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Generalized perspectives of functions of several variables
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Abstract. In this paper, we introduce the notion of multivariate generalized perspectives
and verify the necessary and sufficient conditions for operator convexity (resp. concavity)
of this notion. We also establish the crossing of the multivariate generalized perspective of
regular operator mappings under completely positive linear maps and partial traces.
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1. Introduction and preliminaries

Effros [4] considered the case where each pair in the argument of the perspective
function consists of commuting operators and proved in this way that the perspec-
tive of an operator convex function is operator convex as a function. A fully non-
commutative perspective of the one variable function f defined in [3] by setting

Pf(A,B) = B1/2f(B−1/2AB−1/2)B1/2

and the generalized perspective of two variables (associated with f and h) defined
by

Pf∆h(A,B) = h(B)1/2f(h(B)−1/2Ah(B)−1/2)h(B)1/2,

where A is a self-adjoint operator and B is a strictly positive operator on a Hilbert
space H with spectra in the closed interval I containing 0. Note that the identity
Pf∆h(A,B) = Pf (A, h(B)) expresses the generalized perspective in terms of the
non-commutative perspective. The main results of [4] are generalized in [3] for the
non-commutative case and the necessary and sufficient conditions for joint convex-
ity (resp. concavity) of the perspective and generalized perspective functions are
provided. As an application of these results, Nikoufar et al. [10] gave the simplest
proof of Lieb concavity and Ando convexity theorem (see also [11, 12, 1]).

Hansen [6] introduced the notion of regular operator mappings of several variables
generalizing the notion of the spectral function of Davis for functions of one variable.
Then, he generalized the notion of the perspective of a regular mapping of several
variables and defined the geometric mean for any number of operator variables.
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Zhang [13] established operator concavity (resp. convexity) of some functions of two
or three variables by using the perspectives of the regular operator mappings of one
or several variables and specified operator concavity (resp. convexity) of the Fréchet
differential mapping associated with some functions.

Let B(H) and B(H)sa be the C∗-algebra of all bounded linear operators and the
C∗-subalgebra of all self–adjoint bounded linear operators on a Hilbert space H,
respectively. The notion of a regular mapping generalizes the notion of the spectral
function of Davis for functions of one variable, the notion of the regular matrix
mapping of two variables [8], and the notion of the regular operator mapping of
two variables [5, Definition 2.1]. In [6, Definition 2.1], Hansen defined this notion
as follows. Let F : Dn −→ B(H) be a mapping of n variables defined in a convex
domain Dn ⊆ B(H)sa×. . .×B(H)sa. Then, F is regular if the domain Dn is invariant
under unitary transformations of H and

F (u∗x1u, . . . , u
∗xnu) = u∗F (x1, . . . , xn)u

for every (x1, . . . , xn) ∈ Dn and every unitary u on H. For mutually orthogonal pro-
jections p and q acting on H and arbitrary n-tuples (x1, . . . , xn) and (y1, . . . , yn) of
operators inDn such that the compressed tuples (px1p, . . . ,pxnp) and (qy1q, . . . ,qynq)
are in the domain Dn, the n-tuple of diagonal block matrices (px1p+qy1q, . . . , pxnp+
qynq) is also in the domain Dn and

F (px1p+ qy1q, . . . , pxnp+ qynq) = pF (px1p, . . . , pxnp)p+ qF (qy1q, . . . , qynq)q.

Denote by D+
n the positive convex domain of strictly positive operators A1, . . . , An

acting on a Hilbert space H. Let F : D+
n −→ B(H) be a regular mapping. The

perspective mapping PF of n+ 1 variables is the mapping

PF (A1, . . . , An, B) = B1/2F (B−1/2A1B
−1/2, . . . , B−1/2AnB

−1/2)B1/2

defined in the domain D+
n+1 for strictly positive operators A1, . . . , An and B acting

on a Hilbert space H.
In Section 2, we define multivariate generalized perspectives and prove a sub-

homogeneous form of Jensen’s inequality for regular operator mappings of several
variables. This leads us under some conditions to demonstrate the multivariate
generalized perspectives are operator convex (resp. concave). In Section 3, we
declare the crossing of the multivariate generalized perspective of regular operator
mappings through completely positive linear maps and partial traces.

2. Multivariate generalized perspectives

In this section, we define the multivariate generalized perspective of regular operator
mappings of several variables. We confirm a sub-homogeneous form of Jensen’s
inequality for regular operator mappings of several variables. We apply this to prove
operator convexity (resp. concavity) of the multivariate generalized perspectives.
For other works on operator functions of several variables see [13] and references
therein.
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We know that the perspective of an operator convex function is operator con-
vex as a function of two variables [3, Theorem 2.2]. Hansen proved a similar re-
sult for a regular mapping of n operator variables [6]. Since PF (A1, . . . , An, 1) =
F (A1, . . . , An), we confirm that the converse of this result is also true.

Theorem 1. Let F : D+
n −→ B(H) be a regular mapping. The perspective PF is

operator convex if and only if F is operator convex.

Corollary 1. Let F : D+
n −→ B(H) be a regular mapping. If F is operator convex

(resp. concave), then PF is jointly subadditive (resp. superadditive).

Proof. We observe that PF is positively homogenous in the sense that

PF (αA1, . . . , αAn, αB) = αPF (A1, . . . , An, B)

for α > 0. Let {Ai1, Ai2, . . . , Ain} and {B1, B2, . . . , Bn} be two sequences of strictly
positive operators on a Hilbert space H for i = 1, .., n. According to Theorem 1 and
operator convexity of F , we have

PF

(

n
∑

i=1

Ai1, . . . ,

n
∑

i=1

Ain,

n
∑

i=1

Bi

)

= PF

(

(n+ 1)

n
∑

i=1

1

n+ 1
Ai1, . . . , (n+ 1)

n
∑

i=1

1

n+ 1
Ain, (n+ 1)

n
∑

i=1

1

n+ 1
Bi

)

= (n+ 1)PF

(

n
∑

i=1

1

n+ 1
Ai1, . . . ,

n
∑

i=1

1

n+ 1
Ain,

n
∑

i=1

1

n+ 1
Bi

)

≤ (n+ 1)
n
∑

i=1

1

n+ 1
PF

(

Ai1, . . . , Ain, Bi

)

=

n
∑

i=1

PF

(

Ai1, . . . , Ain, Bi

)

.

After this, throughout the paper we assume that h is a real valued and continuous
function defined on [0,∞). We say that h is strictly positive if h(A) > 0 for every
A > 0.

Definition 1. Let F : D+
n −→ B(H) be a regular mapping. The generalized perspec-

tive mapping PF∆h (associated with F and h) is the mapping defined in the domain
D+

n+1 by setting

PF∆h(A1, . . . , An, B)

= h(B)1/2F (h(B)−1/2A1h(B)−1/2, . . . , h(B)−1/2Anh(B)−1/2)h(B)1/2

for strictly positive operators A1, . . . , An and B acting on H.
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It should be noted that the identity PF∆h(A1, . . . ,An, B) = PF (A1, . . . ,An, h(B))
declares the generalized perspective in terms of Hansen’s perspective.

In [6] Hansen proved an affine form of Jensen’s inequality for the regular operator
mappings. For our purpose we prove the following sub-homogeneous form of Jensen’s
inequality for the regular operator mappings. A sub-homogeneous form of Jensen’s
inequality for the functions of one variable is proved in [7]. The proof of the following
result is similar to that of [6, Theorem 2.2] (see also [9, Theorem 2.2]) and we omit
it. Here, we state the result for operators T1 and T2 acting on a Hilbert space H
with T ∗

1 T1 + T ∗

2 T2 ≤ 1. In [6, Theorem 2.2] the result is proved for the case where
T ∗

1 T1 + T ∗

2 T2 = 1. We need to apply the following theorem to our main result
Theorem 3.

Theorem 2. Let F : Dn −→ B(H)sa be a convex regular mapping. If F (0, . . . , 0) ≤ 0
and T1, T2 are operators acting on H with T ∗

1 T1 + T ∗

2 T2 ≤ 1, then

F (T ∗

1A1T1 + T ∗

2A
′

1T2, . . . , T
∗

1AnT1 + T ∗

2A
′

nT2)

≤ T ∗

1F (A1, . . . , An)T1 + T ∗

2 F (A′

1, . . . , A
′

n)T2

(1)

for n-tuples (A1, . . . , An) and (A′

1, . . . , A
′

n) in Dn.

In the following theorem, we extend [4, Theorem 3.2] and [3, Theorem 2.5, Corol-
lary 2.6] for the regular mappings of several variables.

Theorem 3. Suppose that h is a strictly positive function on (0,∞) and F : D+
n −→

B(H) is a regular mapping.

(i) If F is operator convex and h is operator concave with F (0, . . . , 0) ≤ 0, then
the generalized perspective mapping PF∆h is operator convex.

(ii) If the generalized perspective mapping PF∆h is operator convex (resp. concave),
then F is operator convex (resp. concave).

(iii) If F (0, . . . , 0) > 0 and the generalized perspective mapping PF∆h is operator
convex (resp. concave), then h is operator convex (resp. concave).

(iv) If F (0, . . . , 0) < 0 and the generalized perspective mapping PF∆h is operator
convex (resp. concave), then h is operator concave (resp. convex).

Proof. (i): Let (A1, . . . , An, B1) and (A′

1, . . . , A
′

n, B2) be in D+
n+1 and 0 ≤ c ≤ 1.

Put B = cB1 + (1− c)B2. Define

T1 = c1/2h(B1)
1/2h(B)−1/2,

T2 = (1− c)1/2h(B2)
1/2h(B)−1/2.

So, T ∗

1 T1+T ∗

2 T2 ≤ 1, by operator concavity of h. From operator convexity of F and
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Theorem 2, we have

PF∆h(cA1 + (1 − c)A′

1, . . . , cAn + (1− c)A′

n, cB1 + (1 − c)B2)

= h(B)1/2F
(

h(B)−1/2(cA1 + (1− c)A′

1)h(B)−1/2, . . . ,

h(B)−1/2(cAn + (1− c)A′

n)h(B)−1/2
)

h(B)1/2

= h(B)1/2F
(

T ∗

1 h(B1)
−1/2A1h(B1)

−1/2T1 + T ∗

2 h(B2)
−1/2A′

1h(B2)
−1/2T2, . . . ,

T ∗

1 h(B1)
−1/2Anh(B1)

−1/2T1 + T ∗

2 h(B2)
−1/2A′

nh(B2)
−1/2T2

)

h(B)1/2

≤ h(B)1/2
(

T ∗

1F (h(B1)
−1/2A1h(B1)

−1/2, . . . , h(B1)
−1/2Anh(B1)

−1/2)T1

+ T ∗

2 F (h(B2)
−1/2A′

1h(B2)
−1/2, . . . , h(B2)

−1/2A′

nh(B2)
−1/2)T2

)

h(B)1/2

= ch(B1)
1/2F (h(B1)

−1/2A1h(B1)
−1/2, . . . , h(B1)

−1/2Anh(B1)
−1/2)h(B1)

1/2

+ (1 − c)h(B2)
1/2F (h(B2)

−1/2A′

1h(B2)
−1/2, . . . ,

h(B2)
−1/2A′

nh(B2)
−1/2)h(B2)

1/2

= cPF∆h(A1, . . . , An, B1) + (1− c)PF∆h(A
′

1, . . . , A
′

n, B2).

(ii): Note that F (A1, . . . , An) =
1

h(1)PF∆h(h(1)A1, . . . , h(1)An, 1). We have

F (cA1 + (1 − c)A′

1, . . . , cAn + (1− c)A′

n)

=
1

h(1)
PF∆h(ch(1)A1 + (1− c)h(1)A′

1, . . . , ch(1)An + (1 − c)h(1)A′

n), 1)

≤
1

h(1)
(cPF∆h(h(1)A1, . . . , h(1)An, 1) + (1− c)PF∆h(h(1)A

′

1, . . . , h(1)A
′

n, 1))

= cF (A1, . . . , An) + (1− c)F (A′

1, . . . , A
′

n).

(iii): It is clear that h(B) = 1
F (0,...,0)PF∆h(0, . . . , 0, B) and so that

h(cB1 + (1− c)B2) =
1

F (0, . . . , 0)
PF∆h(0, . . . , 0, cB1 + (1− c)B2)

≤
c

F (0, . . . ,0)
PF∆h(0, . . . , 0, B1)+

1− c

F (0, . . . , 0)
PF∆h(0, . . . , 0, B2)

= ch(B1) + (1 − c)h(B2).

(iv) The proof is similar to that of (iii).

Remark 1. As a simple consequence of Theorem 3 (i), if F and h are operator
concave with F (0, . . . , 0) ≥ 0, then the generalized perspective mapping PF∆h is
operator concave.

Corollary 2. Suppose that h is a strictly positive function defined on [0,∞) and
F : D+

n −→ B(H) is a regular mapping. Let h be operator concave and positively
homogenous.
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(i) If F is operator convex with F (0, . . . , 0) ≤ 0, then the generalized perspective
mapping PF∆h is jointly subadditive.

(ii) If F is operator concave with F (0, . . . , 0) ≥ 0, then the generalized perspective
mapping PF∆h is jointly superadditive.

Proof. (i): Let {Ai1, Ai2, . . . , Ain} and {B1, B2, . . . , Bn} be two sequences of strictly
positive operators on a Hilbert space H for i = 1, .., n. Since h is positively homoge-
nous, we observe that PF∆h is jointly homogenous. Regarding Theorem 3 (i), Pf∆h

is jointly convex and so

PF∆h

(

n
∑

i=1

Ai1, . . . ,

n
∑

i=1

Ain,

n
∑

i=1

Bi

)

= PF∆h

(

(n+ 1)
n
∑

i=1

1

n+ 1
Ai1, . . . , (n+ 1)

n
∑

i=1

1

n+ 1
Ain, (n+ 1)

n
∑

i=1

1

n+ 1
Bi

)

= (n+ 1)Pf∆h

(

n
∑

i=1

1

n+ 1
Ai1, . . . ,

n
∑

i=1

1

n+ 1
Ain,

n
∑

i=1

1

n+ 1
Bi

)

≤ (n+ 1)

n
∑

i=1

1

n+ 1
PF∆h

(

Ai1, . . . , Ain, Bi

)

=

n
∑

i=1

Pf∆h(Ai1, . . . , Ain, Bi).

(ii): It follows from Remark 1.

Corollary 3. Suppose that h is a strictly positive function defined on [0,∞) and
F : D+

n −→ B(H) is a regular mapping.

(i) If the generalized perspective mapping PF∆h is operator convex (resp. concave)
and F is positively homogenous, then F is jointly subadditive (resp. superad-
ditive).

(ii) If F (0, . . . , 0) > 0, the generalized perspective mapping PF∆h is operator convex
(resp. concave), and h is positively homogenous, then h is subadditive (resp.
superadditive).

(iii) If F (0, . . . , 0) < 0, the generalized perspective mapping PF∆h is operator convex
(resp. concave), and h is positively homogenous, then h is superadditive (resp.
subadditive).

3. Generalized perspectives and completely positive linear

maps

In this section, we study the filtering of the multivariate generalized perspective
of a regular operator mapping through completely positive linear maps and partial
traces.
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Theorem 4. Let Φ : B(H) → B(K) be a completely positive linear mapping between
operators on Hilbert spaces of finite dimensions, and let F : D+

n → B(K) be a convex
regular mapping. Then,

PF∆h(Φ(A1), . . . ,Φ(An),Φ(B)) ≤ Φ(PF∆h(A1, . . . , An, B)) (2)

for operators (A1, . . . , An, B) in D+
n+1, where PF∆h is the generalized perspective

mapping (associated to F and h) and Φ◦h = h◦Φ on the strictly positive operators.

Proof. Due to [9, Theorem 3.1], we get

PF∆h(Φ(A1), . . . ,Φ(An),Φ(B)) = PF (Φ(A1), . . . ,Φ(An), h(Φ(B)))

= PF (Φ(A1), . . . ,Φ(An),Φ(h(B))

≤ Φ(PF (A1, . . . , An, h(B)))

= Φ(PF∆h(A1, . . . , An, B)).

Remark 2. Under the hypotheses of Theorem 4, if F is a concave regular mapping,
then the reverse inequality is valid in (2).

We justify the other conditions under which the reverse inequality in (2) is valid.

Definition 2. Let F : D+
n → B(K) be a mapping. We say that F is n-monotone if it

is monotone on its nth variable, in the sense that if An ≤ Bn, then F (A1, . . . , An) ≤
F (B1, . . . , Bn) for (A1, . . . , An), (B1, . . . , Bn) in D+

n .

Theorem 5. Let Φ : B(H) → B(K) be a completely positive linear mapping between
operators on Hilbert spaces of finite dimensions, and let F : D+

n → B(K) be a concave
regular mapping. If PF is (n+ 1)-monotone and h is concave with h(0) = 0, then

PF∆h(Φ(A1), . . . ,Φ(An),Φ(B)) ≥ Φ(PF∆h(A1, . . . , An, B)). (3)

Proof. Applying [2, Corollary], we get h(Φ(B)) ≥ Φ(h(B)). Since F is concave,
the reverse inequality holds in [9, Theorem 3.1], so that by the (n+1)-monotonicity
property of PF we conclude

PF∆h(Φ(A1), . . . ,Φ(An),Φ(B)) = PF (Φ(A1), . . . ,Φ(An), h(Φ(B)))

≥ PF (Φ(A1), . . . ,Φ(An),Φ(h(B))

≥ Φ(PF (A1, . . . , An, h(B)))

= Φ(PF∆h(A1, . . . , An, B)).

Remark 3. Under the hypotheses of Theorem 5, if F is convex and regular and h

is convex, then the reverse inequality is valid in (3).

We know that for a bipartite system H = H1⊗H2, Tr2A is the partial trace of A
on H1. The function h is the partial trace preserving on H1 if h(Tr2A) = Tr2h(A).
The fact that the partial trace is completely positive leads to the following corollaries.
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Corollary 4. Consider a bipartite system H = H1 ⊗ H2 of Hilbert spaces H1 and
H2 of finite dimensions. If F : D+

n → B(K) is a convex regular mapping and h is
partial trace preserving on H1, then

PF∆h(Tr2A1, . . . , T r2An, T r2B) ≤ Tr2PF∆h(A1, . . . , An, B)

for operators (A1, . . . , An, B) in D+
n+1.

Corollary 5. Consider a bipartite system H = H1 ⊗ H2 of Hilbert spaces H1 and
H2 of finite dimensions and a concave regular mapping F : D+

n → B(K). If PF is
(n+ 1)-monotone and h is concave with h(0) = 0, then

PF∆h(Tr2A1, . . . , T r2An, T r2B) ≥ Tr2(PF∆h(A1, . . . , An, B))

for operators (A1, . . . , An, B) in D+
n+1.
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