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Summary 

To investigate the wave kinematics under the rogue wave crest, a series of experiments 

were performed in 2-D wave tank with the application of PIV technique to measure the 

velocities under the free surface.  Three different prediction methods of linear extrapolation, 

Wheeler stretching, and modified stretching were applied to estimate water wave kinematics 

and compared with PIV experimental results under the highest wave crest of irregular wave 

trains satisfying with rogue wave criteria.  Also, the cut-off frequency dependence for three 

prediction methods was investigated with varying spectral peak frequencies to estimate wave 

kinematics including velocities and accelerations in horizontal and vertical directions.  It was 

suggested that the cut-off frequency for the reasonable prediction of the wave kinematics under 

the rogue wave crest could be chosen three times of spectral peak wave frequency for the linear 

extrapolation and higher frequency than four times of spectral peak wave frequency for Wheeler 

stretching and modified stretching method. 

Key words: rogue wave; wave kinematics; cut-off frequency; linear extrapolation; 

Wheeler stretching; modified stretching 

1. Introduction 

For the last several decades, the damages of many ships and offshore structures have been 

caused of rogue waves which had an exceptional height and abnormal shape.  Two large 

Norwegian bulk ships M/S “Norse Variant” and M/S “Anita” disappeared at the same time at 

the same location [1].  According to the conclusion of the Court of Inquiry, a very large wave 

suddenly broke several hatch covers on deck, and the ships were filled with water and sank 

before any emergency call was given.  The Queen Elizabeth II was struck by a rogue wave of 

29 m wave height in 1995 in the North Atlantic [2].  The Caledonian Star, sailing in the South 

Atlantic in 2001, was hit by a rogue wave estimated to be 30 m, approximately, of wave height.  

The Explorer, on a “semester-at-sea” sailing in the North Pacific, was damaged in January 2005 

when the ship, carrying nearly 1000 people including almost 700 college students, was struck 

by a wave estimated to be 17 m in height.  The wall of water smashed into the bridge of the 180 

m long ship.  These well-built cruise ships suffered a little damage and had a few injuries from 
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the attack of rogue waves [3].  The Norwegian Dawn, a 3 years old 294 m long cruise ship 

carrying more than 2200 passengers and heading back to New York from the Bahamas, was 

pounded by a rogue wave during a storm in April 2005 off the South Carolina coast.  The wave 

reached the 10th deck of the towering ship, and 62 cabins were flooded and some public areas 

were damaged [4].  Offshore platform “Draupner oil rig” in the North Sea have also been meet 

with the rogue wave of 26 m in height measured by an onboard laser, while the surrounding 

waves reached 12 m on January 1, 1995 [5].  MaxWave, a German scientific group, examined 

30,000 worldwide satellite photos taken by the European Space Agency (ESA).  According to 

MaxWave, 10 rogue waves, each larger than 25 m in height, were identified around the globe 

within the three-week research period in 2001 [6]. These rogue waves occur more frequently 

where there are strong currents, such as the Gulf Stream off the eastern coast of North America.  

After Draper [7] suggested using the term “freak waves” and developed a theory for 

application to a real ocean wave spectrum, the terms for waves having exceptional high wave 

height varied as extreme waves, giant waves, mountain waves, rogue waves, etc.  Recently, 

many researchers have used “rogue waves” as academic terms.  Researchers [8, 9] defined 

rogue wave as a wave height exceeding twice of the significant wave height of surrounding 

waves.  Olagnon and Iseghem [10] defined a rogue wave when the wave height was larger than 

two times of significant wave height and the ratio of crest height to significant wave height was 

larger than 1.25. 

The factors of wind-driven waves, currents, ocean bottom topography or inclement 

weather can play a role in rogue wave development.  With the assumption of the linear wave 

theory, rogue waves can be considered as the superposition of a number of independent 

monochromatic waves with different frequencies and directions.  A rogue wave may appear in 

the process of geometrical focusing, dispersion enhancement, and wave-current interactions.   

Kharif et al. [11], and Smith and Swan [12] explained the rogue wave phenomenon with an 

aspect of dispersion enhancement in a random sea.  The combination of the geometrical 

focusing and dispersion enhancement mechanism to form an extreme wave has also been 

examined by Wu and Nepf [13].  Peregrine [14] and Smith [15] investigated the rogue waves 

with the mechanism of wave-current interactions for the Agulhas current in the South Africa 

where strong currents are often observed.  Levrenov [16] described the rogue waves in Agulhas 

with an aspect on the concentration of wave-energy density. 

 Three processes mentioned above are investigated analytically and numerically in the 

framework of weakly nonlinear models like the nonlinear Schrödinger equation, as well as 

researched in the laboratory. Tulin and Waseda [17] observed highly nonlinear waves including 

breaking waves in deep water in a large wave tank.  Trulsen and Dysthe [18, 19] focused on the 

numerical simulation of rogue waves with 3rd and 4th order nonlinear Schrödinger equations 

and provided breather type solutions using the equations suggested by Henderson et al. [20].  

Osborne et al. [21, 22] studied the dynamic behaviour of rogue waves with the numerical model 

and extended to the directional, random oceanic sea states. Lu et al. [23] adopted the wavelet 

analysis method to analyse the rogue waves to the time-frequency energy distribution.  Zhang 

and Soares [24] investigated the ship responses to rogue waves simulated by the nonlinear 

Schrödinger equation. 

Nonlinear wave-wave interaction has been addressed in association with the rogue wave 

formation [25, 26].  Grue [27], and Clamond and Grue [28] performed a fully nonlinear 

numerical simulation of a long time evolution using a two-dimensional localized long wave 

packet.  In a 2-D wave tank, Wu and Yao [29] investigated rogue wave kinematics using a 

combined mechanism of dispersion enhancement and wave-current interaction.  Zou and Kim 

[30] generated a strongly asymmetric wave in the 2-D wave tank by the time series distortion 

to the highest wave in irregular wave train.  Kim and Kim [31] simulated the Draupner rogue 
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wave in the 2-D wave tank with measuring the horizontal particle velocity and the horizontal 

force on a vertical truncated cylinder fixed in the wave.  In the towing tank, Bennett et al. [32] 

provided a technique for experimental modelling of rogue waves using NewWave method. 

In this study, PIV (particle image velocimetry) technique was employed to measure a 

water particle velocity profile under the wave crest, and measured water velocity components 

was verified by comparing with theoretical results of regular waves.  The rogue wave was 

generated with the distortion method applying to the highest wave in irregular wave train of 

JONSWAP spectrum in 2-D wave tank.  The water velocity profiles under rogue wave crests 

were measured by PIV technique, and their local and convective accelerations were calculated 

from consecutive and individual velocity profiles, respectively.  Water kinematics of rogue 

waves were compared with results with three prediction methods of the linear extrapolation, 

Wheeler stretching [33], and the modified stretching [34], and their cut-off frequency 

dependences were investigated on the wave kinematics prediction under wave crests of rogue 

waves. 

2. Experimental setup and technique 

A series of experiments was conducted to measure the water particle velocities of regular 

and irregular water waves in 2-D wave tank which is 35 m long, 0.91 m wide, and 1.22 m deep 

glass-walled flume as shown in Fig 1.  It was equipped with a permeable wave absorbing 1:5.5 

sloped beach having 5% reflection.  Wave maker had a dry-back, hinged flap type and was 

driven by a synchronous servo-motor controlled by a computer and hydrostatically balanced 

using an automatic near constant force and a pneumatic control system.  The set-up is shown 

schematically in Fig. 1, where x is the horizontal coordinate positive in the direction of wave 

propagation from the wave maker and z is positive upward.  Free surface elevations of regular 

and irregular waves were measured at 800 cm from the wave maker, respectively, and the water 

depth in the wave tank was maintained at 90 cm.  

Regular waves having the wave period of 0.9 s were generated with three different wave 

heights (Table 1), and four irregular wave trains using JONSWAP spectrum with a peak 

enhancement factor of 6.5 were generated in 2-D wave tank (Table 2).  The distortion method 

[33] was applied at the highest wave crest in order to increase the maximum height of irregular 

wave trains.  The maximum wave heights of in irregular waves of cases PH3 and PH4 were 

satisfied with the rogue wave criteria listed in Table 2.  

Table 1 Wave parameters of regular waves (HC: Wave crest height, Ht: Wave trough height) 

Case H (cm) HC (cm) Ht (cm) T (s) H/L ka 

PR1 4.17 2.05 -2.12 0.90 0.033 0.104 

PR2 8.13 4.52 -3.61 0.90 0.064 0.202 

PR3 12.29 7.27 -5.02 0.90 0.097 0.305 

Table 2 Wave parameters of irregular waves 

Case HS(cm) TS(s) HMax(cm) HMax / HS HC / HS 

PH1 6.63 1.25 14.11 2.13 1.20 

PH2 7.00 1.27 15.11 2.16 1.22 

PH3 7.43 1.19 16.09 2.17 1.25 

PH4 7.78 1.18 16.36 2.11 1.29 
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The PIV technique was employed to obtain the velocity field of water waves. The PIV 

system and the wavemaker were synchronized by computer A housing a data acquisition board 

(Fig. 1).  Computer B saved wave elevation from the wave gage, and the timing of laser pulses 

and CCD camera were controlled by computer C housing the Programmable-Timing-Unit-

Board.  The digital CCD camera mounted with a 105 mm f/1.8 micro focal lens set at f/2.8 ~ 

4.0 was used to obtain PIV images.  It had 1280  1024 pixels, 6.7 m  6.7 m pixel size, 12 

bit dynamic range, and 8 Hz framing rate.  A pair of images was obtained by the double-

frame/single-pulsed method shown in Fig. 2.  The time difference (dt) between the 1st frame 

and the 2nd frame was adjusted to be about 3~5 ms, which was determined by the maximum 

displacement to be less than a third of the width of the interrogation window size.  The fields 

of view (FOV) sizes were 127  159 mm2 and 172 × 215 mm2 for regular and irregular wave 

conditions, respectively, corresponding to spatial resolutions of 2.01 mm and 2.72 mm between 

every velocity vectors in the interrogation area of 32  32 pixels with 50% overlap.  The 

adaptive multi-pass algorithm was applied to reduce faulty vectors.  Because this method has 

shifted an interrogation area to the location where particles moved, the stronger cross-

correlation can be taken. Once the velocity vectors have been calculated in the interrogation 

area with 50% overlap, spurious false vectors were eliminated by the median filter [36].  The 

left-over empty spaces were filled-up with interpolated vectors and smoothed by a simple 3  

3 smoothing filter to reduce noise. 

 

Fig. 1 Schematic sketch of the experimental set-up 

 
Fig. 2 Pair of images taken by the double-frame/single-pulsed method 

The time series of wave elevation for the case PR2 was shown in Fig. 3, and the root-

mean-square of wave heights (Hrms) were computed for each case of regular waves listed in 

Table 3.  The RMS wave height was obtained by Equation (1), i.e. 
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                         𝐻𝑟𝑚𝑠 = √∑ [𝐻𝑖 − 𝐻𝑚𝑒𝑎𝑛)2   ⁄ 𝑁𝑁
𝑖=1                                                                           (1) 

where Hi represents measured wave height for each wave period, Hmean the average wave 

height of twelve selected regular wave trains, and N the number of selected regular waves to be 

averaged.  The error rate of selected regular waves was calculated by Equation (2). 

                         ERwave(%) = (
𝐻𝑟𝑚𝑠

𝐻𝑚𝑒𝑎𝑛
) × 100                                                                                     (2)                                                            

The total error of the wave generation and the wave elevation measurement system was 

estimated below 1% for all regular wave conditions in Table 3.  

 
Fig. 3 Time series of regular waves for the case PR2, T= 0.9 s, H= 8.13 cm 

Table 3 RMS of wave heights from selected experimental regular waves 

Case PR1 PR2 PR3 

Hrms (cm) 0.01 0.02 0.07 

ERwave(%) 0.21 0.23 0.65 

 

To simulate the rogue wave in the 2-D wave tank, a series of irregular wave trains have 

been generated with JONSWAP spectrum (peak enhancement factor, γ = 6.5).  Two important 

characteristics of the rogue wave were considered for generating the rogue wave in the 2-D 

wave tank instead of in the ocean.  The first characteristic was the wave height to be larger than 

twice of the significant wave height, and the second characteristics was the ratio of crest height 

Hc to significant wave height Hs to be greater than 1.25 [10].  The second characteristic of the 

rogue wave was presenting a strongly asymmetric wave profile which was one of typical 

patterns of highly nonlinear wave.  
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(a) Whole time series for four irregular waves 

 

(b) Wave profiles at highest elevation 

Fig. 4 Time series of four irregular waves 

The distortion method [35] was applied to generate the rogue wave in 2-D wave tank, 

which has three steps of amplitude distortion, time distortion, and crest distortion techniques to 

increase the highest wave height and make a stronger asymmetry wave profile in the irregular 

wave.  Amplitude distortion was intended to increase the crest height and reduce the trough 

height but kept the amplitude spectrum and changed the phase spectrum only.  The time 

distortion made the duration of the trough to be longer and that of the crest to be shorter but its 

local wave period remained.  Crest distortion was employed to move the location of the highest 

wave crest forward, and therefore, the front steepness would be increased.  Fig. 4 showed the 

whole time series of four irregular wave trains and the comparison of strong asymmetric wave 
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profiles.  Wave profiles of the highest wave elevation in cases PH3 and PH4 met the rogue 

wave criteria. Amplitude spectra of cases PH3 and PH4 were presented with respect to the 

spectral peak frequency (p=5.75 rad/s) in Fig. 5, which were going to be referred for the 

investigation of cut-off frequency dependence on the wave kinematics predictions. 

   

(a) Case PH3                                                    (b) Case PH4(left) 

Fig. 5 JONSWAP spectra of rogue waves in 2-D wave tank (p=5.75 rad/s) 

To verify the applicability of PIV technique for the measurement of wave kinematics 

under the wave crest, PIV measurements were applied to obtain instantaneous velocity profiles 

for regular waves, and the mean velocity profiles were calculated with the phase-averaged 

method.  Twelve pairs of images were taken at each phase in one wave length by PIV system.  

The mean velocity was obtained by phase-averaged method from twelve measured 

instantaneous velocities at each phase, i.e., 

      

where Uk was the phase-averaged velocity, 𝑢𝑘
(𝑙)

was the k-component velocity obtained 

from the lth instantaneous velocity measurement, and N the total number of instantaneous 

velocities at that phase. 

The mean velocity profiles were compared with results of the 3rd order Stokes wave 

theory for regular waves of three wave heights.  Horizontal velocity profiles for three regular 

waves were averaged from 12 instantaneous velocity profiles taken at the same phase of each 

wave length and were compared with those of the 3rd order Stokes wave theory under the wave 

crest shown in Fig. 6.  Averaged horizontal velocity profiles normalized by wave phase velocity 

(Vp) were plotted with the respect to the vertical axis normalized by water depth d.  The 

experimental results showed the exponentially increasing horizontal water velocity up to the 

wave crest and agreed well with results of the 3rd order Stokes wave theory for all three regular 

waves. 

                         𝑈𝑘 =
1

𝑁
∑𝑢𝑘

(𝑙)

𝑁

𝑙=1

                                                                                                         (3) 
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Fig. 6 Horizontal velocities under the wave crest of three regular waves 

The RMS horizontal particle velocity was obtained by Equation (4), i.e. 

                         𝑢𝑟𝑚𝑠 = √∑ (𝑈 − 𝑢𝑖) 2  / 𝑁𝑁
𝑖=1                                                                                   (4)   

where U and ui were the phase-averaged velocity and the instantaneous measured 

velocity, respectively, and N the number of selected regular waves. 

z 

Fig. 7 RMS of horizontal water particle velocity field under the wave crest for case PR3 

The root mean square (RMS) values for the case PR3 were presented in Fig. 7, which 

showed the relatively large value near the free surface due to the limitation of PIV technique 

near the boundary.  The error rate of horizontal velocities of selected regular waves was 

estimated with the ratio of urms and the maximum velocity which was within 2% except very 

near the free surface region.  
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The total acceleration are made of local and convective accelerations in Equations (5) and 

(6). 

  

  

where du/dt and dw/dt represent total acceleration in horizontal and vertical directions, 

respectively.  The local and convective acceleration fields were computed by applying the time 

and spatial central difference scheme to successive velocity profiles (t=75 ms) and each 

velocity profile in x and z (2.01 mm), respectively.  The acceleration was normalized by the 

gravity acceleration g.  The horizontal local and convective accelerations of experimental 

results had a good agreement with those of the third-order Stokes wave theory through the depth 

for three regular waves in Fig. 8.  But, for the case PR3, the horizontal local and convective 

accelerations became larger than the theory results getting closer to the wave crest.  Note that 

the nonlinear effect of accelerations became more significant closer to the wave crest as the 

wave steepness increased.  

 

(a) Horizontal local accelerations                (b) Horizontal convective accelerations 

Fig. 8 Horizontal local and convective acceleration under the wave crest (case PR3)  

3. Prediction methods of irregular wave kinematics 

Three prediction methods of the linear extrapolation, Wheeler stretching [33], and the 

modified stretching [34] were introduced to estimate the wave kinematics of irregular waves.  

Using Fast Fourier Transform, a two-dimensional wave elevation can be decomposed into 

a series of component waves, 

 

                          
𝑑𝑢

𝑑𝑡
=  
𝜕𝑢

𝜕𝑡
 

⏟
𝑙𝑜𝑐𝑎𝑙

+ 𝑢
𝜕𝑢

𝜕𝑥
+ 𝑤

𝜕𝑢

𝜕𝑧⏟        
𝑐𝑜𝑛𝑣𝑒𝑐𝑡𝑖𝑣𝑒

                                                                                    (5) 

                          
𝑑𝑤

𝑑𝑡
=  
𝜕𝑤

𝜕𝑡
 

⏟
𝑙𝑜𝑐𝑎𝑙

+ 𝑢
𝜕𝑤

𝜕𝑥
+ 𝑤

𝜕𝑤

𝜕𝑧⏟        
𝑐𝑜𝑛𝑣𝑒𝑐𝑡𝑖𝑣𝑒

                                                                                 (6) 

                          𝜂(𝑥, 𝑡) =  ∑ 𝐴𝑖𝑐𝑜𝑠 (𝑘𝑖𝑡 − 𝜔𝑖𝑡
𝑁
𝑖=1 + 𝜙𝑖)                                                            (7) 
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where Ai ,  𝑘𝑖 ,  𝜔𝑖 , 𝜙𝑖  and N are the wave amplitude, wave number, wave circular 

frequency, wave phase, and the number of waves, respectively.  The wave number and wave 

circular frequency are related to each other based on the linear dispersion relationship, 

                                                                                     

where h is the water depth. 

According to the linear wave theory, the velocity components can be computed as 

following, 

    

 

The linear extrapolation method to predict the irregular wave kinematics up to the wave 

crest was that Equations (9) and (10) were modified above MWL with their linear Taylor 

expansion about MWL: 

  

The linear extrapolation method made the relatively large variation of the wave 

kinematics prediction over the mean water level (MWL) depending on the cut-off frequency of 

wave spectrum.  Wheeler stretching method [33] was suggested to reduce the dependency on 

the cut-off frequency of the linear extrapolation method, which was made to map the vertical 

coordinate z (from the seabed to the instantaneous free surface) onto the effective vertical 

coordinate ze 

  

where za  is the actual vertical coordinate (-h ≤ za ≤ Hc). 

The horizontal and vertical water particle velocity, Equations (13) and (14) were 

developed as in the following, 

 

The linear extrapolation and Wheeler stretching methods were based on the linear wave 

theory and could be used for the wave kinematics prediction of a linear wave and a weakly 

nonlinear wave.  Fig. 9 provides a brief concept for determining how the horizontal water 

                         𝜔𝑖
2 = 𝑔 ∙ 𝑘𝑖 ∙ 𝑡𝑎𝑛 ℎ(𝑘𝑖ℎ)                                                                                         (8)                                    

                         𝑢(𝑥, 𝑧, 𝑡) = ∑ 𝐴𝑖
𝑔∙𝑘𝑖

𝜔𝑖
∙
cosh [𝑘𝑖∙(ℎ+𝑧)]

𝑐𝑜𝑠ℎ𝑘𝑖ℎ

𝑁
𝑖=1 ∙ cos(𝑘𝑖𝑥 − 𝜔𝑖𝑡 + 𝜙𝑖)                       (9) 

                         𝑤(𝑥, 𝑧, 𝑡) = ∑ 𝐴𝑖
𝑔∙𝑘𝑖

𝜔𝑖
∙
sinh [𝑘𝑖∙(ℎ+𝑧)]

𝑐𝑜𝑠ℎ𝑘𝑖ℎ

𝑁
𝑖=1 ∙ sin(𝑘𝑖𝑥 − 𝜔𝑖𝑡 + 𝜙𝑖)                     (10) 

                        𝑢(𝑥, 𝑧, 𝑡) = 𝑢(𝑥, 0, 𝑡) + 𝑧
𝜕𝑢

𝜕𝑧
(𝑥, 0, 𝑡),     for 0 ≤ 𝑧 ≤ 𝜂                                  (11) 

                        𝑧𝑒 =
ℎ∙(𝑧𝑎−𝜂)

ℎ+𝜂
                                                                                                            (12) 

                       𝑢(𝑥, 𝑧, 𝑡) = ∑𝐴𝑖
𝑔 ∙ 𝑘𝑖
𝜔𝑖

∙
cosh [𝑘𝑖 ∙ (

𝑧𝑎 + ℎ
1 + 𝜂/ℎ

)]

𝑐𝑜𝑠ℎ𝑘𝑖ℎ

𝑁

𝑖=1

∙ cos(𝑘𝑖𝑥 − 𝜔𝑖𝑡 + 𝜙𝑖)    (13) 

                       𝑤(𝑥, 𝑧, 𝑡) = ∑𝐴𝑖
𝑔 ∙ 𝑘𝑖
𝜔𝑖

∙
sinh [𝑘𝑖 ∙ (

𝑧𝑎 + ℎ
1 + 𝜂/ℎ

)]

𝑐𝑜𝑠ℎ𝑘𝑖ℎ

𝑁

𝑖=1

∙ cos(𝑘𝑖𝑥 − 𝜔𝑖𝑡 + 𝜙𝑖)   (14) 
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velocity under the wave surface with the linear wave theory, the linear extrapolation, and 

Wheeler stretching.  Velocity prediction of the linear extrapolation equaled to the linear wave 

theory value up to MWL and was increased with the vertical partial derivative in Equation (11) 

above MWL.  The water particle velocity at the instantaneous free surface predicted by Wheeler 

stretching equaled to the linear wave theory value at MWL.  

   

(a) Linear theory                        (b)Linear extrapolation                   (c) Wheeler Stretching 

Fig. 9 Conceptual sketch of horizontal water particle velocity of approximate methods 

 

 
Fig. 10 Asymmetric factors of a rogue wave for the modified stretching method 

Kim et al. [34] proposed the modified stretching model to take into account the 

asymmetries of the wave in prediction of the highly nonlinear wave kinematics. The asymmetric 

factors of the rogue wave are defined as shown in Fig. 10.   The modified stretching method 

was given by  

 

with  

 

 

 

 

 

 

When Hc / Ht ≤ 1.0, 𝜆 =1.0, and when Hc / Ht >1.0, 𝜆 =1.95, where ze and za were the 

effective vertical coordinate (-h ≤ ze ≤ 0) and the actual vertical coordinate (-h ≤ zz ≤ Hc), 

respectively. 

                       𝑧𝑒 = 𝑎𝑧𝑎
3 + 𝑏𝑧𝑎

2 + 𝑐𝑧𝑎 + 𝑑  for − ℎ ≤ 𝑧𝑎 ≤ 𝐻𝑐                                                 (15) 

                       𝑎 = [(−ℎ + 𝐻𝑐) + 𝑘(ℎ + 𝐻𝑐)]/(ℎ + 𝐻𝑐)
3 

                       𝑏 = [−2(ℎ2 − ℎ𝐻𝑐 + 𝐻𝑐
2) − 𝑘(ℎ + 𝐻𝑐)(𝐻𝑐 − 2ℎ)]/(ℎ + 𝐻𝑐)

3 

                   𝑐 = [𝐻𝑐(𝐻𝑐
2 − 𝐻𝑐ℎ + 4ℎ

2) + 𝑘ℎ(ℎ + 𝐻𝑐)(ℎ − 2𝐻𝑐)]/(ℎ + 𝐻𝑐)
3 

               𝑑 = −{ℎ2𝐻𝑐[𝑘ℎ(ℎ + 𝐻𝑐) + 2𝐻𝑐]}/(ℎ + 𝐻𝑐)
3  

       𝑘 = (2.00 − 𝜆)𝐻𝑡/𝐻 

 𝜆 = 𝑇𝑓/𝑇𝑟 
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The velocity components of the highly nonlinear wave can be obtained through 

substituting the effective coordinate of Equation (15) into Equation (9) and (10) for a highly 

nonlinear wave following as: 

                      𝑢(𝑥, 𝑧, 𝑡) =∑𝐴𝑖
𝑔 ∙ 𝑘𝑖
𝜔𝑖

∙
cosh [𝑘𝑖 ∙ (ℎ + 𝑧𝑒)]

𝑐𝑜𝑠ℎ𝑘𝑖ℎ

𝑁

𝑖=1

∙ cos(𝑘𝑖𝑥 − 𝜔𝑖𝑡 + 𝜙𝑖)             (16) 

                      𝑤(𝑥, 𝑧, 𝑡) = ∑𝐴𝑖
𝑔 ∙ 𝑘𝑖
𝜔𝑖

∙
sinh [𝑘𝑖 ∙ (ℎ + 𝑧𝑒)]

𝑐𝑜𝑠ℎ𝑘𝑖ℎ

𝑁

𝑖=1

∙ sin(𝑘𝑖𝑥 − 𝜔𝑖𝑡 + 𝜙𝑖)             (17) 

4. Experimental results for rogue wave kinematics 

        

(a) Case PH3                                                        (b) Case PH4 

Fig. 11 Velocity vector fields under the highest wave crest in cases PH3 and PH4 

Four irregular wave trains were generated from the JONSWAP spectrum with the peak 

enhancement factor  (6.5) in 2-D wave tank (Table 2).  The distortion method was applied to 

the irregular wave time series, and the highest wave crests of irregular wave trains in cases PH3 

and PH4 met with two rogue wave criteria (H/Hs > 2.0 and Hc/Hs > 1.25) in Table 2.  Twenty 

eight instantaneous velocity fields were obtained with the time step of 75 ms including highest 

wave crests.  The velocity profiles under the highest wave crest of cases PH3 and PH4 are 

shown on PIV snapshot images in Fig. 11.  The solid line in the images indicated MWL and the 

velocity vectors under the free surface were well measured.  

In Fig. 12~17, the measured and predicted velocity profiles were compared in normalized 

values; i.e., the vertical position z normalized by water depth d and velocities normalized by 

the phase velocity Vp of the local wave period (0.9 s) at the highest wave crest shown in Fig. 4.  

The measured horizontal velocities were exponentially increased up to approximately 95% of 

the wave phase velocity. The measured vertical velocities were gradually increased up to 30% 

of the wave phase velocity over MWL and reduced to zero velocity at the wave crest because 

the water surface was the highest level at this moment.  

1 m/sec 1 m/sec
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(a) Case PH3                                                               (b) Case PH4 

Fig. 12 Comparison of measured horizontal velocity profiles and predictions of linear extrapolation varying cut-

off frequency 

 

(a) Case PH3                                                               (b) Case PH4 

Fig. 13 Comparison of measured vertical velocity profiles and predictions of linear extrapolation varying cut-off 

frequency  

The wave kinematics estimated by three prediction methods of the linear extrapolation, 

Wheeler stretching, and the modified stretching with varying spectral cut-off frequency in order 

to investigate the cut-off frequency dependency.  The linear extrapolation method 

overestimated horizontal water velocities at MWL with three times of peak wave period (p) 

for cut-off frequency, but predicted similar magnitude and pattern for vertical velocities up to 

MWL.  Because the linear extrapolation method assumed that the vertical partial derivative of 

a kinematic variable was constant above MWL as Equation (11), the predicted velocities were 

linearly increased up to the wave crest above MWL and were overestimated at three times of 

spectral peak frequency in comparison with the measured velocities over MWL as shown in 

Fig. 12 and 13.   
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(a) Case PH3                                                               (b) Case PH4 

Fig. 14 Comparison of measured horizontal velocity profiles and predictions of Wheeler stretching method 

varying cut-off frequency 

 

(a) Case PH3                                                               (b) Case PH4 

Fig. 15 Comparison of measured vertical velocity profiles and predictions of Wheeler stretching method varying 

cut-off frequency 

 

Wheeler stretching underestimated water velocities at MWL, because it was mapped the 

vertical coordinate z onto the effective vertical coordinate and the same magnitude of water 

velocity predicted by the linear wave theory at MWL was stretched to the instantaneous free 

surface of the wave crest.  It was clear that Wheeler stretching method reduced the cut-off 

frequency dependency for the sake of the underestimation of the water velocity magnitude 

above MWL in Fig. 14 and 15.  
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(a) Case PH3                                                               (b) Case PH4 

Fig. 16 Comparison of measured horizontal velocity profiles and predictions of modified stretching method 

varying cut-off frequency 

 

(a) Case PH3                                                               (b) Case PH4 

Fig. 17 Comparison of measured vertical velocity profiles and predictions of modified stretching method varying 

cut-off frequency 

The modified stretching was proposed to predict the wave kinematics for highly nonlinear 

waves by Kim et al. [34], which calculated the horizontal and vertical velocity profiles under 

wave crests for rogue waves with varying the cut-off frequency and compared with 

experimental results in Fig. 16 and 17, respectively.  It showed less sensitive to be chosen the 

cut-off frequency than results of the linear extrapolation method, and the better agreement with 

experimental results over MWL than the prediction of Wheeler stretching.  From the 

investigation of the sensitivity of cut-off frequency in comparison with experimental results, 

the linear extrapolation method was able to predict the water velocity profile under the highest 

wave crest in irregular wave train with three time of spectral peak wave frequency for cut-off 

frequency, and predictions of Wheeler and modified stretching methods had a good agreement 

with the experimental results with higher cut-off frequency than four or five times of spectral 

peak wave frequency.   
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Local accelerations under the wave crest of rogue waves were shown for cases PH3 and 

PH4 in Fig. 18 ~ 23. The local acceleration was calculated from consecutive velocity profiles 

(t=75 ms) taken by PIV system under the highest wave crest of irregular wave trains with the 

central difference method.  Because the central difference method was able to be applied below 

the velocity vector at the lower free surface among the previous and following PIV images, 

local accelerations were calculated only below the water level for lower wave crest of them.  

But, note that the results of local acceleration profiles calculated with the measured velocities 

were reasonably agreed with the Stokes 3rd order wave theory for steep regular waves in Fig. 8.  

The horizontal local acceleration could be reached up to 0.8 g ~ 1.0 g and the vertical local 

acceleration up to -0.8 g ~ -1.0 g at near wave crest for PH3 and PH4 if it was extended up to 

the wave crest level.   

 

(a) Case PH3                                                               (b) Case PH4 

Fig. 18 Comparison of measured horizontal local accelerations profiles and predictions of linear extrapolation 

varying cut-off frequency 

 

(a) Case PH3                                                               (b) Case PH4 

Fig. 19 Comparison of measured vertical local accelerations profiles and predictions of linear extrapolation 

varying cut-off frequency 
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(a) Case PH3                                                               (b) Case PH4 

Fig. 20 Comparison of measured horizontal local accelerations profiles and predictions of Wheeler stretching 

method varying cut-off frequency 

 

(a) Case PH3                                                               (b) Case PH4 

Fig. 21 Comparison of measured vertical local accelerations profiles and predictions of Wheeler stretching 

method varying cut-off frequency 

Linear extrapolation method was over-predicted the local acceleration with three times of 

spectral peak frequency for cut-off frequency in comparison with those computed from 

measured velocities as shown in Fig. 18 and 19 because of the constant vertical partial 

derivative above MWL.  Local accelerations predicted by Wheeler stretching method were 

exponentially increased up to the wave crest with the higher cut-off frequency and had a less 

sensitivity for increasing the cut-off frequency in Fig. 20 and 21.  However, it underestimated 

the horizontal and vertical local accelerations across the overall water depth. 
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(a) Case PH3                                                           (b) Case PH4 

Fig. 22 Comparison of measured horizontal local accelerations profiles and predictions of Modified stretching 

method varying cut-off frequency 

 

(a) Case PH3                                                               (b) Case PH4 

Fig. 23 Comparison of measured vertical local accelerations profiles and predictions of Modified stretching 

method varying cut-off frequency 

In Fig. 22 and 23, local accelerations predicted by the modified stretching were compared 

with experimental results. With varying the cut-off frequency, they were reasonably increased 

across the water depth and higher increasing rate over MWL.  The modified stretching method 

had a good agreement with horizontal and vertical local accelerations of experimental results at 

three to four times of spectral peak frequency for the cut-off frequency.   

In comparison of measured velocity and local acceleration profiles and predictions of 

three methods in varying cut-off frequency, it showed similar trends that the modified stretching 

had less sensitive for the higher cut-off frequency than the linear extrapolation method, and 

quantitatively a better agreement with experimental results across the water depth rather than 

Wheeler stretching method.  
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(a) Case PH3                                                               (b) Case PH4 

Fig. 24 Comparison of measured horizontal convective accelerations profiles and predictions of linear 

extrapolation varying cut-off frequency 

 

(a) Case PH3                                                               (b) Case PH4 

Fig. 25 Comparison of measured vertical convective accelerations profiles and predictions of linear extrapolation 

varying cut-off frequency 
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(a) Case PH3                                                               (b) Case PH4 

Fig. 26 Comparison of measured horizontal convective accelerations profiles and predictions of Wheeler 

stretching method varying cut-off frequency 

 

(a) Case PH3                                                               (b) Case PH4 

Fig. 27 Comparison of measured vertical convective accelerations profiles and predictions of Wheeler stretching 

method varying cut-off frequency 
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(a) Case PH3                         (b) Case PH4 

Fig. 28 Comparison of measured horizontal convective accelerations profiles and predictions of Modified 

stretching method varying cut-off frequency 

 

(a) Case PH3                         (b) Case PH4 

Fig. 29 Comparison of measured vertical convective accelerations profiles and predictions of Modified 

stretching method varying cut-off frequency 

In Fig. 24~29, horizontal and vertical convective accelerations for cases PH3 and PH4 

calculated with the application of the central difference scheme in the spatial resolution, 2.72 

mm, were compared with predicted results of three methods.  The convective accelerations 

were very small and nearly close to zero under MWL and were rapidly increased over the 

gravity acceleration in both directions.  Even though the experimental results were some 

scattered, those increasing patterns were consistent for all irregular wave conditions.  The 

horizontal accelerations predicted by three methods were well agreed with experimental results 

below MWL, but showed the opposite sign with experimental results over MWL, although 

those magnitudes were small.  However, the vertical convective accelerations were predicted 

in the pattern of linearly increasing over MWL by the linear extrapolation method and suddenly 

increasing near the wave crest with higher cut-off frequency by Wheeler stretching.  Modified 

stretching method estimated the vertical convective acceleration in the similar magnitude and 



Hae Jin Choi, Seung Jae Lee, Hyo Jae Jo                              Comparison Study of Experiments and Predictions of 

Gang Nam Lee, Kwang Hyo Jung Wave Kinematics for Rogue Wave  

  

 

36 

increasing pattern up to the wave crest with higher cut-off frequency overall water depth.  The 

large discrepancy in convective accelerations, especially in horizontal direction, between 

experimental results and prediction methods could be caused by the limitation of three method 

based on the linear wave theory.  

5. Conclusions 

A series of experiments were conducted in 2-D wave tank to simulate the rogue waves 

and measure water wave kinematics including velocity and acceleration profiles.  PIV technique 

was applied to measure the velocities under the free surface of regular and irregular waves.  To 

verify the image acquisition and analysis methods of PIV, three different wave heights of 

regular wave having 0.9 s wave period were tested and those velocities and accelerations were 

compared with results of Stokes 3rd order theory, which showed a good agreement up to the 

wave crest. To generate the rogue wave in the 2-D wave tank, three steps of amplitude 

distortion, time distortion, and crest distortion techniques were applied for irregular wave train 

using JONSWAP spectrum with a peak enhancement factor of 6.5.  Two of four irregular wave 

trains were satisfied with the two rouge wave criteria (H/Hs > 2.0 and Hc/Hs > 1.25).   Three 

different prediction methods of linear extrapolation, Wheeler stretching, and modified 

stretching were applied to estimate water wave kinematics under the highest water elevation of 

irregular wave trains and to investigate the sensitivity of cut-off frequency with six different 

spectral peak frequencies.   

Horizontal water velocity measured under the highest wave crest was increased up to 95% 

of the wave phase velocity calculated with the local wave period near the free surface.  And, 

the maximum velocity in the vertical direction was measured at the middle location of the wave 

crest and MWL with approximately 30% of wave phase velocity.  Although the local 

acceleration was not calculated with measured velocities up to the wave crest of rogue wave, 

its magnitude could be estimated approximately to the gravitation acceleration in both 

directions.  The horizontal and vertical convective accelerations calculated with measured 

velocities were very small under MWL and were rapidly increased over the gravity acceleration.  

The velocity and acceleration profiles had a significant effect of the cut-off frequency 

over MWL.  Linear extrapolation predicted the water wave kinematics with strong sensitivity 

of cut-off frequency and overestimated them to be larger than experimental results except the 

horizontal local acceleration due to the assumption of constant vertical partial derivative of a 

kinematic variable above MWL.  The water wave kinematics predicted by Wheeler stretching 

converged well with measurements as the cut-off frequency became higher, but underestimated 

those magnitudes to be smaller than the measurement results across the water depth.  The 

modified stretching was relatively less sensitive for choosing the higher cut-off frequency than 

the linear extrapolation and better agreement with experimental results above MWL than other 

prediction methods.  From the investigation of the cut-off frequency dependence on the water 

wave kinematics of water velocity and acceleration under the wave crest for rogue waves, it 

can be suggested that the cut-off frequency for the prediction of the water wave kinematics 

should be three times of spectral peak wave frequency for the linear extrapolation and higher 

frequency than four times of spectral peak wave frequency for Wheeler stretching and the 

modified stretching. 
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