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1. Introduction

In this paper, we study the first-order neutral differential equation

d

dt

[

x(t) + P1(t)x(t− τ1) + P2(t)x(t + τ2)
]

+Q1(t)g1(x(t − σ1))−Q2(t)g2(x(t+ σ2))− f(t) = 0,
(1)

where Pi ∈ C([t0,∞),R), Qi ∈ C([t0,∞), [0,∞)), i = 1, 2. τi > 0 and σi ≥ 0,
i = 1, 2. f ∈ C([t0,∞),R) and gi ∈ C(R,R). We assume that gi, i = 1, 2 satisfy the
local Lipschitz condition and xgi(x) > 0, i = 1, 2, for x 6= 0.

The problem of oscillation of solutions of neutral functional differential equations
is of both theoretical and practical interest. Recently, there has been an interest in
establishing the oscillatory and the non-oscillatory behavior of first, second, third
and higher order neutral functional differential equations. In 2002, Zhou and Zhang
[31] extended the results of Kulenović and Hadžiomerspahić in [18] to a higher order
linear neutral delay differential equation of the form

dn

dtn
[x(t) + cx(t− τ)] + (−1)n+1[P (t)x(t− σ)−Q(t)x(t− σ)] = 0.

In 2005, the existence of non-oscillatory solutions of first-order linear neutral delay
differential equations of the form

d

dt
[x(t) + P (t)x(t − τ)] +Q1(t)x(t − σ1)−Q2(t)x(t − σ2) = 0,
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was investigated by Zhang et al. [30] and in the same year, Yu and Wang [29]
studied non-oscillatory solutions of second-order nonlinear neutral delay equations
of the form

[

r(t)[x(t) + P (t)x(t− τ)]′
]′

+Q1(t)f(x(t− σ1))−Q2(t)g(x(t − σ2)) = 0.

For more related works, we refer the reader to papers [1, 4, 5, 7, 8, 9, 10, 12, 13, 16,
17, 20, 21, 22, 23, 24, 25, 26, 28, 32] and books [2, 3, 6, 14, 15, 19, 27].

However, to the best of our knowledge, there are no results of the existence of
non-oscillatory solutions for the first-order neutral differential equations having both
delay and advance terms. Motivated by the works mentioned above, in this paper,
we study the existence of non-oscillatory solutions for (1).

Let m = max{τ1, σ1, σ2}. By a solution of (1) we mean a function x ∈ C([t1 −
m,∞),R), for some t1 ≥ t0, such that x(t) + P1(t)x(t − τ1) + P2(t)x(t + τ2) is
continuously differentiable on [t1,∞) and (1) is satisfied for t ≥ t1.

As customary, a solution of (1) is said to be oscillatory if it has arbitrarily large
zeros. Otherwise the solution is called non-oscillatory.

The following theorem will be used to prove the main results in the next section.

Theorem 1 (Banach’s Contraction Mapping Principle, see [11]). A contraction

mapping on a complete metric space has exactly one fixed point.

2. Main results

To show that an operator S satisfies the conditions for the contraction mapping
principle, we consider different cases for the ranges of the coefficients P1(t) and
P2(t).

Theorem 2. Assume that 0 ≤ P1(t) ≤ p1 < 1, 0 ≤ P2(t) ≤ p2 < 1− p1 and

∫

∞

t0

Qi(s)ds < ∞, i = 1, 2, and

∫

∞

t0

|f(s)|ds < ∞; (2)

then (1) has a bounded non-oscillatory solution.

Proof. Let Λ be the set of all continuous and bounded functions on [t0,∞) with
the supremum norm. Set

Ω = {x ∈ Λ : M1 ≤ x(t) ≤ M2, t ≥ t0}.

It is clear that Ω is a bounded, closed and convex subset of Λ.
Let Li, i = 1, 2 denote the Lipschitz constants of functions gi, i = 1, 2 on the set

Ω, and L = max{L1, L2}, βi = max
x∈Ω

gi(x), i = 1, 2, . . . Because of (2), we can choose

t1 > t0,
t1 ≥ t0 +max{τ1, σ1, σ2} (3)

sufficiently large such that
∫

∞

t

[

Q1(s)β1 + |f(s)|
]

ds ≤ M2 − α, t ≥ t1, (4)
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∫

∞

t

[

Q2(s)β2 + |f(s)|
]

ds ≤ α− (p1 + p2)M2 −M1, t ≥ t1, (5)

and
∫

∞

t

[

Q1(s) +Q2(s)
]

ds ≤
1− (p1 + p2)

L
, t ≥ t1, (6)

where M1 and M2 are positive constants such that

(p1 + p2)M2 +M1 < M2 and α ∈
(

(p1 + p2)M2 +M1,M2

)

.

Consider the operator S : Ω → Λ defined by

(Sx)(t) =



















α− P1(t)x(t− τ1)− P2(t)x(t + τ2)

+

∫

∞

t

[

Q1(s)g1(x(s − σ1))−Q2(s)g2(x(s+ σ2))− f(s)
]

ds, t ≥ t1,

(Sx)(t1), t0 ≤ t ≤ t1.

Clearly, Sx is continuous. For t ≥ t1 and x ∈ Ω, it follows from (4) and (5) that

(Sx)(t) ≤α+

∫

∞

t

[

Q1(s)g1(x(s − σ1))− f(s)
]

ds

≤α+

∫

∞

t

[

Q1(s)β1 + |f(s)|
]

ds

≤M2,

and

(Sx)(t) ≥α− P1(t)x(t − τ1)− P2(t)x(t + τ2)

−

∫

∞

t

[

Q2(s)g2(x(s+ σ2)) + f(s)
]

ds

≥α− p1M2 − p2M2 −M1

≥M1.

This means that SΩ ⊂ Ω. Since Ω is a bounded, closed, convex subset of Λ, in order
to apply the Banach contraction principle we have to show that S is a contraction
mapping on Ω. For x1, x2 ∈ Ω and t ≥ t1,

∣

∣(Sx1)(t) − (Sx2)(t)
∣

∣

≤ P1(t)|x1(t− τ1)− x2(t− τ1)|+ P2(t)|x1(t+ τ2)− x2(t+ τ2)|

+

∫

∞

t

Q1(s)|g1(x1(s− σ1))− g1(x2(s− σ1))|ds

+

∫

∞

t

Q2(s)|g2(x1(s+ σ2))− g2(x2(s+ σ2))|ds
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or by (6)

∣

∣(Sx1)(t) − (Sx2)(t)
∣

∣ ≤ ‖x1 − x2‖

(

p1 + p2 + L

∫

∞

t

[Q1(s) +Q2(s)] ds

)

≤ ‖x1 − x2‖

[

p1 + p2 + L ·
1− (p1 + p2)

L

]

= ‖x1 − x2‖,

which implies that
‖Sx1 − Sx2‖ ≤ ‖x1 − x2‖,

which shows that S is a contraction mapping on Ω. Thus, S has a unique fixed point
which is a positive and bounded solution of (1). This completes the proof.

Theorem 3. Assume that 0 ≤ P1(t) ≤ p1 < 1, p1 − 1 < p2 ≤ P2(t) ≤ 0 and (2)
hold; then (1) has a bounded non-oscillatory solution.

Proof. Let Λ be the set of all continuous and bounded functions on [t0,∞) with
the supremum norm. Set

Ω = {x ∈ Λ : N1 ≤ x(t) ≤ N2, t ≥ t0}.

It is clear that Ω is a bounded, closed and convex subset of Λ.
Let Li, i = 1, 2 denote the Lipschitz constants of functions gi, i = 1, 2 on the set

Ω, and L = max{L1, L2}, βi = max
x∈Ω

gi(x), i = 1, 2, . . . Because of (2), we can choose

a t1 > t0,
t1 ≥ t0 +max{τ1, σ1, σ2}

sufficiently large such that

∫

∞

t

[

Q1(s)β1 + |f(s)|
]

ds ≤ (1 + p2)N2 − α, t ≥ t1, (7)

∫

∞

t

[

Q2(s)β2 + |f(s)|
]

ds ≤ α− p1N2 −N1, t ≥ t1, (8)

and
∫

∞

t

[

Q1(s) +Q2(s)
]

ds ≤
1− (p1 + p2)

L
, t ≥ t1, (9)

where N1 and N2 are positive constants such that

N1 + p1N2 < (1 + p2)N2 and α ∈ (N1 + p1N2, (1 + p2)N2).

Consider the operator S : Ω → Λ defined by

(Sx)(t) =



















α− P1(t)x(t − τ1)− P2(t)x(t + τ2)

+

∫

∞

t

[

Q1(s)g1(x(s− σ1))−Q2(s)g2(x(s + σ2))− f(s)
]

ds, t ≥ t1,

(Sx)(t1), t0 ≤ t ≤ t1.
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Obviously, Sx is continuous. For t ≥ t1 and x ∈ Ω, it follows from (7) and (8) that

(Sx)(t) ≤α− p2N2 +

∫

∞

t

[

Q1(s)β1 + |f(s)|
]

ds

≤N2,

and

(Sx)(t) ≥α− p1N2 −

∫

∞

t

[

Q2(s)β2 + |f(s)|
]

ds

≥N1.

This proves that SΩ ⊂ Ω. Since Ω is a bounded, closed, convex subset of Λ, in order
to apply the Banach contraction principle we have to show that S is a contraction
mapping on Ω. For x1, x2 ∈ Ω and t ≥ t1, by using (9), we can obtain

∣

∣(Sx1)(t) − (Sx2)(t)
∣

∣ ≤ ‖x1 − x2‖

(

p1 + p2 + L

∫

∞

t

[Q1(s) +Q2(s)] ds

)

≤ ‖x1 − x2‖

[

p1 + p2 + L ·
1− (p1 + p2)

L

]

= ‖x1 − x2‖.

This implies
‖Sx1 − Sx2‖ ≤ ‖x1 − x2‖,

which shows that S is a contraction mapping on Ω. Thus, S has a unique fixed point
which is a positive and bounded solution of (1). This completes the proof.

Theorem 4. Assume that 1 < p1 ≤ P1(t) ≤ p10 < ∞, 0 ≤ P2(t) ≤ p2 < p1 − 1 and

(2) hold; then (1) has a bounded non-oscillatory solution.

Proof. Let Λ be the set of all continuous and bounded functions on [t0,∞) with
the supremum norm. Set

Ω = {x ∈ Λ : M3 ≤ x(t) ≤ M4, t ≥ t0}.

It is clear that Ω is a bounded, closed and convex subset of Λ.
Let Li, i = 1, 2 denote the Lipschitz constants of functions gi, i = 1, 2 on the set

Ω, and L = max{L1, L2}, βi = max
x∈Ω

gi(x), i = 1, 2, . . . In view of (2), we can choose

t1 > t0,
t1 + τ1 ≥ t0 +max{σ1, σ1} (10)

sufficiently large such that

∫

∞

t

[

Q1(s)β1 + |f(s)|
]

ds ≤ p1M4 − α, t ≥ t1, (11)

∫

∞

t

[

Q2(s)β2 + |f(s)|
]

ds ≤ α− p10M3 − (1 + p2)M4, t ≥ t1, (12)
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and
∫

∞

t

[

Q1(s) +Q2(s)
]

ds ≤
(p1 + p2)− 1

L
, t ≥ t1, (13)

where M3 and M4 are positive constants such that

p10M3 + (1 + p2)M4 < p1M4 and α ∈
(

p10M3 + (1 + p2)M4, p1M4

)

.

Define a mapping S : Ω → Λ as follows:

(Sx)(t) =



























1

P1(t+ τ1)

{

α− x(t+ τ1)− P2(t+ τ1)x(t + τ1 + τ2)

+

∫

∞

t+τ1

[

Q1(s)g1(x(s− σ1))−Q2(s)g2(x(s+ σ2))− f(s)
]

ds
}

, t ≥ t1,

(Sx)(t1), t0 ≤ t ≤ t1.

Clearly, Sx is continuous. For t ≥ t1 and x ∈ Ω, from (11) and (12) it follows that

(Sx)(t) ≤
1

P1(t+ τ1)

(

α+

∫

∞

t

[

Q2(s)β2 + |f(s)|
]

ds

)

≤
1

p1

(

α+

∫

∞

t

[

Q2(s)β2 + |f(s)|
]

ds

)

≤M4,

and

(Sx)(t) ≥
1

P1(t+ τ1)

(

α− (1 + p2)M4 −

∫

∞

t

[

Q2(s)β2 + |f(s)|
]

ds

)

≥
1

p10

(

α− (1 + p2)M4 −

∫

∞

t

[

Q2(s)β2 + |f(s)|
]

ds

)

≥M3.

This means that SΩ ⊂ Ω. Since Ω is a bounded, closed, convex subset of Λ, in order
to apply the Banach contraction principle we have to show that S is a contraction
mapping on Ω. For x1, x2 ∈ Ω and t ≥ t1, by using (13), we can obtain

∣

∣(Sx1)(t)− (Sx2)(t)
∣

∣ ≤
1

p1
‖x1 − x2‖

(

1 + p2 + L

∫

∞

t

(Q1(s) +Q2(s)) ds

)

≤ ‖x1 − x2‖.

This implies
‖Sx1 − Sx2‖ ≤ ‖x1 − x2‖,

which shows that S is a contraction mapping on Ω. Thus, S has a unique fixed point
which is a positive and bounded solution of (1). This completes the proof.

Theorem 5. Assume that 1 < p1 ≤ P1(t) ≤ p10 < ∞, 1− p1 < p2 ≤ P2(t) ≤ 0 and

(2) hold; then (1) has a bounded non-oscillatory solution.
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Proof. Let Λ be the set of all continuous and bounded functions on [t0,∞) with
the supremum norm. Set

Ω = {x ∈ Λ : N3 ≤ x(t) ≤ N4, t ≥ t0}.

It is clear that Ω is a bounded, closed and convex subset of Λ.
Let Li, i = 1, 2 denote the Lipschitz constants of functions gi, i = 1, 2 on the set

Ω, and L = max{L1, L2}, βi = max
x∈Ω

gi(x), i = 1, 2, . . . In view of (2), we can choose

t1 > t0,
t1 + τ1 ≥ t0 +max{σ1, σ1}

sufficiently large such that
∫

∞

t

[

Q1(s)β1 + |f(s)|
]

ds ≤ (p1 + p2)N4 − α, t ≥ t1, (14)

∫

∞

t

[

Q2(s)β2 + |f(s)|
]

ds ≤ α− p10N3 −N4, t ≥ t1, (15)

and
∫

∞

t

[

Q1(s) +Q2(s)
]

ds ≤
(p1 + p2)− 1

L
, t ≥ t1, (16)

where N3 and N4 are positive constants such that

p10N3 +N4 < (p1 + p2)N4 and α ∈
(

p10N3 +N4, (p1 + p2)N4

)

.

Define a mapping S : Ω → Λ as follows:

(Sx)(t) =



























1

P1(t+ τ1)

{

α− x(t+ τ1)− P2(t+ τ1)x(t + τ1 + τ2)

+

∫

∞

t+τ1

[

Q1(s)g1(x(s− σ1))−Q2(s)g2(x(s+ σ2))− f(s)
]

ds
}

, t ≥ t1,

(Sx)(t1), t0 ≤ t ≤ t1.

Clearly, Sx is continuous. For t ≥ t1 and x ∈ Ω, from (14) and (15) it follows that

(Sx)(t) ≤
1

P1(t+ τ1)

(

α− p2N4 +

∫

∞

t

[

Q1(s)β1 + |f(s)|
]

ds

)

≤
1

p1

(

α− p2N4 +

∫

∞

t

[

Q1(s)β1 + |f(s)|
]

ds

)

≤ N4,

and

(Sx)(t) ≥
1

P1(t+ τ1)

(

α−N4 −

∫

∞

t

[

Q2(s)β2 + |f(s)|
]

ds

)

≥
1

p10

(

α−N4 −

∫

∞

t

[

Q2(s)β2 + |f(s)|
]

ds

)

≥ N3.
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This proves that SΩ ⊂ Ω. To apply the Banach contraction principle it remains to
show that S is a contraction mapping on Ω. For x1, x2 ∈ Ω and t ≥ t1, by using
(16), we can have

∣

∣(Sx1)(t)− (Sx2)(t)
∣

∣ ≤
1

p1
‖x1 − x2‖

(

1− p2 + L

∫

∞

t

[

Q1(s) +Q2(s)
]

ds

)

≤ ‖x1 − x2‖.

This implies
‖Sx1 − Sx2‖ ≤ ‖x1 − x2‖,

which shows that S is a contraction mapping on Ω. Thus, S has a unique fixed point
which is a positive and bounded solution of (1). This completes the proof.

Theorem 6. Assume that −1 < p1 ≤ P1(t) ≤ 0, 0 ≤ P2(t) ≤ p2 < 1 + p1 and (2)
hold; then (1) has a bounded non-oscillatory solution.

Proof. Let Λ be the set of all continuous and bounded functions on [t0,∞) with
the supremum norm. Set

Ω = {x ∈ Λ : M5 ≤ x(t) ≤ M6, t ≥ t0}.

It is clear that Ω is a bounded, closed and convex subset of Λ.
Let Li, i = 1, 2 denote the Lipschitz constants of functions gi, i = 1, 2 on the set

Ω, and L = max{L1, L2}, βi = max
x∈Ω

gi(x), i = 1, 2, . . . Because of (2), we can choose

t1 > t0,
t1 ≥ t0 +max{τ1, σ1, σ2}

sufficiently large such that

∫

∞

t

[

Q1(s)β1 + |f(s)|
]

ds ≤ (1 + p1)M6 − α, t ≥ t1, (17)

∫

∞

t

[

Q2(s)β2 + |f(s)|
]

ds ≤ α− p2M6 −M5, t ≥ t1 , (18)

and
∫

∞

t

[

Q1(s) +Q2(s)
]

ds ≤
1 + p1 − p2

L
, t ≥ t1, (19)

where M5 and M6 are positive constants such that

M5 + p2M6 < (1 + p1)M6 and α ∈ (M5 + p2M6, (1 + p1)M6) .

Define an operator S : Ω → Λ as follows:

(Sx)(t) =



















α− P1(t)x(t− τ1)− P2(t)x(t + τ2)

+

∫

∞

t

[

Q1(s)g1(x(s − σ1))−Q2(s)g2(x(s+ σ2))− f(s)
]

ds, t ≥ t1,

(Sx)(t1), t0 ≤ t ≤ t1.
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Obviously, Sx is continuous. For t ≥ t1 and x ∈ Ω, from (17) and (18) it follows
that

(Sx)(t) ≤α− p1M6 +

∫

∞

t

[

Q1(s)β1 + |f(s)|
]

ds

≤M6,

and

(Sx)(t) ≥α− p2M6 −

∫

∞

t

[

Q2(s)β2 + |f(s)|
]

ds

≥M5.

This proves that SΩ ⊂ Ω. To apply the Banach contraction principle it remains to
show that S is a contraction mapping on Ω. For x1, x2 ∈ Ω and t ≥ t1, by using
(19), we can get

∣

∣(Sx1)(t)− (Sx2)(t)
∣

∣ ≤ ‖x1 − x2‖

(

−p1 + p2 + L

∫

∞

t

[

Q1(s) +Q2(s)
]

ds

)

≤ ‖x1 − x2‖,

which implies that

‖Sx1 − Sx2‖ ≤ ‖x1 − x2‖,

where the supremum norm is used. Thus, S is a contraction mapping on Ω. Thus
S has a unique fixed point which is a positive and bounded solution of (1). This
completes the proof.

Theorem 7. Assume that −1 < p1 ≤ P1(t) ≤ 0, −1− p1 < p2 ≤ P2(t) ≤ 0 and (2)
hold; then (1) has a bounded non-oscillatory solution.

Proof. Let Λ be the set of continuous and bounded functions on [t0,∞) with the
supremum norm. Set

Ω = {x ∈ Λ : N5 ≤ x(t) ≤ N6, t ≥ t0}.

It is clear that Ω is a bounded, closed and convex subset of Λ.
Let Li, i = 1, 2 denote the Lipschitz constants of functions gi, i = 1, 2 on the set

Ω, and L = max{L1, L2}, βi = max
x∈Ω

gi(x), i = 1, 2, . . . Because of (2), we can choose

t1 > t0,

t1 ≥ t0 +max{τ1, σ1, σ2}

sufficiently large such that

∫

∞

t

[

Q1(s)β1 + |f(s)|
]

ds ≤ (1 + p1 + p2)N6 − α, t ≥ t1, (20)

∫

∞

t

[

Q2(s)β2 + |f(s)|
]

ds ≤ α−N5, t ≥ t1, (21)
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and
∫

∞

t

[

Q1(s) +Q2(s)
]

ds ≤
1 + p1 + p2

L
, t ≥ t1, (22)

where N5 and N6 are positive constants such that

N5 < (1 + p1 + p2)N6 and α ∈ (N5, (1 + p1 + p2)N6).

Define an operator S : Ω → Λ as follows:

(Sx)(t) =



















α− P1(t)x(t − τ1)− P2(t)x(t + τ2)

+

∫

∞

t

[

Q1(s)g1(x(s− σ1))−Q2(s)g2(x(s + σ2))− f(s)
]

ds, t ≥ t1,

(Sx)(t1), t0 ≤ t ≤ t1.

Obviously, Sx is continuous. For t ≥ t1 and x ∈ Ω, from (20) and (21) it follows
that

(Sx)(t) ≤α− p1N6 − p2N6 +

∫

∞

t

[

Q1(s)β1 + |f(s)|
]

ds

≤N6,

and

(Sx)(t) ≥α−

∫

∞

t

[

Q2(s)β2 + |f(s)|
]

ds

≥N5.

This proves that SΩ ⊂ Ω. To apply the Banach contraction principle it remains to
show that S is a contraction mapping on Ω. Thus, for x1, x2 ∈ Ω and t ≥ t1, by
using (22), we can obtain

|(Sx1)(t)− (Sx2)(t)| ≤ ‖x1 − x2‖

(

−p1 − p2 + L

∫

∞

t

[

Q1(s) +Q2(s)
]

ds

)

≤ ‖x1 − x2‖,

which implies that
‖Sx1 − Sx2‖ ≤ ‖x1 − x2‖,

where the supremum norm is used. Thus, S is a contraction mapping on Ω. Thus
S has a unique fixed point which is a positive and bounded solution of (1). This
completes the proof.

Theorem 8. Assume that −∞ < p10 ≤ P1(t) ≤ p1 < −1, 0 ≤ P2(t) ≤ p2 < −p1− 1
and (2) hold; then (1) has a bounded non-oscillatory solution.

Proof. Let Λ be the set of all continuous and bounded functions on [t0,∞) with
the supremum norm. Set

Ω = {x ∈ Λ : M7 ≤ x(t) ≤ M8, t ≥ t0}.
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It is clear that Ω is a bounded, closed and convex subset of Λ.
Let Li, i = 1, 2 denote the Lipschitz constants of functions gi, i = 1, 2 on the set

Ω, and L = max{L1, L2}, βi = max
x∈Ω

gi(x), i = 1, 2, . . . In view of (2), we can choose

t1 > t0,
t1 + τ1 ≥ t0 +max{σ1, σ1}

sufficiently large such that

∫

∞

t

[

Q1(s)β1 + |f(s)|
]

ds ≤ p10M7 + α, t ≥ t1, (23)

∫

∞

t

[

Q2(s)β2 + |f(s)|
]

(s)ds ≤ (−p1 − 1− p2)M8 − α, t ≥ t1, (24)

and
∫

∞

t

[

Q1(s) +Q2(s)
]

ds ≤
−1− p1 − p2

L
, t ≥ t1, (25)

where M7 and M8 are positive constants such that

−p10M7 < (−p1 − 1− p2)M8 and α ∈ (−p10M7, (−p1 − 1− p2)M8) .

Define a mapping S : Ω → Λ as follows:

(Sx)(t) =



























−1

P1(t+ τ1)

{

α+ x(t+ τ1) + P2(t+ τ1)x(t + τ1 + τ2)

−

∫

∞

t+τ1

[

Q1(s)g1(x(s− σ1))−Q2(s)g2(x(s+ σ2))− f(s)
]

ds
}

, t ≥ t1

(Sx)(t1), t0 ≤ t ≤ t1.

Clearly, Sx is continuous. For t ≥ t1 and x ∈ Ω, it follows from (23) and (24) that

(Sx)(t) ≤
−1

p1

(

α+M8 + p2M8 +

∫

∞

t

[

Q1(s)β1 + |f(s)|
]

ds

)

≤M8,

and

(Sx)(t) ≥
−1

p10

(

α−

∫

∞

t

[

Q2(s)β2 + |f(s)|
]

ds

)

≥M7.

This implies that SΩ ⊂ Ω. To apply the Banach contraction principle it remains to
show that S is a contraction mapping on Ω. Thus, for x1, x2 ∈ Ω and t ≥ t1, by
using (25), we get

|(Sx1)(t)− (Sx2)(t)| ≤
−1

p1
‖x1 − x2‖

(

1 + p2 + L

∫

∞

t

[

Q1(s) +Q2(s)
]

ds

)

≤ ‖x1 − x2‖.
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This implies
‖Sx1 − Sx2‖ ≤ ‖x1 − x2‖,

where the supremum norm is used. Thus, S is a contraction mapping on Ω. Thus
S has a unique fixed point which is a positive and bounded solution of (1). This
completes the proof.

Theorem 9. Assume that −∞ < p10 ≤ P1(t) ≤ p1 < −1, p1 + 1 < p2 ≤ P2(t) ≤ 0
and (2) hold; then (1) has a bounded non-oscillatory solution.

Proof. Let Λ be the set of continuous and bounded functions on [t0,∞) with the
supremum norm. Set

Ω = {x ∈ Λ : N7 ≤ x(t) ≤ N8, t ≥ t0}.

It is clear that Ω is a bounded, closed and convex subset of Λ.
Let Li, i = 1, 2 denote the Lipschitz constants of functions gi, i = 1, 2 on the set

Ω, and L = max{L1, L2}, βi = max
x∈Ω

gi(x), i = 1, 2, . . . In view of (2), we can choose

t1 > t0,
t1 + τ1 ≥ t0 +max{σ1, σ1}

sufficiently large such that

∫

∞

t

[

Q1(s)β1 + |f(s)|
]

ds ≤ p10N7 + p2N8 + α, t ≥ t1, (26)

∫

∞

t

[

Q2(s)β2 + |f(s)|
]

ds ≤ (−p1 − 1)N8 − α, t ≥ t1, (27)

and
∫

∞

t

[

Q1(s) +Q2(s)
]

ds ≤
p2 − p1 − 1

L
, t ≥ t1, (28)

where N7 and N8 are positive constants such that

−p10N7 − p2N8 < (−p1 − 1)N8 and α ∈
(

− p10N7 − p2N8, (−p1 − 1)N8

)

.

Define a mapping S : Ω → Λ as follows:

(Sx)(t) =























−1

P1(t+ τ1)

{

α+ x(t+ τ1) + P2(t+ τ1)x(t + τ1 + τ2)

−

∫

∞

t+τ1

[

Q1(s)g1(x(s− σ1))−Q2(s)g2(x(s+ σ2))− f(s)
]

ds
}

, t ≥ t1,

(Sx)(t1), t0 ≤ t ≤ t1.

Clearly, Sx is continuous. For t ≥ t1 and x ∈ Ω, from (26) and (27) it follows that

(Sx)(t) ≤
−1

p1

(

α+N8 +

∫

∞

t

[

Q1(s)β1 + |f(s)|
]

ds

)

≤N8
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and

(Sx)(t) ≥
−1

p10

(

α+ p2N8 −

∫

∞

t

[

Q2(s)β2 + |f(s)|
]

ds

)

≥N7.

These prove that SΩ ⊂ Ω. To apply the Banach contraction principle it remains to
show that S is a contraction mapping on Ω. Thus, for x1, x2 ∈ Ω, t ≥ t1, by using
(28), we can obtain

|(Sx1)(t)− (Sx2)(t)| ≤
−1

p1
‖x1 − x2‖

(

1− p2 + L

∫

∞

t

[

Q1(s) +Q2(s)
]

ds

)

≤ ‖x1 − x2‖.

This implies
‖Sx1 − Sx2‖ ≤ ‖x1 − x2‖,

where the supremum norm is used. Hence, S is a contraction mapping on Ω. Thus
S has a unique fixed point which is a positive and bounded solution of (1). This
completes the proof.
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[15] I. Györi, G. Ladas, Oscillation Theory of Delay Differential Equations With Appli-

cations, Clarendon Press, Oxford, 1991.
[16] Z.Han, T. Li, C. Zhang, S. Sun, Oscillatory behavior of solutions of certain third-

order mixed neutral functional differential equations, Bull. Malays. Math. Sci. Soc.
35(2012), 611–620.

[17] Y. Jiang, Y. Fu, H.Wang, T. Li, Oscillation of forced second-order neutral delay

differential equations, Adv. Difference Equ. 2015(2015), 1.
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