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Summary 

Model test is an effective way to verify numerical dynamic analysis of floating system. The 

diffraction and radiation analysis is carried out in frequency domain based on potential theory 

to predict motion response of rigid platform. The quasi static and dynamic methods are 

usually adopted to simulate mooring system, which determines if the whole system is coupled 

within the analysis. Here model tests are performed to indicate the accuracy of potential 

theory and quasi static and dynamic methods for the whole system. A FPSO is tested under 

regular waves to find its RAO. The FPSO with internal turret mooring system under irregular 

wave, wind and current are also studied in the deepwater basin of Harbin Engineering 

University. The results are compared between the model test and numerical models, which 

show the model test results agree well with the coupled numerical model, while the maximum 

mooring tensions are under estimated in quasi static analysis. 
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1. Introduction 

It is important and challengeable to accurately predict the motion response and associated 

mooring forces for a deepwater floating structure. The dynamic coupling analysis is 

recognized as the most reliable numerical method presently, and model test is still regarded to 

be effective verify the numerical simulation. Studies on different cases have been carried out 

by many researchers in this field.  

Dynamic coupled method was first proposed to analyse the large amplitude motion of 

tension leg platform by Paulling and Webster [1]. It was believed that the mass and fluid 

forces on tendons were comparable with those from the platform, and the dynamic tendon 

characteristics were essential for prediction of loads and response of TLP. It was also proved 

with experiments results by Abyn et al. [2]. Ormberg and Larsen [3] illustrated the distinction 

between no-coupled and coupled analysis. After performing numerical simulations and model 

test for different cases, the traditional separated approach was found to be severely inaccurate, 

especially in deep water. Hull/mooring/riser coupled dynamics analysis of a turret-moored 
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FPSO was conducted by Tahar and Kim [4], and compared with experimental results from 

MARIN. The hydrodynamic contribution was analyzed and assessed respectively in the 

viscous damping, second-order quadratic transfer functions, and yaw-angle dependent wave 

forces and hydrodynamic coefficients. Luo et al. [5] presented that for deepwater applications, 

the mooring lines and risers could significantly affect the response of platforms. The non-

coupled, coupled to slow drift motions and fully coupled methods were described in detail.  

Different methods are attempted to solve the issues. Time and frequency domain coupled 

analysis of deepwater floating systems were carried out and compared by Low and Langley 

[6-7]. The frequency domain approach was verified to be accurate when geometric 

nonlinearity was not prevalent. A hybrid time/frequency domain approach was also developed 

and indicated that it was nearly as accurate as fully coupled time domain analysis even for 

significant coupling and nonlinear effects, but required only one-tenth of the computational 

time. Tahar and Kim [8] developed a numerical tool for the coupled dynamic analysis of a 

deepwater floating platform with polyester mooring lines, which considered the relatively 

large elongation and nonlinear stress strain relationships in polyester fibres. The dynamic 

responses of mooring lines are also important to include nonlinear inertial forces and drag 

forces in the couple analysis [9-11]. Zhang et al. [12] presented a comparison of numerical 

simulations and model tests for a new cell-truss SPAR. The numerical simulations were 

conducted with frequency-domain analysis, time-domain semi-coupled and fully-coupled 

analysis. It was found that neither numerical simulation nor model test could perform very 

well. Jing et al. [13] developed an asynchronous coupling method with MLTSIM and 

RodDyn, which allowed for a fast simulation of very complex problem. Ma et al. [14] also 

proposed an asynchronous coupling model and dynamic coupled analysis model for a turret-

moored FPSO, and the numerical results had good agreement with model test. Yang et al. [15] 

developed a full time-domain analysis program and it was applied to a truss spar, which gave 

reliable prediction of platform response both in the wave-frequency and low-frequency 

ranges. Fully coupled dynamic analysis to a FPSO system was conducted by Ji et al. [16], the 

force nonlinearity, mooring nonlinearity, motion nonlinearity were included in the numerical 

model, but the non-collinear environmental loads were not considered. The results were 

compared between multi bodies and single body, and the feasibility of the designed system 

was confirmed. Qiao et al. [17] analysed the global responses analysis for an innovative deep 

draft multi-spar platform, three different types of the mooring system are considered, namely 

a catenary, a semi-taut and a taut mooring system with numerical coupling method. The effect 

of buoys within mooring line was investigated to show that the additional buoy in the 

mooring line may cause larger surge motion [18].  

As described above, how to predict the response of a platform precisely depends on the 

type of platform, working depth, mooring lines and analysis methods. Uncertainties still exist 

both for numerical simulations and model tests. Further investigations are still needed. In this 

paper, numerical simulations and model tests of a FPSO mooring system in 914m water depth 

are discussed in detail, and significative conclusions can be found after comparisons with 

each other. 

2. Hydrodynamic Analysis of FPSO under Regular Waves 

The purpose of numerical simulations and model tests of FPSO under regular waves is to 

obtain the FPSO motions, forces and response amplitude operators (RAOs). The results are 

relatively reliable and can be the base for calculation of FPSO under irregular waves based on 

linear superposition theory. 
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The FPSO studied is a 240,000 DWT tanker working in 914m water depth, its particulars 

are given in Table 1. Both numerical simulation and model tests are performed, and 

comparisons of them are discussed. 
Table 1 Main parameters of FPSO 

Length between perpendiculars (m) 310.00 

Breadth(m) 47.17 

Depth(m) 28.04 

Draught(m) 18.90 

Displacement(t) 240869.00 

Centre of gravity forward of station 0 (m) 161.60 

Centre of gravity above keel (m) 13.32 

Turret position behind Fpp (m) 63.55 

2.1 Diffraction and Radiation Analysis of FPSO 

The diffraction and radiation analysis is carried out in frequency domain with 3D potential 

theory to get the response of FPSO under a series of regular waves. The set of linear equations 

with frequency dependent coefficients for 6-DOF rigid body motions can be stated in matrix 

as followed: 

 ( )S a x x x   M M C K F   (1) 

in which SM  is mass matrix of FPSO; aM  is added mass matrix; C  is damping matrix; K  is 

stiffness matrix; F  is the 1st order wave forces acting on FPSO (per unit wave amplitude); x  

is the response motions. 

The mean second order wave drift forces are calculated with the near-field solution. The 

forces on FPSO in the horizontal and vertical planes are calculated based on the method of 

direct integration of pressure acting on the wetted surface of the body. The expression for the 

evaluation of the second order mean wave drift force (2)

waveF and moment (2)

waveM can be written 

as follows: 
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in which, WL  stands for water line along the structure surface; r is the relative wave surface 

elevation; 
0S  is the structure wetted surface; X  is the motion at structure surface; 

sM  is the 

structure mass; 
sI  is the matrix of structure inertia moment; R  is the structure rotation 

matrix; gX  is the structure CoG acceleration vector. 

The numerical simulations of FPSO under a series of regular waves over a pertinent range 

of periods and directions are carried out by program ANSYS AQWA. The model of FPSO 

and the definition of coordinate system is in Fig.1. 
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Fig. 1  Model of FPSO 

2.2 Model Tests of FPSO in HEU basin 

Model tests of FPSO are carried out in the deepwater basin of Harbin Engineering 

University (HEU). The dimension of HEU basin is 50m×30m×10m, the model scale is 1:92, 

the FPSO model after calibration is in Fig.2. The wave directions are 90°, 135° and 180°.  

The layouts of the FPSO are changed to avoid the complexity for the wave maker to adjust 

wave directions. Four mooring lines are horizontally connected with FPSO to restrain its slow 

drift motions, but the wave frequency motions are not influenced. The layouts of FPSO in 

135° and 180° wave directions are demonstrated in Fig.3. The line lengths are designed 

according to different cases, and the stiffness of the four springs in every case should be the 

same, and should not lead to resonance of the system.  

Appropriate wave periods and wave heights are determined before model tests to ensure the 

wide ranges of wave frequencies. In addition, the wave slopes are controlled between 0.018 

and 0.032, so the wave heights will have little influence on the RAOs. According to the above 

factors and the capacity of wave maker, 10 regular waves are selected for model tests and 

listed in Table 2. 

 
  Fig. 2 FPSO model after calibration 

 
135° wave direction                                                          180° wave direction 

  Fig. 3 Schematic plot of FPSO in the basin 
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Table 2 Test cases under regular waves 

Wave period (s) Wave height  (m) Wave slope 

17.95 8.92 0.018 

15.71 7.26 0.019 

13.96 7.39 0.024 

12.57 5.48 0.022 

12.09 5.97 0.026 

11.42 4.83 0.024 

10.47 4.89 0.029 

9.67 3.76 0.026 

8.98 3.83 0.030 

7.85 3.10 0.032 

2.3 Comparison of results 

The representative RAO results are compared between the model tests and numerical 

simulations as listed in Fig.4. It is found that they can agree well with each other in most 

cases, but some discrepancies still exist at some points. For the roll RAO in 90°, the model 

test result is lower than the numerical result at the point of resonant frequency, and the 

possible reason is that the viscosity is not considered in the linear theory of AQWA. Then 

additional linear roll damping is added to the hydrodynamic model, and the results can agree 

well with the test results except for the small phase difference. For the yaw RAO in 90°, there 

are great differences too. The reason may be the small deviation of the bow of FPSO in the 

basin and then the wave forces are different. But since the yaw RAO is not large, the 

influence is acceptable. It shows the results of numerical simulations and model tests are 

complementary and can verify each other, and it is a good base for further analysis of FPSO 

mooring system. 
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Fig. 4 Comparison of FPSO RAO 

3. Response of FPSO under Irregular waves 

3.1 FPSO internal turret mooring system 

The FPSO is internal turret moored by 12 identical catenary mooring lines, which are 

grouped into 4 bundles, containing 3 lines respectively. Each line is made up of 3 segments as 

chain, wire rope and chain. The parameters of mooring lines are presented in Table 3. The 

layout of mooring system is given in Fig.5, where 1~12 represents mooring lines. 

The working condition of FPSO is a 100-year extreme hurricane environment in Gulf of 

Mexico, and the details are given in Table 4. 
Table 3 Parameters of mooring lines 

Line 
Length 

(m) 

Mass in 

Water (kg/m) 

EA 

(MN) 

Diameter 

(mm) 

Pretension 

(MN) 

Top chain 45.7 140.7 794 89 

1.2 Middle wire 914.4 140.7 794 89 

Bottom chain 914.4 140.7 794 89 

 

Table 4  Environmental condition 

Significant wave height Hs(m) 12.16 

Peak period Tp(s) 14.0 

Wave spectra type JONSWAP(  =2.5) 

Wave direction(deg) 180 

Wind speed(m/s) 41.12 

Wind direction(deg) 210 

Current speed(m/s) 1.07 

Current direction(deg) 150 
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Fig. 5 Layout of FPSO mooring system 

3.2 Coupled analysis of FPSO mooring system 

The motion simulation is performed for the FPSO with its mooring lines by program 

ANSYS AQWA in time domain, while the vessel slow drift motion and the effect of the 

mooring system are fully coupled. The equation of motion for the FPSO in 6-DOF is:  

 ( ) ( ) ( ) ( )S a s ws wf sd wind current mooringx t x t x t F F F F F F F         M M C K   (4) 

in which sF , wsF , 
wfF , sdF , windF , currentF , 

mooringF are static force, mean wave drift force, wave 

frequency force, slow wave drift force, wind force, current force and mooring force 

respectively. 

The first and second order wave forces are derived from the database calculated in the 

preceding diffraction and radiation analysis. The slow varying wave drift force is calculated 

for the horizontal motions only and is based on Newman’s approximation [19]. The equation 

can be written as: 
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in which ijP  is the in-phase component of the time independent transfer function; ,i j  are the 

frequencies of each pair of wave components; ,i ja a are the amplitudes of the wave 
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components; 
i , 

j are random phase angles; NSPL is the number of frequency components 

adopted to represent the wave spectrum.  

The convolution of added mass and damping from frequency domain to time domain is 

adopted in the calculation of radiation forces, which uses the actual structure motion instead 

of RAOs and do not require RAOs of the vessel. The motion responses are determined by 

  
0

( ) ( ) ( ) ( ) ( ) ( )

t

S a x t x t t x d F t        M M K h   (7) 

in which ( )a M  is the added mass at infinite frequency, ( )F t  is the total external forces, 

( )th  is the acceleration convolution integral function matrix.  

The catenary theory is selected to simulate the quasi static characteristics of mooring lines, 

while the lumped mass method is used to simulate the dynamic characteristics of mooring 

lines. In the quasi static analysis, vertical motions and dynamic effects associated with mass, 

damping and fluid acceleration on the mooring line are neglected. In the dynamic analysis, all 

nonlinear characteristics can be modelled including line stretch, line geometry, fluid loading, 

and sea bottom effects.  

In this study, the mooring lines are not coupled with the FPSO’s wave frequency motions 

because their contributions to such motions are often negligible since the FPSO’s inertia 

properties are an order of magnitude higher than those of the mooring lines. 

The wind and current drag coefficients are obtained from report of OCIMF [20], the steady 

forces and moments are applied on the FPSO with equations from report of OCIMF. 

3.3 Model Test in HEU basin 

Model test of the FPSO mooring system is carried out in HEU basin. The 10m basin depth 

can accommodate to the full system in 914m. However, the horizontal distance of the basin is 

not long enough to accommodate to the lateral lines. Therefore, the lines in transverse 

direction (Line4, 5, 6, 10, 11, 12) have to be equivalently truncated. The truncation principle 

is to keep the line weight, stiffness, and static characteristics consistent with the un-truncated 

system [21-22]. Only the bottom chains are truncated, the middle wire rope and top chain are 

unchanged. Considering the actual facilities in the basin, the span in width of mooring lines 

are restricted to 28m, and after truncation design, the parameters are in Table 5, and the 

horizontal layout of the mooring lines are in Fig.6. The turret and mooring line models after 

calibration are in Fig.7. The parameters of the line model after adjustment are presented in 

Table 6, and there are still some differences within the theory requirements, which can be 

acceptable.  

Since there is no false table in the basin for anchoring the mooring lines, 4 anchor bases 

with sufficient weights are designed to fix the mooring lines, which can keep them stable 

enough. There are 3 anchor points in every base and the distance among them is set according 

to actual requirements. The bases are lowered to the pre-calculated bottom positions by the 

crane.  

There are no wind and current generators in the basin, so the wind and current forces are 

simulated by constant forces on the centre of gravity of FPSO as the specified directions. A 

thin steel wire rope with light weight is connected to the FPSO, and the other side on the 

basin side is connected with the pre-calculated loads, and two pulleys are used to guide the 

line, the schematic plot in Fig.8, and the layout in the basin depicted in Fig.9. The constant 

wind and current forces are obtained through numerical simulation and compared with the 

actual wind and current. After the comparison, the wind and current forces are 1.0MN and 

1.1MN respectively. 
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Table 5 Parameters of the bottom lines after truncation 

Line 
Length 

 (m) 

Mass in 

Water (kg/m) 

EA 

(MN) 

Diameter 

(mm) 

Pretension 

(MN) 

Line4,5,6,10,11,12 485 265.3 431 122 1.10 

 
Fig. 6 Horizontal layout of the mooring lines  

 

   
Fig. 7 Turret and mooring line models after calibration 

 

Table 6 Parameters of the line model with adjustment 

Item Line  
Length 

 (m) 

Mass in 

Water (g/m) 
K  

 (N/mm) 

Diameter 

(mm) 

Pretension 

(MN) 

Theory 

Top chain 0.50 16.62 0.10 0.97 

1.54 Middle wire 12.26 4.87 0.07 0.97 

Bottom chain 9.94 16.62 2.05 0.97 

Test 

Top chain 0.65 16.23 / 0.80 

1.55 

Middle wire 

12.38 4.08 0.07 

1.10 

spring 0.50 

Connecting link / 

lead sealing / 

Bottom chain 9.94 16.50 / 0.80 

Theory  
Truncated 

bottom chain 
5.27 28.96 2.05 1.33 1.41 

Test 
Truncated 

bottom chain 
5.71 29.00 / 0.80 1.45 
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Fig. 8 Simulation of constant wind and current forces 

 
Fig. 9 Model test of FPSO with wave, constant wind and current 

3.4 Comparison of the results 

At first, the static characteristics of the mooring system is discussed. The curves of the 

restoring forces of single line and horizontal mooring force on turret versus the offsets are 

plotted in Fig.10 and Fig.11 respectively, and the line of test-truc is the line with further 

horizontal truncation. When the displacement is more than 60m, the force of the horizontal 

truncated line is smaller than the un-truncated line. But since the truncated lines are lateral 

and not in the head sea, there is little influence on the whole mooring system, and the test 

results agree well with the numerical results in Fig.11, which verify the accuracy of the setup 

of the mooring system in the basin. At the same time, the catenary theory is certified to be 

able to simulate the static characteristics of mooring lines correctly. 

The wave spectrum is simulated accurately by wave maker in the basin, and the 

comparison of the target and measured spectrum is in Fig.12. 

    
Fig. 10 Single line force –displacement                                  Fig. 11 X force on turret - X displacement 
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Fig. 12 Comparison of wave spectrum 

Some representative results of the model tests are compared with the numerical simulations 

and given in table 7. At first, the FPSO motions agree well with each other for the quasi static 

and dynamic methods, but the mooring tensions of quasi static method are lower than those of 

the dynamic method. As described above, the dynamic fluid loadings are omitted in the quasi 

static method. It is found that it is more reliable to simulate the mooring lines with dynamic 

method.  

In addition, the global response and mooring forces of FPSO in the model test are 

compared with those of the dynamic analysis. Most results can agree well with each other, but 

some difference always exist, such as the minimum surge in test is smaller than that of the 

numerical simulation, while the maximum tension of line 2 in test is higher than those of the 

calculation. The disparity is inevitable, and the reasons can be summarized as following: 

(1) Since the anchor bases are used to fix the mooring lines at the basin bottom, errors might 

exist because of human factors, although they are set as designed.  

(2) To satisfy the predetermined pretension, parts of the line lengths are adjusted slightly, 

which might result in the difference. 

(3) The influence from the thin steel wire ropes to simulate the constant wind and current 

forces can not be avoided.  

(4) Some other factors are leading to the following uncertainties such as measuring accuracy 

of instrumentations such as gauges, transducers and optical systems, deviation from wave 

modelling and measurement, human factors on the position control of model and anchor piles, 

and data processing. 

 
Table 7 Comparison of results from quasi static, dynamic and model test 

Item case 
Surge 

(m) 

Sway 

(m) 

Roll 

(deg) 

Yaw 

(deg) 

Line2 

(MN) 

Line5 

(MN) 

Line8 

(MN) 

Max 

quasi static  -39.16 35.13 2.54 15.55 2.65 1.20 0.93 

dynamic -22.00 38.65 3.27 21.70 3.29 1.94 1.75 

test -26.36 31.32 5.49 27.44 3.54 1.64 1.62 

Min 

quasi static  -87.90 7.30 -3.19 -0.28 1.70 0.93 0.65 

dynamic -86.09 6.91 -3.87 -3.84 0.93 0.41 0.31 

test -78.54 1.32 -6.35 6.30 0.77 0.34 0.24 

Mean 
quasi static  -60.91 19.44 -0.14 7.18 2.08 1.06 0.78 

dynamic -50.00 21.59 -0.14 7.44 1.97 1.05 0.81 
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test -47.44 15.49 -0.51 17.5 1.75 1.05 0.86 

RMS 

quasi static  9.58 5.05 0.61 3.16 0.19 0.04 0.05 

dynamic 11.12 5.52 0.71 3.54 0.31 0.17 0.16 

test 11.49 3.46 1.81 2.07 0.32 0.15 0.18 

4. Conclusions 

Based on above numerical simulation and model tests of the internal turret moored FPSO in 

different water depths, the following conclusions can be drawn. 

1) Research on the hydrodynamic characteristics of a FPSO working in 914m water depth is 

carried out through diffraction/radiation analysis in frequency domain and model tests in 

offshore basin. The RAOs are compared in detail, although the disparities exist, the results 

can agree well with each other with adding additional linear roll damping to the 

hydrodynamic model. 

2) Coupled analysis to the FPSO and its mooring system in time domain is implemented, and 

both quasi static and dynamic analysis to the mooring lines are considered. It is proved that 

the results of dynamic analysis are more reliable than quasi static analysis.  

3) Model test to the FPSO mooring system under hurricane environmental loads is carried out 

in HEU basin. Four anchor bases are used to fix the line models at the basin bottom. 

Special devices are designed to simulate the wind and current loads. Most of the results of 

model test are consistent with those of dynamic analysis, but some divergences still exist 

because of the objective factors during the test. 

4) For the deepwater FPSO mooring system, coupling dynamic analysis in time domain is an 

effective method to catch the accurate characteristics of the whole system, and model test is 

an important and essential method to verify the numerical simulations, and they are 

complementary. 
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