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Abstract. In this study, we consider a vector integro-differential equation with multiple
deviating arguments. Based on the Lyapunov-Krasovskii functional approach, the global
existence and boundedness of all solutions are discussed. We give an example to illustrate
the theoretical analysis made in this study and to show the effectiveness of the method
used here.
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1. Introduction

The complexity of delay differential equations, the difficulties of their theoretical
study, and their wide-ranging applications have attracted much interest in the com-
munity of applied mathematics, physics and biology. Also, delay differential equa-
tions have been used for many years in control theory and only a couple of decades
ago they were widely applied to biological models. However, it should be expressed
that the number of results related to the qualitative behavior of solutions of certain
nonlinear vector delay differential equations is very few in comparison to that on
nonlinear scalar delay differential equations. As is well known, the investigation of
qualitative properties of solutions (stability, global existence, boundedness, conver-
gence, instability, asymptotic behaviour of solutions and so on) of delay differential
equations is a very important problem in the theory and application of differential
equations. On the other hand, the global existence and boundedness of solutions of
delay differential equations are among the most attractive topics in the qualitative
theory of differential equations due to their applications. Numerous research activ-
ities are concerned with the qualitative properties of solutions to different ordinary
nonlinear scalar and vector differential equations of high order with and without de-
lay. For some related contributions, we refer the reader to the books or the papers of
Ahmad and Rama Mohana Rao [2], Burton [3], Burton and Zhang [4], El’sgol’ts [5],
Gao and Zhao [6], Hara and Yoneyama [7], Huang and Yu [8], Jitsuro and Yusuke
[10], Kato [11], Kolmanovskii and Myshkis [12], Krasovskii [13], Luk [14], Napoles
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Valdes [17], Sugie and Amano [18], Tunç [19]-[25] Tunç and Şevli [26], Tunç and Ay-
han [27], Yang [28], Wei and Huang [29], Wiandt [1], Zhang [30], Zhou and Liu [31],
and the references therein. Throughout most of the results presented in the books
and the papers mentioned above, Lyapunov’s second (or direct) method (Lyapunov
[15]), has been used as a basic tool to verify the results established in these works.

We give some background details regarding the study of various classes of delay
vector differential equations of second order. In this sense, it should be mentioned
that, in 2013, for the cases P = 0 and P 6= 0, respectively, Tunç [24] studied
asymptotic stability of the zero solution and boundedness of all solutions of a vector
Lienard differential equation with a constant deviating argument, τ > 0,

X ′′(t) + F (X(t), X ′(t))X ′(t) +H(X ′(t− τ)) = P (t).

Later, in 2013, Tunç [25] took into account the following nonlinear vector Lienard
differential equation with multiple deviating arguments, τi > 0:

X ′′(t) + F (X(t), X ′(t))X ′(t) +G(X(t)) +

n
∑

i=1

Hi(X(t− τi)) = P (t),

for which the author obtained asymptotic stability of the zero solution and bound-
edness of all solutions of this equation and the main results of this paper were proved
by the application of an auxiliary Lyapunov-Krasovskii functional.

In this study, we consider the vector integro-differential equation of second order
with multiple constant deviating arguments, τi > 0:

(r(t)X ′)′ +A(t)F (X,X ′)X ′ +B(t)E(X ′) +
n
∑

i=1

Ci(t)Hi(X(t− τi))

=

t
∫

0

K(t, s)X ′(s)ds,

(1)

where t ∈ ℜ+, ℜ+ = [0,∞), t − τi ≥ 0 and X ∈ ℜn; r is a positive and continu-
ously differentiable increasing function on ℜ+; A,B,Ci and F are n×n−symmetric
continuous matrix functions; E : ℜn → ℜn, Hi : ℜn → ℜn are continuous and E,

Hi are differentiable with E(0) = Hi(0) = 0. Also, K(t, s) is an n × n−continuous
matrix function for 0 ≤ t ≤ s < ∞.

Instead of equation (1), throughout this article we consider a equivalent differ-
ential system form

X ′ = Y

Y ′ =
1

r(t)

t
∫

0

K(t, s)Y (s)ds− r′(t)

r(t)
Y − 1

r(t)
A(t)F (X,Y )Y − 1

r(t)
B(t)E(Y )

− 1

r(t)

n
∑

i=1

Ci(t)Hi(X) +
1

r(t)

n
∑

i=1

Ci(t)

t
∫

t−τi

JHi
(X(s))Y (s)ds,

(2)
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which was obtained as usual by setting X ′ = Y in equation (1), and also where X(t)
and Y (t) are abbreviated as X and Y throughout the paper, respectively.

To the best of our knowledge, the global existence and boundedness of solutions
of equation (1) have not been discussed in the literature. This case displays the
originality of the present paper.

The motivation for the present work has been inspired basically by the papers
of Tunç [24, 25], Tunç and Ayhan [27] and the references listed therein. The main
aim of this paper is to give some sufficient conditions for the global existence and
boundedness of solutions of equation (1) by the construction of a new Lyapunov
functional for this equation. This paper is also the first attempt to investigate the
global existence and boundedness of solutions of vector integro-differential equations
of second order with multiple constant deviating arguments, it is a new improvement
and has a contribution to the subject in the literature; on the other hand, this paper
may also be beneficial to researchers working on the qualitative behavior of solutions
of scalar and vector integro-differential equations. Besides, the result obtained in
this investigation improves the existing results on second order nonlinear scalar and
vector integro-differential equations in the literature.

Let JE(Y ) and JHi
(X) denote Jacobian matrices corresponding to the functions

E(Y ) and Hi(X), that is,

JE(Y ) = (
∂ei

∂yj
), JHi

(Y ) = (
∂h1i

∂xj

), . . . , JHn(Y ) = (
∂hni

∂xj

), i, j = 1, 2, . . . , n,

where (x1, x2, . . . , xn), (y1, y2, . . . , yn), (e1, e2, . . . , en) and (hi1, hi2, . . . , hin) are the
components of X , Y , E and Hi, respectively. Otherwise, it supposed that the deriva-
tive d

dt
Ci(t) = C′

i(t) and the Jacobian matrix JHi
(X) exist and are continous. By

the same token, it is also assumed that all matrices given in the pairs A(t), F (X ;Y );
B(t), JE(Y ); Ci(t), JHi

(X); and C′
i(t), JHi

(X) are symmetric and commute with
each other. Furthermore, the symbol 〈X,Y 〉 corresponding to any pair X and Y in
ℜn stands for the usual scalar product

∑n

i=1 xiyi, that is,

〈X,Y 〉 =
n
∑

i=1

xiyi;

thus
〈X,X〉 = ‖X‖2

and also λi(Ψ) (i = 1, 2, . . . , n), are the eigenvalues of the n× n-matrix Ψ.
In addition to the basic assumptions imposed on A, F , B, E, Ci and Hi, that

appear in Eq. (1), we assume that there exist some positive constants a, b, ci, f , ε,
δi and βi such that the following conditions hold:

(A1) The matrices A, B, Ci and C′
i are symmetric, also λi(A(t)) ≥ a, λi(B(t)) ≥ b,

λi(Ci(t)) ≥ ci, and λi(C
′
i(t)) ≤ 0, for all t ∈ [0,∞);

(A2) F (X,Y ) is n × n−symmetric and λi(F (X,Y )) ≥ f for all t ∈ [0,∞) and
X,Y ∈ ℜn;

(A3) JE(Y ) is symmetric and λi(JE(Y )) ≥ ε for all Y ∈ ℜn;
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(A4) JHi
(X) are symmetric and δi ≤ λi(JHi

(X)) ≤ βi for all X ∈ ℜn;

(A5) 1
r(t) ≤ 1;

(A6)
t
∫

0

‖K(t, s)‖ ds+
∞
∫

t

‖K(u, t)‖du ≤ R;

(A7) R+ 2στ∗ − r′(t)
r(t) ≤ 0, (σ and τ∗ to be determined later on p. 9).

2. Preliminaries

Before beginning with our main result, we give some well known preliminary results
which will be required in the proof of our main result. Consider a nonautonomous
differential system

dx

dt
= F (t, x), (3)

where x is an n−vector, t ∈ [0,∞). Suppose that F (t, x) is continuous in (t, x) on
D , where D is a connected open set in ℜ × ℜn. Now, we shall give the following
theorem and the lemmas.

Theorem 1. Let F ∈ C(D) and |F | ≤ M on D. Suppose that ϕ is a solution of
(3) on the interval j = (α, β) such that the following conditions hold:

(i) The two limits lim
t→α+

ϕ(t) = ϕ(α+) and lim
t→β−

ϕ(t) = ϕ(β−) exist;

(ii) (α, ϕ(α+)) (i.e., (β, ϕ(β−))) is in D.

Then the solution ϕ can be continued to the right pass the point t = β (i.e., to the
left pass the point t = ϕ).

Proof. See Hsu [9].

Lemma 1. Let S be a real symmetric n × n matrix and s ≥ λi(S) ≥ s > 0,
(i = 1, 2, . . . , n), where s and s are constants. Then

s 〈X,X〉 ≥ 〈SX,X〉 ≥ s 〈X,X〉

and

s2 〈X,X〉 ≥ 〈SX, SX〉 ≥ s2 〈X,X〉 .

Proof. See Mirsky [16].

Lemma 2. Let M,N be any two real n× n commuting symmetric matrices. Then

(i) The eigenvalues λi(MN), (i = 1, 2, . . . , n) of the product matrix MN are real
and satisfy

max
1≤j,k≤n

λj(M)λk(N) ≥ λi(MN) ≥ min
1≤j,k≤n

λj(M)λk(N).
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(ii) The eigenvalues λi(M +N), (i = 1, 2, . . . , n) of the sum matrix M and N are
real and satisfy

{

max
1≤j,k≤n

λj(M) + max
1≤j,k≤n

λk(N)

}

≥ λi(M +N) ≥
{

min
1≤j,k≤n

λj(M) + min
1≤j,k≤n

λk(N)

}

,

where λj(M) and λk(N) are, the eigenvalues M and N , respectively.

Proof. See Mirsky [16].

3. Main result

Theorem 2. Suppose that conditions (A1) - (A7) hold. Then every solution of
system (2) are continuable and bounded.

Proof. Now, throughout our main result, as a basic tool we will use a continuously
differentiable Lyapunov functional V = V (t,X, Y ), defined by:

V =
1

2
〈Y, Y 〉+ 1

r(t)

n
∑

i=1

1
∫

0

〈Ci(t)Hi(σX), X〉 dσ +
n
∑

i=1

σi

0
∫

−τi

t
∫

t+s

‖Y (u)‖2 du ds

+

t
∫

0

∞
∫

t

‖K(u, s)‖ ‖Y (u)‖2 du ds,

(4)

where s is a real variable such that the integrals

0
∫

−τi

t
∫

t+s

‖Y (u)‖2 du ds

and
t
∫

0

∞
∫

t

‖K(u, s)‖ ‖Y (u)‖2 du ds

are non-negative, and σi are certain positive constants to be determined later in the
proof.

It is clear that V (t, 0, 0) = 0. Next, since Hi(0) = 0, ∂
∂σ

Hi(σX) = JHi
(σX)X,

then we can write

Hi(X) =

1
∫

0

JHi
(σX)Xdσ.
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From assumptions (A1) and (A4) we get

n
∑

i=1

1
∫

0

〈Ci(t)Hi(σX), X〉 dσ =

n
∑

i=1

1
∫

0

1
∫

0

〈σ1Ci(t)JHi
(σ1σ2X)X,X〉dσ2dσ1

≥
n
∑

i=1

1
∫

0

1
∫

0

〈σ1ciδiX,X〉dσ2dσ1

=
1

2

(

n
∑

i=1

ciδi

)

‖X‖2 , (5)

and

d

dt

n
∑

i=1

1
∫

0

〈Ci(t)Hi(σX), X〉 dσ

=

n
∑

i=1

1
∫

0

σ 〈Ci(t)JHi
(σX)Y,X〉 dσ +

n
∑

i=1

1
∫

0

〈Ci(t)Hi(σX), Y 〉 dσ

+
n
∑

i=1

1
∫

0

〈C′
i(t)Hi(σX), X〉 dσ

=

n
∑

i=1

1
∫

0

σ
∂

∂σ
〈Ci(t)Hi(σX), Y 〉 dσ +

n
∑

i=1

1
∫

0

〈Ci(t)Hi(σX), Y 〉 dσ

+

n
∑

i=1

1
∫

0

〈C′
i(t)Hi(σX), X〉 dσ

=
n
∑

i=1

σ 〈Ci(t)Hi(σX), Y 〉 |10 +
n
∑

i=1

1
∫

0

〈C′
i(t)Hi(σX), X〉dσ

=

n
∑

i=1

〈Ci(t)Hi(X), Y 〉+
n
∑

i=1

1
∫

0

〈C′
i(t)Hi(σX), X〉dσ.

In view of function (4) and inequality (5) together, it follows that

V ≥ 1

2
‖Y ‖2 + 1

2r(t)

(

n
∑

i=1

ciδi

)

‖X‖2 ≥ 0. (6)

Thus, the function V defined by expression (4) is positive definite. Calculating the
derivative of the function V along any solution (X(t), Y (t)) of system (2) we have
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that

V ′ =
1

r(t)

1
∫

0

〈K(t, s)Y (s), Y (t)〉 ds− r′(t)

r(t)
〈Y, Y 〉 − 1

r(t)
〈A(t)F (t,X, Y )Y, Y 〉

− 1

r(t)
〈B(t)E(Y ), Y 〉+ 1

r(t)

n
∑

i=1

Ci(t)

t
∫

t−τi

〈JHi
(X(s))Y (s), Y (t)〉 ds

+

n
∑

i=1

1
∫

0

〈C′
i(t)Hi(σX), X〉 dσ − r′(t)

r2(t)

n
∑

i=1

1
∫

0

〈Ci(t)Hi(σX), X〉dσ

+
d

dt

n
∑

i=1

σi

0
∫

−τi

t
∫

t+s

‖Y (u)‖2 dsdu+
d

dt

t
∫

0

∞
∫

t

‖K(t, s)‖ ‖Y (u)‖2 dsdu.

(7)

We also remind that

d

dt

n
∑

i=1

σi

0
∫

−τi

t
∫

t+s

‖Y (u)‖2 du ds =

n
∑

i=1

σiτi ‖Y (t)‖2 −
n
∑

i=1

σi

t
∫

t−τi

‖Y (s)‖2 ds

and

d

dt

t
∫

0

∞
∫

t

‖K(u, s)‖ ‖Y (u)‖2 du ds = ‖Y (t)‖2
∞
∫

t

‖K(u, t)‖ du−
t
∫

0

‖K(u, s)‖ ‖Y (s)‖2 ds.

These equalities and (7) lead to the following

V ′ =
1

r(t)

1
∫

0

〈K(t, s)Y (s), Y (t)〉 ds− r′(t)

r(t)
〈Y, Y 〉 − 1

r(t)
〈A(t)F (t,X, Y )Y, Y 〉

− 1

r(t)
〈B(t)E(Y ), Y 〉+ 1

r(t)

n
∑

i=1

Ci(t)

t
∫

t−τi

〈JHi
(X(s))Y (s), Y (t)〉 ds

+
1

r(t)

n
∑

i=1

1
∫

0

〈C′
i(t)Hi(σX), X〉dσ − r′(t)

r2(t)

n
∑

i=1

1
∫

0

〈Ci(t)Hi(σX), X〉dσ

+

n
∑

i=1

σiτi ‖Y (t)‖2 −
n
∑

i=1

σi

t
∫

t−τi

‖Y (s)‖2 ds

+ ‖Y (t)‖2
∞
∫

t

‖K(u, t)‖ du−
t
∫

0

‖K(u, s)‖ ‖Y (s)‖2 ds.
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By assumptions (A1) − (A5), Lemma 1, Lemma 2, and the inequalities 〈U, V 〉 ≤
‖UV ‖ ≤ ‖U‖ ‖V ‖ ≤ 1

2 (‖U‖2 + ‖V ‖2), the following estimates can be verified:

1

r(t)

t
∫

0

〈Y (t),K(t, s)Y (s)〉 ds ≤
t
∫

0

‖Y (t),K(t, s)Y (s)‖ ds

≤
t
∫

0

‖K(t, s)‖ ‖Y (t)‖ ‖Y (s)‖ ds

≤ ‖Y (t)‖2
t
∫

0

‖K(t, s)‖ ds

+

t
∫

0

‖K(t, s)‖ ‖Y (s)‖2 ds,

1

r(t)
〈A(t)F (X,Y )Y, Y 〉 ≥ af

r(t)
‖Y ‖2 ≥ 0,

〈B(t)E(Y ), Y 〉=
1
∫

0

〈B(t)JE(σY )Y, Y 〉 dσ ≥ bε ‖Y ‖2 ≥ 0,

1

r(t)

n
∑

i=1

Ci(t)

t
∫

t−τi

〈JHi
(X(s))Y (s), Y (t)〉 ds≤

n
∑

i=1

ciβiτi ‖Y (t)‖2+
n
∑

i=1

ciβi

t
∫

t−τi

‖Y (s)‖2 ds,

r′(t)

r2(t)

n
∑

i=1

1
∫

0

〈Ci(t)Hi(σX), X〉 dσ ≥ r′(t)

2r2(t)

n
∑

i=1

ciδi ‖X‖2 ≥ 0,

and

1

r(t)

n
∑

i=1

1
∫

0

〈C′
i(t)Hi(σX), X〉 dσ ≤ 0.

From these estimates and assumptions (A6) we have that

V ′ ≤
(

R− r′(t)

r(t)

)

‖Y (t)‖2 +
n
∑

i=1

(ciβiτi + σiδi) ‖Y (t)‖2 +
n
∑

i=1

(ciβi

+σi)

t
∫

t−τi

‖Y (s)‖2 ds.

Let

τ∗ = max{τ1, τ2, . . . , τn}
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and

σ =

n
∑

i=1

σi =

n
∑

i=1

ciβi.

Therefore, in view of the discussion and (A7), we can finalize that

V ′ ≤
(

R+ 2στ∗ − r′(t)

r2(t)

)

‖Y (t)‖2 ≤ 0.

This implies that Lyapunov functional V is decreasing along the trajectories of
system (2).

Since all the functions appearing in equation (1) are continuous, then it is obvious
that there exists at least a solution of equation (1) defined on [t0, t0 + δ] for some
δ > 0. We need to show that the solution can be extended to the entire interval
[t0,∞). We assume on the contrary that there is a first time T < ∞ such that the
solution exists on [t0, T ) and

lim
t→T−

(‖X‖+ ‖Y ‖) = ∞. (8)

Let (X(t), Y (t)) be such a solution of system (2) with the initial condition
(X0, Y0). Since V (t) is a positive and decreasing function on the trajectories of
system (2), then in view of inequality (6), we get

1

2
‖Y (T )‖2 + 1

2r(T )

(

n
∑

i=1

ciδi

)

‖X(T )‖2 ≤ V0,

where V0 = V (t0, X0, Y0). From the last inequality we have that there exists a
positive constant L such that ‖X(T )‖ ≤ L and ‖X(T )‖ ≤ L as t → T−. Hence,
we conclude that T < ∞ is not possible, we must have T = ∞. This completes the
proof of the theorem.

Example 1. As a special case of Eq. (1), let us take for n = 2 that

r(t) = e3t,

A(t) =

[

1 + 2t2 t2

t2 1 + 2t2

]

, F (X,Y ) =

[

2 + 1
1+x2

1
+y2

1

0

0 2 + 1
1+x2

1
+y2

1

]

,

B(t) =

[

2 + t2 0
0 2 + t2

]

, E(Y ) =

[

y31 + 2y1
y32 + 2y2

]

,

C1(t) =

[

2 + 2e−2t e−2t

e−2t 2 + 2e−2t

]

, H1(X) =

[

x1(t− 0.01) + arctan(x1(t− 0.01))
x2(t− 0.01) + arctan(x2(t− 0.01))

]

,

C2(t) =

[

2 + 2e−3t e−3t

e−3t 2 + 2e−3t

]

, H2(X) =

[

x1(t− 0.02) + arctan(x1(t− 0.02))
x2(t− 0.02) + arctan(x2(t− 0.02))

]

,
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and

K(t, s) =

[

2t
(t2+1)2 0

0 2t
(t2+1)2

]

.

It is obvious that

1

r(t)
=

1

e3t
≤ 1 and

r′(t)

r(t)
=

3e3t

e3t
= 3,

also clearly, A(t) and F (X,Y ) are symmetric and commute with each other. Hence,
by an elementary method, one can easily find eigenvalues of the matrices as follows:

λ1(F (X,Y )) = λ2(F (X,Y )) = 2 +
1

1 + x2
1 + y21

,

and

λ1(A(t)) = 1 + t2, λ2(A(t)) = 1 + 3t2,

so that λi(F (X,Y )) ≥ f = 2 and λi(A(t)) ≥ a = 1, (i = 1, 2).
The Jacobian matrices of JE(Y ), JH1

(X) and JH2
(X) are given by

JE(Y ) =

[

3y21 + 2 0
0 3y22 + 2

]

,

JH1
(X) =

[

1 + (1 + x1(t− 0.01))−1 0
0 1 + (1 + x2(t− 0.01))−1

]

,

and

JH2
(X) =

[

1 + (1 + x1(t− 0.02))−1 0
0 1 + (1 + x2(t− 0.02))−1

]

.

It can be easily seen that B(t), JE(Y ); Ci(t), JHi
(X); and C′

i(t), JHi
(X) are sym-

metric matrices and commute with each other. Withal, one can easily find eigenval-
ues of the matrices as follows:

λi(JE(Y )) ≥ ε = 2, λi(B(t)) ≥ b = 2, 1 = δi ≤ λi(JHi
(X)) ≤ βi = 2,

and

λi(Ci(t)) ≥ ci = 2, λi(C
′
i(t)) ≤ 0, (i = 1, 2).

Further, it follows that

t
∫

0

‖K(t, s)‖ ds+
∞
∫

t

‖K(u, t)‖ du =
2
√
2t

(t2 + 1)2

t
∫

0

ds+

∞
∫

t

2
√
2u

(u2 + 1)2
du

=

√
2(3t2 + 1)

(t2 + 1)2
≤

√
2 = R.

Thus, all the assumptions of the theorem are satisfied. So, we can conclude that all
solutions shown in Figure 1 are continuable and bounded for the special case chosen.
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Figure 1: Time evolutions of the states X(t) and Y(t)
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[23] C.Tunç, Uniformly stability and boundedness of solutions of second order nonlinear
delay differential equations, Appl. Comput. Math. 10(2011), 449–462.
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