables, we only give the relative errors of the obtained values for
x = −0.9,−0.8,−0.7,−0.6,−0.5 (m.p. is machine precision).

x k = 1 k = 2 k = 3 k = 4
−0.9 5.62(−2) 5.09(−3)
−0.8 4.88(−2) 6.37(−3) 3.17(−4) m.p.
−0.7 4.37(−2) 7.03(−3) 4.46(−4) m.p.
−0.6 3.80(−2) 7.29(−3) 5.62(−4) m.p.
−0.5 3.18(−2) 7.23(−3) 6.42(−4) m.p.

Table 5: Relative errors in the obtained approximate sequences {yn+k}n using k-step methods (26)
for k = 1(1)4 and h = 0.05

x k = 1 k = 2 k = 3 k = 4
−0.9 9.81(−3) 2.61(−4) 3.19(−6) m.p.
−0.8 9.19(−3) 2.82(−4) 3.92(−6) m.p.
−0.7 8.37(−3) 2.94(−4) 4.53(−6) m.p.
−0.6 7.33(−3) 2.96(−4) 5.11(−6) m.p.
−0.5 6.15(−3) 2.89(−4) 5.62(−6) m.p.

Table 6: Relative errors in the obtained approximate sequences {yn+k}n using k-step methods (26)
for k = 1(1)4 and h = 0.01

As in Example 1, we consider asymptotic relation (33) at x = xn+k = −0.5,
when k = 1, 2, 3 and h1 = 0.05 and h2 = 0.01. The values of the corresponding
exponent (34) are presented in Table 7.

k k = 1 k = 2 k = 3
h1/h2 = 5 α1 = 1.00 α2 = 2.00 α3 = 2.94

Table 7: The parameters αk obtained from (34) for k = 1, 2, 3 and h1/h2 = 5

As we can see, in this polynomial case, there is not previously mentioned defect
in the order. Note that the local truncation error (22) is equal to zero for each k ≥ 4,
because of g(k)(x) = 0. Also, we see that the actual errors in Tables 5 and 6 for
k = 4 are on the level of machine precision.
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Example 3. Now we consider the Cauchy problem of Laguerre type

xy′ + (1− x)y =
3x2 + 1

(x2 + 1)2
e−xy2, y(0) = 1,

whose exact solution is y = (x2 + 1)ex. We apply the k-step method (29) for
k = 1(1)6. The corresponding relative errors for h = 0.05 are given in Table 8, and
for h = 0.01 in Table 9. In these tables, we only give relative errors of the obtained
values for x = 0(0.1)1. As in Example 1, for starting values we use the exact values
of solution.

x k = 1 k = 2 k = 3 k = 4 k = 5 k = 6
0.1 5.66(−2) 3.74(−3)
0.2 1.18(−1) 1.43(−2) 7.17(−4) 1.89(−5)
0.3 1.81(−1) 2.62(−2) 1.62(−3) 7.55(−5) 2.89(−6) 6.33(−8)
0.4 2.45(−1) 3.94(−2) 2.62(−3) 1.32(−4) 5.83(−6) 2.39(−7)
0.5 3.08(−1) 5.42(−2) 3.76(−3) 1.98(−4) 9.39(−6) 4.16(−7)
0.6 3.70(−1) 7.10(−2) 5.10(−3) 2.74(−4) 1.33(−5) 6.11(−7)
0.7 4.30(−1) 9.01(−2) 6.66(−3) 3.63(−4) 1.79(−5) 8.48(−7)
0.8 4.88(−1) 1.11(−1) 8.49(−3) 4.67(−4) 2.33(−5) 1.11(−6)
0.9 5.42(−1) 1.35(−1) 1.06(−2) 5.88(−4) 2.95(−5) 1.42(−6)
1.0 5.93(−1) 1.62(−1) 1.31(−2) 7.29(−4) 3.67(−5) 1.77(−6)

Table 8: Relative errors in the obtained sequences {yn+k}n using k-step methods (29) for k =
1, 2, . . . , 6 and h = 0.05

x k = 1 k = 2 k = 3 k = 4 k = 5 k = 6
0.1 5.26(−2) 1.86(−3) 2.63(−5) 2.92(−7) 2.97(−9) 2.85(−11)
0.2 1.05(−1) 4.17(−3) 6.20(−5) 7.37(−7) 8.17(−9) 8.70(−11)
0.3 1.58(−1) 6.73(−3) 1.02(−4) 1.23(−6) 1.39(−8) 1.51(−10)
0.4 2.12(−1) 9.66(−3) 1.47(−4) 1.80(−6) 2.04(−8) 2.24(−10)
0.5 2.67(−1) 1.31(−2) 2.00(−4) 2.45(−6) 2.80(−8) 3.09(−10)
0.6 3.23(−1) 1.71(−2) 2.63(−4) 3.23(−6) 3.70(−8) 4.10(−10)
0.7 3.80(−1) 2.18(−2) 3.38(−4) 4.16(−6) 4.76(−8) 5.28(−10)
0.8 4.35(−1) 2.73(−2) 4.26(−4) 5.25(−6) 6.02(−8) 6.67(−10)
0.9 4.89(−1) 3.38(−2) 5.30(−4) 6.53(−6) 7.49(−8) 8.32(−10)
1.0 5.41(−1) 4.12(−2) 6.51(−4) 8.03(−6) 9.22(−8) 1.02(−9)

Table 9: Relative errors in the obtained sequences {yn+k}n using k-step methods (29) for k =
1, 2, . . . , 6 and h = 0.01

Using Proposition 1 we determine the main term of the truncation error at the
point xn+k = x, for example, when h = 0.01 and x = 0.5.

Since

∫ 1

0

(
λ+ k − 1

k

)
e−(x−h+λh)dλ = e−xQk, Qk =

1

k!

∫ 1

0

(λ)ke
−(λ−1)hdλ,
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we first calculate the values: Q1 = 0.501671, Q2 = 0.41792, Q3 = 0.376058, Q4 =
0.34955, Q5 = 0.330639, and Q6 = 0.316389. The corresponding derivatives

g(k)(x) = xy(k+1) + (k + 1− x)y(k) − ky(k−1)

are

g′(x) = ex
(
3x2 + 6x+ 1

)
, g′′(x) = ex

(
3x2 + 12x+ 7

)
,

g′′′(x) = ex
(
3x2 + 18x+ 19

)
, g(iv)(x) = ex

(
3x2 + 24x+ 37

)
,

g(v)(x) = ex
(
3x2 + 30x+ 61

)
, g(vi)(x) = ex

(
3x2 + 36x+ 91

)
,

where ξk ∈
(
x− (k + 1)h, x− h

)
, k = 1, 2, . . . , 6.

Now, taking x = xn+k = (n + k)h = 0.5, h = 0.01, and ξk = x − h = 0.49 in

(22), we obtain an approximation of the main term (T̂w
h )n+k in the form

(T̂w
h )n+k ≈

hkg(k)(x− h)Qk

x
, k = 1, 2, . . . , 6,

whose numerical values for k = 1, 2, . . . , 6, after dividing by y(0.5) = 2.0609, are:
3.70(−2), 9.00(−4), 1.70(−5), 2.74(−7), 4.00(−9), 5.48(−11), respectively. As ex-
pected, the actual global errors from Table 9 (the row referring to x = 0.5) are larger
compared to the corresponding local truncation errors.

x α1 α2 α3 α4 α5 α6

0.5 0.08 0.95 1.92 2.87 3.81 4.75
1.0 0.05 0.93 1.94 2.90 3.86 4.80

Table 10: The parameters αk obtained from (34) for k = 1, 2, . . . , 6 and h1/h2 = 2 at two points
x = 0.5 and x = 1.0.

Finally, as in Example 1, we assume the behavior of the actual errors in the form
(33), where xn+k = (n + k)h = x = const. We compare actual errors obtained for
h1 = 0.02 and h2 = 0.01 at two points x = 0.5 and x = 1.0. The results for αk,
k = 0, 1, . . . , 6 are presented in Table 10. As we can see, the obtained values of the
exponents αk at these points are very close, but again with a defect of one order in
its magnitude!
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