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General Abstract 

Ecological networks, such as food webs, offer a powerful framework for understanding the 

structure, function, and stability of biotic communities. However, logistical constraints related 

to traditional food web construction methods restrict their widespread use in ecological 

studies. Alternative methods, such as size spectra analysis, exist which incorporate much of the 

variation in food web structure, but are easier to measure. Additionally, advances in 

mechanistic models allow for the inference of pairwise species interactions, potentially scaling 

up to whole-network level measures. 

 The aim of my thesis was to investigate the utility of several of these alternative approaches in 

determining food web structures in degraded ecosystems. In particular, streams impacted by 

Acid Mine Drainage from coal mining. Firstly, I conducted a field survey of 25 stream 

communities across a gradient of acid mine drainage (AMD) inputs on the West Coast of the 

South Island, New Zealand. Comparative size spectra analysis revealed consistent changes to 

the size spectra relationship across the gradient. Size spectra intercepts, or total community 

abundance, were significantly reduced along the gradient. The slopes of size spectra increased 

significantly across the gradient from ~ -1.1 to ~ -0.6, meaning that the proportion of large to 

small bodied individuals decreased less rapidly in effected streams. Size spectra slopes are 

related to trophic transfer efficiency, and shallower slopes observed in AMD impacted streams 

indicate a reduced transfer efficiency. Furthermore, both the largest and smallest body size 

classes were removed from the most heavily impacted streams, leading to a reduction in the 

range of body sizes present by up to two orders of magnitude. Most aquatic food webs are size-

structured, with body size and trophic level generally being positively correlated. Therefore, 

changes in the distribution of body sizes has significant implications for food-web structure.  

Another alternative to traditional food web construction is the use of models and inference 

techniques to predict food web structure. I developed a novel model to predict pairwise species 

interactions within communities. This model is mechanistic, and predicts the ability of species 

to interact based on observed distributions of species traits (e.g. body size). These predictions 

are further refined by taking into account local population densities (e.g. rare species less likely 
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to interact).  This model successfully predicted pairwise species interactions in streams across 

land use types. Importantly, successfully predicting interactions between species also “scaled 

up” and accurately predicted the structure of the whole food web.  

A further derivation of this model was used to infer the structure and stability of stream food 

webs using empirical data on communities across an AMD gradient. The model was modified 

from above in order to predict interaction probabilities, as opposed to link presence/absence. 

By using interaction probabilities, it is possible to assess how variable trophic interactions 

within a community affect estimates of stability. Generally, food webs become small and more 

stable in response to increasing AMD impacts. However, the distribution of the stability metric 

assessed appears to become bimodal, depending on how interaction strengths are estimated. 

This has implications on the restoration of streams impacted by AMD, suggesting that some 

streams may be more easily colonized by extirpated sensitive species post-restoration activities.  

Overall, my findings have increased our understandings of the impacts of AMD to stream 

communities. Furthermore, they support the use of alternative methods, such as size spectra 

analysis, in biomonitoring surveys. The method developed for inferring food web structure has 

the potential to allow ecologists to rapidly assess likely food-web structure across large spatial 

or temporal scales, aiding in the ability to test ecological theories. Finally, the use of 

probabilistic networks to assess network structure represent an important step in taking into 

account the inherent variability of species interactions in ecological studies.  
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Chapter One: Introduction 

Ecological communities are under increasing stress from anthropogenic activities (Rooney and 

McCann 2012, Thompson et al. 2012). Climate change, land use development, resource 

extraction, species extinctions and invasions, all affect natural communities, possibly impacting 

their ability to provide ecological services, and changing their resistance and resilience to future 

disturbances. Although a wealth of research exists documenting the effects of anthropogenic 

stressors on community composition (Clements et al. 2000, Hogsden and Harding 2012a, 

2012b, Byrne, Reid, and Wood 2013), there is a growing recognition that much of the ecological 

services and functionality of a community is dependent upon the species interactions within 

the community, rather than species identity per se (Friberg et al. 2011, Gray et al. 2014). 

Therefore, there is increasing awareness that ecological monitoring and biological assessments 

need to document interactions between species in order to understand the effects of extant 

disturbances, as well as predict responses to future changes (Tylianakis et al. 2010, Gray et al. 

2014).  

An ecological network is a simplified representation of the species and their interactions 

present within a community. Networks can represent a wide variety of biotic interactions 

including but not limited to mutualism (e.g. pollination, seed-dispersal), antagonism (e.g. 

predator-prey, parasite-host) and competition (e.g. soil nutrient limitation in plants; Morales-

Castilla et al. 2015). The study of food webs (e.g. antagonistic trophic interactions) has long 

been a research focus of ecologists (Dunne 2009). However, recent advances in network theory 

have attempted to increase our understanding of a wide range of topics. Among these the 

World Wide Web and other complex networks have provided ecologists with a wealth of new 

tools and methods for use in the study of ecological networks (Poisot, Stouffer, and Kéfi 2016).  

Improving our understanding of how ecological networks respond mechanistically to stress and 

disturbances can elucidate fundamental aspects of ecology, including community assembly, 

biogeography, coexistence, local stability, and ecosystem functioning (Tylianakis et al. 2010, 

Rooney and McCann 2012, Thompson et al. 2012, Morales-Castilla et al. 2015, Poisot, Stouffer, 

and Kéfi 2016). Likewise, it can offer insights to help develop solutions to enable adaptive 
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management in order to maintain ecological services in the face of increasing stress (Layer et al. 

2010, Tylianakis et al. 2010, Gray et al. 2014). Another practical advantage would be by 

understanding functional impairments that are missed by traditional monitoring methods. This 

would enable us to more effectively remediate sites which are currently impacted. 

Food webs - Structure and stability 

Understanding community assembly and stability, as well as ecosystem function and process 

have long been a research focus of ecologists. Community ecologists generally study 

relationships of biodiversity and species co-occurrences, while ecosystem ecologists focus on 

macro-scale function and processes. However, food webs offer a powerful framework for 

incorporating aspects of species richness and biodiversity, as well as the structure, function, 

and stability of communities (Thompson et al. 2012). 

Food webs describe who eats whom by representing species as ‘nodes’ and the interactions 

(e.g. predation) as ‘links’ between nodes. The simplest representations of food webs are as 

binary networks (e.g. only the presence or absence of a link is represented). The structure of 

the food web can thus be described with a number of common network measures as described 

in Bersier, Banašek-Richter & Cattin, (2002). These include network size (S); the number of links 

(L) between species; linkage density (L/S): connectance, or the proportion of potential links 

which occur (C = L / S2); generality and vulnerability, which is a measure of mean number of 

prey per consumer and number of consumer per prey, respectively; number of basal (consume 

no taxa), intermediate (both consume some taxa and are consumed by some taxa), and top 

taxa (not consumed by any taxa; Williams and Martinez 2000, Bersier, Banašek-Richter, and 

Cattin 2002, Thompson et al. 2012). 

The function of food webs, and thus the ecosystem services they provide, is known to be 

influenced by their structure and the strength of the interactions (Strogatz 2001, Pascual and 

Dunne 2006, Thompson et al. 2012). Sea otters in the pacific northwest of North America are 

the archetypal example of this trophic cascade. Reduction in sea otters due to the fur trade 

reduced their top-down predation effects on sea urchins. In response, sea urchin populations 

increased and effectively reduced the distribution of kelp forests, and limited their formation 
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(Estes and Palmisano 1974). It is worth noting that these effects occurred with a significant 

reduction of sea otter populations, and not their complete removal (e.g. a reduction in 

interaction magnitude). Although this example is often used to illustrate the concept of 

keystone species, the mechanism underlying these responses is fundamentally that of food web 

structure.   

In freshwater communities, prolonged drought has been observed to alter food-web structure 

and impact ecosystem functioning (Ledger et al. 2013). Experimental droughts in mesocosms 

altered the community composition of primary producers, reduced the abundance of large-

bodied individuals, and biomass flows shifted to smaller-bodied macroinvertebrates. This 

resulted in a significant reduction in overall secondary production (Ledger et al. 2013). This can 

have implications for the management of fisheries which rely on in situ prey resources, as well 

as terrestrial consumers such as birds, bats and lizards which can rely heavily on the seasonal 

availability of aquatic-terrestrial subsidies (Baxter, Fausch, and Saunders 2005).  

The relationship between food-web structure and stability has received much attention 

(Rooney and McCann 2012). Seminal work by May (1972) using random food web structure and 

randomly sampled interaction strengths, showed a negative relationship between food web 

size and local stability. However, Yodzis (1981) rightly criticized this work as being unrealistic, 

and showed that using empirical food-web structures and plausible interaction strengths led to 

communities with greater stability. Furthermore, Pimm and Lawton (1978) found that 

increasing omnivory (feeding on more than one trophic level) tended to decrease stability. 

These studies suggested a direct link between food-web structure and stability, but the 

proximal mechanisms organizing the structure of food webs remained elusive and spurred 

further research.  

Briand (1983) studied the structure of 40 empirical food webs and found lower levels of 

connectance in habitats with large environmental fluctuations, suggesting that abiotic factors 

placed constraints on food-web structure. Building upon this dataset, Cohen and Briand (1984) 

found that the total number of links was roughly proportional to the total number of species 

within a food web, and that the proportion of links between trophic levels (i.e. basal, 
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intermediate, and top) within a food web was proportional to the number of species within 

each level. Cohen and Newman (1985) proposed the cascade model which organized species 

hierarchically along some theoretical axis and assigned links based on this hierarchy i.e. a 

species can only prey upon species below it in the hierarchy. Constructing food webs using the 

cascade model broadly accounted for the organization of empirical webs, but the identity of the 

axis remained unclear. Further work by Cohen et al. (1993) found that predators are generally 

larger than their prey, and that larger predators have a wider diet breadth (e.g. consume a 

greater range of prey body sizes) than smaller predators. Body size was thus suggested as the 

physical interpretation of the axis on which the cascade model was ordered (Cohen et al. 1993).  

While the structure of food webs has implications on their stability, it is also important to 

understand the strengths of these interactions (Dunne, Williams, and Martinez 2002, Montoya 

et al. 2006, Rooney and McCann 2012). Food webs with a few strong interactions embedded 

within many weak ones are generally more stable than food webs dominated by strong 

interactions (Neutel, Heesterbeek, and de Ruiter 2002, Tylianakis et al. 2010, Tang, Pawar, and 

Allesina 2014, Wootton and Stouffer 2015). Weak interaction strengths may distribute 

perturbations though the community, and dampen oscillations between resources and 

consumers (McCann, Hastings, and Huxel 1998), which increases the likelihood of the 

community returning to an equilibrium state (Neutel et al. 2007). 

Despite the benefits that food web studies have on our understanding of the function and 

stability of ecological communities, they are rarely incorporated into large-scale ecological 

assessments through space or time. This is likely due to the high degree of sampling effort, 

taxonomic expertise, financial cost, and laboratory time necessary to construct detailed food 

webs (Thompson and Townsend 2000, Thompson et al. 2001, Gray et al. 2014). Food webs are 

commonly constructed either from visual identification of gut contents (Jaarsma et al. 1998) or, 

increasingly, a combination of this and stable isotope analysis (Post 2002). Visual gut content 

identification generally works well for large predators that swallow their food whole (e.g. 

Salmonidae). However, for taxa that consume lower trophic levels (e.g. detritus or algae) or 

masticate, shred, or tear their food, this technique has variable use due to the difficulty of 

confidently identifying food items. It often leads to the creation of large aggregate food 
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categories such as “detritus”, or “animal”, making it difficult to define the number and structure 

of food web interactions, or quantify their magnitudes. In order to avoid high degrees of 

aggregation and construct detailed food webs, it is necessary to analyze the diets of a large 

number (e.g. many hundreds; Thompson et al. 2001, Layer et al. 2010) of individuals per 

species. This degree of sampling could impose excessive disturbance on study streams, is 

problematic when studying endangered or rare species, and may be impossible in impacted 

streams, due to the paucity of biota (Hogsden and Harding 2012a).  Because of the high degree 

of sampling effort required, food web nodes are often aggregated to higher taxonomic or 

functional levels (e.g. genus, family, functional feeding groups, trophic guilds; Thompson and 

Townsend 2000, Dunne, Williams, and Martinez 2002). The ability of highly aggregated food 

webs to describe ecological function has been equivocal (Thompson and Townsend 2000, 

Gauzens et al. 2013), making it difficult to compare food webs constructed in this manner. 

However, as long as food web construction is standardized, and similar levels of aggregation are 

used, it is possible to compare the results across food webs (Gauzens et al. 2013). Another 

alternative is to construct “cumulative” or “summary” food webs (Gray et al. 2015). These are 

constructed by including all pairwise interactions, either directly observed or from published 

literature, or a combination of the two methods (Havens 1993, Piechnik, Lawler, and Martinez 

2008, Layer et al. 2010). The use of summary webs assumes that if in an interaction has ever 

been observed between two species, that it will always occur whenever the two species co-

occur (Gray et al. 2015). This method has been rightly criticized for not being sensitive to subtle 

changes in food web structure through space and time (Thompson and Townsend 1999, Gray et 

al. 2015), and conclusions drawn from the use of inferred food web links should be regarded 

with caution (Layer et al. 2010, Poisot, Stouffer, and Gravel 2015). However, alternative 

approaches, such as using the abundance and size range of individuals in a community (i.e., a 

size spectra approach), exist which are easier to measure and vary consistently with food web 

structure (Woodward et al. 2005, Trebilco et al. 2013).  Likewise, recent advances in methods 

for inferring food web structure with a high degree of certainty (e.g. Gravel et al. 2013, 

Morales-Castilla et al. 2015, Bartomeus et al. 2016) make this a useful tool for studying food 

webs across large scales.  
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Food web alternative: Size spectra 

The observation that an organism’s density is negatively related to its size has been noted by 

ecologists for nearly a century (Elton 1927). This pattern holds across all size ranges of 

organisms observed, from bacteria to blue whales (Sheldon, Prakash, and Sutcliffe 1972, 

Blanchard et al. 2017), and has proven, empirically, to be one of the most universal patterns of 

biological organization (e.g. White et al. 2007, Petchey and Belgrano 2010). Furthermore, the 

relationship between body size and abundance has strong theoretical grounding in the 

metabolic theory of ecology (Brown et al. 2004). Because many important biological processes 

(e.g. metabolism, feeding rates, trophic position) correlate with body size, size-spectra 

relationships can be used to explain numerous aspects of biological organization, from the 

individual-, to population-, to whole community-levels (O’Gorman et al. 2012). Size spectra 

studies have aided in our understanding of community function (Dossena et al. 2012), energy 

transfer (Jennings and Blanchard 2004, Trebilco et al. 2013), and have been implicated in 

affecting local stability (Tang, Pawar, and Allesina 2014, Sentis, Binzer, and Boukal 2017). 

Size spectra are constructed by measuring the body size of all individuals from a given unit of 

area. However, the sampling methodology used will obviously place constraints on the body 

sizes collected e.g. mesh size. The body sizes are then usually aggregated in log2 or log10 width 

bins (Jennings, Warr, and Mackinson 2002, Jennings and Blanchard 2004, White, Enquist, and 

Green 2008), and the frequency of observations in each bin is normalized by the width of each 

bin, respectively (White et al. 2007, White, Enquist, and Green 2008, Sprules and Barth 2015). 

When this relationship is plotted on log axes, the resulting curve is generally a linear or slightly 

parabolic dome with a slope coefficient of approximately -1. The slope is related to the 

efficiency of energy transfer from resources to consumers (O’Gorman et al. 2012, Trebilco et al. 

2013), while the intercept generally represents the overall community abundance (O’Gorman 

et al. 2012, Sprules and Barth 2015).  Therefore, the shape of the size spectra relationship has 

important implications for food web structure and ecological functions.  

From an ecological management perspective changes in size spectra have been suggested as an 

important indicator of ecological health (Reuman et al. 2008, Petchey and Belgrano 2010). 

Specifically size spectra have been observed to respond to human impacts, including land use 
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(Martínez et al. 2016), stream warming (e.g. climate change; Dossena et al. 2012, O’Gorman et 

al. 2012), increased nutrients (Morin, Bourassa, and Cattaneo 2001), and commercial 

exploitation (Jennings and Blanchard 2004). Because size spectra are taxonomy-free 

descriptions of a community,  they have potential as an assessment tool for novel stressors and 

impacts, particularly in systems which lack empirical data on taxon-specific sensitivities.  

Inferring food web structure 

Understanding the mechanisms that determine the ability for species to interact with one 

another is a fundamental question for ecologists. Knowledge of these mechanisms may allow 

pairwise species interactions to be scaled up to interpret the structure of whole networks. Early 

attempts to achieve this ambitious goal included the cascade (Cohen, Newman, and Briand 

1985) and niche model (Williams and Martinez 2000) of food webs. The cascade model orders 

all species along a single niche axis, and assumes hierarchical feeding where each species has a 

probability of consuming species below it on the niche axis. This model reconstructed empirical 

food web data reasonably well, but failed to capture some of the natural variability observed in 

more realistic food webs, including trophic loops (species A eats B, B eats C, and C eats A) and 

cannibalism (Thompson et al. 2012). The niche model is a slight modification of the cascade 

model, and assigns a feeding range to each consumer along the axis. This loosens the strict 

hierarchy of the cascade model, by allowing consumers to predate upon species slightly larger 

than themselves (allowing for the formation of loops), as well as cannibalism (Williams and 

Martinez 2000). 

The niche axis in both of these models is generally assumed to be body size. Predators are often 

larger than their prey, and measuring body size allows for the inference of food web structure. 

Gravel et al. (2013) used empirical data on predator-prey body size pairs from different habitats 

to develop a method for inferring parameter coefficients of the niche model for a novel 

community. Their method was shown to accurately recreate empirical food web structure 

(Gravel et al. 2013), and offers a tractable tool for inferring structure across large scales (Albouy 

et al. 2014, Tylianakis and Morris 2017). 



16 

 

Although this method performs well for inferring broad food web structure, it fails to 

incorporate some of the known spatial and temporal variability in species interactions. There is 

a growing recognition that species interactions are not static, and the observation of species 

interacting at a given location or time period, does not imply that they will always interact 

whenever they co-occur (Poisot et al. 2012). It may be possible to incorporate some of this 

inherent variability by taking into account the local densities of populations within a community 

(Poisot, Stouffer, and Gravel 2015). Neutral processes (sensu Canard et al. 2012, 2014) simply 

state that rare species are less likely to encounter one another than more locally abundant 

species. Indeed, empirical network structure has been accurately predicted when only looking 

at local population densities (Canard et al. 2012). These results prompted the authors to coin 

the term “neutrally forbidden links”, which are simply links that are possible between species 

based on niche processes (e.g. predator-prey body size relationships), but are unable to occur 

locally due the low abundances of the species in question.  

Study system: Acid mine drainage in freshwater streams 

For my thesis I investigated how stream food webs respond to a specific anthropogenic impact: 

acid mine drainage (AMD). AMD is a global phenomenon and often the byproduct of coal 

extraction activities (Kelly et al. 1988), generally caused when geologic strata with high sulphur 

content is exposed and interacts with water and oxygen to form sulfuric acid (Hogsden and 

Harding 2012b, Kraus et al. 2014), causing receiving streams to become highly acidic (e.g. pH < 

3; Winterbourn 1998, Greig et al. 2010, Hogsden and Harding 2012a). Ore-bearing strata often 

contain high levels of associated non-target elements (e.g. aluminum, iron, lead, manganese, 

nickel, and cadmium (Gray and Harding 2012, Kraus et al. 2014), and these can become 

mobilized and enter freshwater habitats. Low pH of AMD increases the solubility of the 

associated elements, leading to extremely high concentrations of dissolved metals in receiving 

waters. While fluctuations in pH caused by droughts, floods and other processes can cause 

different dissolved metals (e.g. Fe and Al) to precipitate onto the stream bed causing further 

toxic and habitat loss effects (Harding and Boothroyd 2004). 

Research on the effects of AMD on stream communities has received much attention in New 

Zealand in the last few decades. AMD generally reduces biodiversity and extirpates sensitive 
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taxa at all trophic levels (reviewed in Hogsden & Harding, 2012b), e.g. bacteria (Niyogi, Lewis & 

Mcknight, 2002), algae (Bray et al. 2008, Schowe, Harding, and Broady 2013), 

macroinvertebrates (Winterbourn 1998, Clements et al. 2000), and fish (Greig et al. 2010). Toxic 

effects can be caused by the low acidity, high metal concentrations, or a combination of both 

(Clements et al. 2000, Greig et al. 2010, Schmidt et al. 2010), although because metal solubility 

is dependent on pH, disentangling these interactive effects can be difficult. For example, fish 

were extirpated in naturally occurring acidic streams, but were much more sensitive to elevated 

metal concentrations (Greig et al. 2010). Taxa which can withstand the abiotic conditions of 

AMD affected streams often also display a reduction in local densities (Hogsden and Harding 

2012b). This leads to small, simple communities dominated by a few tolerant taxa.  

Although the effects of AMD on individual species, species diversity and community structure is 

well known, little work has been conducted on stream food webs affected by AMD. Pioneering 

work in these systems was conducted by Hogsden & Harding (2012a) and they found small, 

simple networks with shorter food chains, fewer links, and changes in biomass distribution. 

However, these results were based on summary food webs (see above) due to the difficulty in 

obtaining enough individuals per taxa to conduct robust visual identification of gut contents 

(Hogsden and Harding 2012a). The use of summary food webs does not allow pairwise species 

interactions to vary between sites, and is less sensitive to subtle changes in food web structure 

(Gray et al. 2015). Thus, there are still unanswered questions in our understanding of how AMD 

inputs affect stream food webs, and a need for studies to be conducted on communities with 

more highly-resolved taxonomic information.  

AMD streams offer ideal model systems to test size spectra theory because of their relatively 

simple food webs and previous research on their communities.  

Because of the difficulty in constructing detailed food webs through the identification of visual 

gut contents I explored three main research questions:  

1) Do alternative approaches to assessing food webs, such as size spectra, offer a useful 

approach for estimating broad changes to food web structure and function in streams?  
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2) Can current mechanistic models of trophic interactions be expanded upon to allow for the 

accurate inference of stream food-web structure? 

3) What can these new methods tell us about the structure and stability of AMD-impacted 

stream food webs?  

Thesis structure and chapter outlines 

The main data chapters in my thesis have been written as a series of three papers (Chapters 

Two to Four), which have been written as independent manuscripts for publication. As such, 

there is a degree of repetition of background material and methodology between chapters. 

Each of these three chapters will be a co-authored publication, however the majority of the 

work, including field and laboratory work, analysis, model development, and writing, is my own. 

In the final chapter (Chapter Five), I integrate my findings, discuss limitations and future 

research in the field.  

In Chapter Two, I investigated the utility of using size spectra for assessing the impacts from 

anthropogenic mining activities on freshwater stream communities. To do this, I sampled 

stream communities from 25 sites along an AMD gradient on the West Coast of the South 

Island, New Zealand. All individuals at all sites were measured and their body size estimated 

using published length-weight regression for New Zealand fauna. Size spectra were constructed 

for each site and multiple linear regressions were conducted to examine the effects that 

mining-related stress had on the communities. This chapter consists of an accepted manuscript 

titled Anthropogenic mining alters macroinvertebrate size spectra in streams. Freshwater 

Biology. In press. This manuscript is co-authored by Helen Warburton and Jon Harding. As lead 

author of this manuscript, I conducted the field and laboratory work, analyzed the data, wrote 

the first and final draft of the manuscript and designed all tables and figures. Jon Harding 

provided advice on study design, Helen Warburton helped with analysis, and both co-authors 

provided feedback on the manuscript.  

In Chapter Three, I used previously published data on empirical food webs from New Zealand 

(Thompson and Townsend 1999, 2004) which included body size and local abundances, to 

develop a mechanistic model that accurately inferred the structure – and, importantly, the 
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variability – of food webs in New Zealand streams. To do this, I expanded on the method of 

Gravel et al. (2013), by incorporating the recommendations of (Poisot, Stouffer, and Gravel 

2015). Specifically, I inferred the ability of species to interact based on niche processes, and the 

likelihood of species to interact based on neutral processes. I compared this model with 

another recently developed method, “WebBuilder” (Gray et al. 2015), which does not allow 

species interactions to vary based on local trait distributions or abundances. This chapter 

consists of an accepted manuscript titled Inferring predator-prey interactions in food webs. 

Methods in Ecology and Evolution. This manuscript is co-authored by Timothée Poisot, Ross 

Thompson, and Jon Harding. As lead author of this manuscript, I designed the study, analyzed 

the data, developed the models, wrote the first and final draft of the manuscript and designed 

all tables and figures. Jon Harding provided advice on study design, Ross Thompson provided 

data, Timothée Poisot provided critical feedback on an early version of the manuscript and 

suggested additional analyses, and all co-authors provided feedback on the manuscript.  

In Chapter Four, I applied a modification of the food web structure inference method 

(developed in Chapter Three) to the empirical community data (collected in Chapter Two) to 

infer the probabilistic structure of food webs across an AMD  gradient. In addition to inferring 

the structure of food webs, I also estimated community stability. I found that stability increases 

across the mining gradient, and discuss how these findings should be incorporated for future 

remediation activities. This chapter consists of a manuscript currently in preparation for 

submission to the journal of Ecology. As lead author of this manuscript, I designed the study, 

analyzed the data, wrote the first and final draft of the manuscript and designed all tables and 

figures. Jon Harding provided advice on study design and feedback on the manuscript.  

In Chapter Five, I briefly outline the findings from individual chapters, and discuss their 

implications for future research on food webs across environmental gradients. I describe 

potential benefits of my findings to a wider ecological audience, as well as discuss some 

limitations of these methods.  
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Chapter Two: Anthropogenic mining alters macroinvertebrate 

size spectra in streams 

Preface 

This chapter consists of an accepted manuscript titled Anthropogenic mining alters 

macroinvertebrate size spectra in streams. Freshwater Biology. In press . This manuscript is co-

authored by Helen Warburton and Jon Harding. As lead author of this manuscript, I conducted 

the field and laboratory work, analyzed the data, wrote the first and final draft of the 

manuscript and designed all tables and figures. Jon Harding funded this research, and provided 

advice on study design, Helen Warburton helped with analysis, and both co-authors provided 

feedback on the manuscript. 

 

Abstract 

Food web properties can to be used in bioassessment as indicators of ecosystem stress, 

although logistical constraints restrict their widespread use. Size spectra (body mass – 

abundance relationships) are easier to produce, still incorporate much of the variation in 

feeding interactions and indicate the strength of the energy transfer efficiency. Here we 

examined the effect of acid mine drainage on the size spectra of stream macroinvertebrate 

communities in 25 New-Zealand streams with a comparative survey. We predicted that the 

largest sized organisms would be most susceptible to acid mine drainage, leading to a reduction 

in their abundances and associated decrease in the range of body sizes present across the 

gradient, as well as a reduction in total community abundance. The largest sized organisms 

were more sensitive to inputs of acid mine drainage, and were absent at the most affected 

sites. Surprisingly, the smallest body sizes were also removed by acid mine drainage. This led to 

a reduction of up to two orders of magnitude in the range of body sizes present in mine 

impacted sites. Total community abundance decreased along the impact gradient. The changes 

in size spectra were also associated with changes in the proportion of functional feeding 

groups, suggesting concomitant changes in food web structure. Specifically, communities 

became dominated by collector browsers and small bodied predators across the gradient. The 
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simplification of the food web structure suggests that communities may be dominated by a few 

strong energy pathways, lowering their functionality and stability. However, the loss of large 

bodied predators also reduces top down pressure, likely increasing community stability. Further 

research is needed to elucidate the cumulative effects of these interacting processes.  

 

Introduction 

The observation that the density of organisms is negatively related to their body size was noted 

nearly a century ago (Elton 1927). Since that time, this concept has proven empirically to be 

one of the most universal aspects of biological organization (White et al. 2007, Petchey and 

Belgrano 2010), linking individual- and population-level traits with community structure 

(O’Gorman et al. 2012), function (Dossena et al. 2012), energy transfer (Jennings and Blanchard 

2004, Trebilco et al. 2013), and stability (Tang, Pawar, and Allesina 2014, Sentis, Binzer, and 

Boukal 2017). Furthermore, size spectra relationship have strong theoretical grounding in the 

metabolic theory of ecology (Brown et al. 2004). When all of the individuals from a given unit of 

area are measured, the relationship of their log density to their log body mass is generally 

negative, with a linear or slightly parabolic relationship (Sprules and Barth 2015, Martínez et al. 

2016). The slope of this relationship is related to the efficiency of energy transfer from 

resources to consumers (e.g. from small, abundant individuals to rarer large individuals in 

predator-prey systems), while the intercept generally represents the overall community 

abundance (O’Gorman et al. 2012, Sprules and Barth 2015). Therefore, the shape of the size 

spectra relationship at a site has important implications for food web structure and ecological 

functions. Changes in size spectra have been suggested as an important indicator of ecological 

health (Reuman et al. 2008, Petchey and Belgrano 2010) and have been observed to respond to 

human impacts, including land use (Martínez et al. 2016), stream warming (O’Gorman et al. 

2012), increased nutrients (Morin, Bourassa, and Cattaneo 2001), and commercial exploitation 

(Jennings and Blanchard 2004). Because size spectra are independent of taxa identity, they 

have potential utility as an assessment tool for novel stressors and impacts, particularly in 

systems which lack empirical data on taxon-specific sensitivities. In the face of contemporary 

challenges, including climate change, and the increasing presence of synthetic chemicals in the 
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environment (Bernhardt, Rosi, and Gessner 2017),  understanding how size spectra respond to 

environmental impacts is a timely question for ecologists, and here we assess their use in acid 

mine drainage impacted streams.  

 

Acid mine drainage is a multi-factor stressor (Gray 1997) affecting freshwater habitats globally 

(Hogsden and Harding 2012a). Acid mine drainage (hereafter AMD) is often associated with 

mining activities in geologic strata with high Sulphur content and high levels of associated 

heavy metals, including Fe, Al, Zn, and Ni (Hogsden, Webster-Brown, and Harding 2016). 

Excavated rock is exposed to air and water, resulting in sulphuric acid, which can significantly 

reduce the pH, and this increases the solubility of metal ions in the strata. Although receiving 

streams generally have higher pH and can neutralize the acidity in AMD, waters downstream of 

the source can remain very acidic (pH < 3) and have high levels of total dissolved metals 

(Hogsden and Harding 2012b). With the input of additional un-impacted tributaries, there is 

generally an increase in pH, which causes the solubility of the metals to decrease, resulting in 

metal precipitating onto the benthos causing the commonly observed “yellow boy” in AMD 

impacted streams. AMD has been shown to strongly affect community composition 

(Winterbourn 1998, Greig et al. 2010, Hogsden and Harding 2012b, Underwood, Kruse, and 

Bowman 2014, Gangloff et al. 2015), and simplify food web structure (Hogsden and Harding 

2012a). However, to our knowledge, no study on the distribution of individual body mass has 

been conducted in mining impacted streams.  

 

We assessed the impacts to size spectra in streams across an AMD gradient. We expected that 

the conditions of increasing AMD impacts in streams would impact size spectra following three 

hypotheses.  

(1) The loss of individuals from environmental perturbations is rarely random, and the largest 

organisms in a system are generally more susceptible to local extinctions due to their increased 

energetic demands, larger home ranges, slower reproductive rates, and lower densities (Brown 

et al. 2004, Woodward et al. 2012, Brose et al. 2016). Reduction in the density of the largest 

individuals should lead to steeper slopes of size spectra in response to the AMD gradient.  
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(2) The intercept of size spectra represents the density of the average body size within the 

community, and is dependent on total community abundance. Previous work has shown 

significant reductions in benthic community abundances in response to AMD. Therefore, we 

predict a reduction in the intercepts across the gradient.  

(3) Aquatic food webs are often size-structured, with larger individuals generally representing 

higher trophic levels. Additionally, because the largest taxa within a community generally 

occupy several body sizes and subsequent ontogenetic changes in both its predators and preys 

throughout its life history, these taxa are often the most well-connected (Brose et al. 2016).  

 

Thus, the range of body sizes present at a site has implications on food-web structure and 

trophic height. We expect that the magnitude of the reduction in the density of the largest 

sized individuals (hypothesis 1) will increase across the mining gradient and will result in the 

complete loss of the largest size classes at the most heavily impacted sites (e.g. reduced range 

of sizes present). Note that this differs from (1) in that slopes are a proxy for transfer efficiency, 

while the range of body sizes present is a proxy for the presence of different trophic levels. If 

our hypotheses 1 and 2 are correct, this has strong implications in the structure and function of 

the food web present in these streams. As a coarse proxy for food web structure, we examined 

the proportion of individuals belonging to functional feeding groups (FFGs) across the AMD 

gradient. Different FFGs specialize on different food sources within the environment, and 

represent different energy pathways within the community.  

 

Methods  

Study site and stream characteristics 

This study was conducted in the Buller-Grey region in the north-west of the South Island, New 

Zealand. The region has a long history of coalmining, and is part of the Westland Forest 

ecoregion, which has spatially consistent climatic conditions, geology, and freshwater biota ( 

Harding & Winterbourn, 1997; Harding, Winterbourn & McDiffett, 1997). A total of 25 streams 

were sampled, thirteen streams were sampled along an AMD gradient (which we refer to as 

“impacted” streams) based on known and relatively constant water chemistry (e.g., pH, 
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conductivity, dissolved Al and Fe concentrations) over time (Winterbourn et al. 2000, Greig et 

al. 2010, Hogsden and Harding 2012a, Kitto et al. 2015). In addition, we sampled twelve 

streams across a natural gradient of pH (~ 4 – 7) and low metal concentrations, in order to 

capture the range of natural variation. To our knowledge, these twelve streams are “un-

impacted” by AMD inputs. All twenty five streams were placed into a single gradient (see 

below) and analyzed together. However, we occasionally discuss the differences between the 

AMD-impacted and un-impacted streams in order to place our results into context. No 

statistical analyses treated un-impacted and AMD-impacted streams as a categorical predictor. 

All streams were chosen to be as similar as possible with respect to other physical parameters, 

and were in relatively isolated catchments dominated by native vegetation. All sampling 

occurred during January – February 2016 (Austral summer). Stream water pH, specific 

conductivity, dissolved oxygen and temperature were measured in the field using standard 

meters (YSI 550A & YSI 63, YSI Environmental Incorporated, Ohio, USA). Random water samples 

(50 ml) collected for analysis of dissolved metal concentrations were filtered in the field (0.45 

μm mixed cellulose ester filter) and acidified (pH < 2) using ultrapure nitric acid. Samples were 

analyzed for metals using inductively coupled plasma mass spectrometry (ICP-MS) at the 

University of Canterbury.  

 

 Mining gradient 

Water chemistry variables (Supplementary Table 1) were combined into an AMD gradient using 

principal components analysis (PCA), using the R function prcomp in the stats package (R 

Development Core Team 2017). Dissolved metal concentrations and conductivity were log10-

transformed (x +1) to satisfy assumptions of normality. All variables in the resemblance matrix 

were centered at 0 and scaled by their standard deviations before the PCA was conducted. The 

importance of the original variables to the PCA axes were determined using Pearson 

correlations. Site scores for PC axis 1 were extracted and used as a proxy for the AMD gradient 

in all further analyses.  
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Community sampling and body mass estimation 

Benthic macroinvertebrates were randomly collected in three Surber samples (0.06 m2, 0.25 

mm mesh) from riffle habitats at each site (Blakely and Harding 2005). All samples were taken 

by the same person and with similar effort. Sample replication was a trade-off between the 

number of samples, the number of sites, and the processing and measurement of all 

individuals. Aquatic insect life histories in New Zealand are not characterized by strong 

seasonality (Winterbourn, Rounick, and Cowie 1981). Emergence rates for some taxa are higher 

in summer, but numerous studies have shown a general lack of synchronized emergence, and a 

wide range of size classes and cohorts of a specific species are often observed together in New 

Zealand streams (Devonport and Winterbourn 1976, Winterbourn, Rounick, and Cowie 1981, 

Drummond, Mcintosh, and Larned 2015). Therefore, we assume that there were no strong 

effects of emergence or life history that could affect our findings. Samples were preserved with 

100% ethanol in the field and returned to the laboratory for processing. Macroinvertebrates 

were separated and identified to the lowest practical taxonomic level (i.e. genus for mayflies, 

stoneflies and caddisflies, subfamily for Chironomidae larvae and family for other true flies and 

beetles, order for non-insect taxa) according to (Winterbourn, Gregson, and Dolphin 2006), and 

unpublished keys (NIWA, Hamilton, New Zealand). Photos were taken of all individuals (~1-100 

individuals per photo) using a Leica DFC295 digital camera mounted to a Leica model M125 

microscope. All individuals were then measured to the nearest 0.1mm using the software 

package Adobe Acrobat 9 Pro (San Jose, California, USA). Measurements were conducted 

according to the methods of (Towers, Henderson, and Veltman 1994, Stoffels, Karbe, and 

Paterson 2003). Briefly, individuals were generally measured from the anterior portion of the 

head to the last abdominal segment (not including cerci). Caddisflies with portable cases had 

the maximum length of the case recorded, except Helicopsychidae which were measured at the 

widest portion of the case. Finally, for the snail Potamopyrgus antipodarum, the shell height 

was measured. Because accurately sampling the smallest individuals is difficult, individuals ≤ 0.5 

mm were removed from the data. Body lengths were converted to dry weight estimates 

(grams) using published taxon-specific length-weight regressions for New Zealand invertebrate 

fauna (Towers, Henderson, and Veltman 1994, Stoffels, Karbe, and Paterson 2003).  
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Size spectra 

Body-mass abundance relationships were assembled for all streams using the individual size 

distribution described by White et al. (2007). In each of the 25 streams, in order to get the best 

estimate of size spectra at each site, all individuals were combined and grouped into bins of 

equal logarithmic width (White, Enquist & Green, 2008). We compare the use of the two most 

commonly used widths, log2 and log10 (Jennings, Warr, and Mackinson 2002, Jennings and 

Blanchard 2004), in the Supplementary Table S2, and compare the number of bins for each in 

Fig. S1 and S2. Eighteen bins of log2 width were chosen in order to encompass the full range of 

body sizes present at all sites, while still allowing for robust regressions (Supplemental 

Material). Abundances were normalized by dividing the frequency in a bin by the linear width of 

the bin (White et al. 2007, White, Enquist, and Green 2008, Sprules and Barth 2015). Size 

spectra were plotted as log10 N ~ log10 M where log10 M is the midpoint of the log10 M class, 

converted from log2 (Jennings and Blanchard 2004). 

 

The slope and y-intercept of size spectra have been shown to be correlated (Gómez-Canchong, 

Blanco, and Quiñones 2013). Therefore, to make these response variables independent, the 

data from each stream were standardized to have the size range centered at x = 0,  and report 

the y-intercept of the centered data as the community height (Blanchard et al. 2005, Sprules 

and Barth 2015). This makes the slope and height parameters independent, with the former 

being more dependent on the relative abundance of small and large individuals, and the latter 

being more dependent on the total abundance within the community (Sprules and Barth 2015). 

Each stream dataset was centered by subtracting the value of the mid-point bin from all bins 

within that stream, respectively.  

 

Previous New Zealand studies have documented that fish are extremely sensitive to AMD 

inputs (Greig et al. 2010, Hogsden and Harding 2012b) and in the present study were not found 

at any sites receiving AMD. Additionally, of the 12 streams that were un-impacted by AMD, 6 

were naturally fishless. The presence of top predators can have impacts on biomass 
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distributions of lower trophic levels, and can change the shape of the size spectra relationship 

(Brose et al. 2016). Since the present study is focused on the macroinvertebrate community size 

spectra response to AMD, we conducted preliminary analyses to test whether the presence of 

fish affected size spectra relationship of the macroinvertebrate community at the un-impacted 

sites. The presence of fish did not significantly impact either the slope or intercept of 

macroinvertebrate size spectra in un-impacted streams (Supplemental Material, Fig. S3). 

Because fish are orders of magnitude larger than the majority of macroinvertebrates, and their 

absence is not wholly dependent on AMD inputs, their inclusion in the construction of size 

spectra represents a potential confounding factor. Thus, only the macroinvertebrates were 

used to construct size spectra for all sites, in all further analyses.  

 

Statistical analyses 

Size spectra relationships are generally repeating negative parabolic domes, which only take on 

a linear relationship when sampling is performed across a large range of body sizes. Therefore, 

when focusing on a limited range of body sizes, as we do here, it is important to test both linear 

and quadratic models in order to maximize the amount of variation explained (Sprules and 

Barth 2015). We selected the best fitting model using Akaike’s information criteria corrected for 

small sample sizes (AICc; Burnham and Anderson 2004). We found that the quadratic 

relationship best explained the variation among sites (ΔAICc << 2). Furthermore, the conclusions 

reached using linear models were similar to those of the quadratic models (Supplemental 

Material). The results of the quadratic models are presented throughout the rest of this paper.  

 

To test for changes in size spectra across the mining gradient, we fitted linear regressions to the 

global dataset testing for significant effects of the predictors (independent variables) M, M2, 

PC1 and for interactions between M:PC1 and M2:PC1. The global model was in the form of:  

 

𝐿𝑜𝑔10 𝑁 = 𝛽0 + 𝛽1 𝐿𝑜𝑔 10 𝑀 + 𝛽2 𝐿𝑜𝑔 10 𝑀2 + 𝛽3 𝑃𝐶1 + 𝛽4  𝑃𝐶1 𝐿𝑜𝑔 10 𝑀

+ 𝛽5 𝑃𝐶1 𝐿𝑜𝑔 10 𝑀2 +  𝜖 
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where N is the normalized abundance of individuals, M is the estimated body mass, PC1 (e.g. 

the mining gradient) are the site scores on the first axis determined by the PCA (see above), and 

є is the residual error term. We then calculated the AICc of the global model as well as AICc for 

simplified models using the R function dredge in the package MuMIn (Bartoń 2016). Simplified 

models were obtained by systematically testing all possible terms and interactions. Models 

were assessed and ranked according to ΔAICc, and only models with ΔAICc < 2 were retained 

(Table 1; Burnham and Anderson 2004). A significant coefficient for the PC1 variable (e.g. β3 in 

the equation above) would indicate that the intercepts do respond to the mining gradient. 

Likewise, a significant coefficient for the M:PC1 and M2:PC1 interaction term (e.g. β4 and β4) 

would indicate that the slope, and magnitude of curvature, respectively, varies in responds to 

the mining gradient. 

To test hypothesis (3) above we assessed the range of body sizes present within communities. 

The range of body size were calculated as MRange = max(log10 M) – min(log10 M) where M is the 

estimated individual dry weight, in grams, within a site. Ranges were log10 transformed, and a 

linear regression was performed, with the PC1 loadings (e.g. the mining gradient) as the 

independent variable. In order to investigate whether changes in MRange were driven by changes 

in the presence of the smallest or largest sized organisms, we performed quantile regression (τ 

= 0.05 and 0.95, respectively) on the range of M present across the mining gradient. Confidence 

intervals for quantile slope parameters were calculated by inverting a quantile rank-score test 

for the two values of τ (Koenker and Machado 1999, Dunham, Cade, and Terrell 2002) 

 

Finally, as a coarse proxy for food web structure, we qualitatively assessed the proportion of 

individuals belonging to different FFGs across the AMD gradient. Changes in the presence or 

relative proportion of FFGs can represent changes in energy pathways and feeding links within 

a community. FFGs were assigned as in (Winterbourn, Gregson, and Dolphin 2006, Hogsden and 

Harding 2012a)). All statistical analyses were conducted in R version 3.3.3 (R Development Core 

Team 2017). Annotated R scripts for the full analysis, including the creation of the figures, is 

available at https://github.com/Jpomz/mining-size-spectra-Freshwater-Biology-accepted. Data 

available from the Dryad Digital Repository: https://doi.org/10.5061/dryad.v6g985s.  
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Results 

Mining gradient 

Streams varied markedly in pH (1.9 – 7.3), specific conductivity (15.2 – 2227 μS25 cm-1), and 

concentrations of dissolved metals (Supplementary Table 1). A PCA ordination of the chemical 

variables showed PC axis 1 explained 78% of the variation and was highly correlated with pH, 

specific conductivity, and dissolved Fe, Al, Mg, Cd, Cu, Mn, Zn, Co, Ni (Pearson correlation > 

0.85; Figure 1). These variables are known to vary in response to AMD, and the site scores on 

PC1 (Figure 1, top axis; hereafter referred to as the mining gradient) were extracted and used  

as a measure of the mining related stress that each community was exposed to.  

 

Size spectra across the mining gradient 

The best fitting model contained significant effects of M, M2, PC1, and an M:PC1 interaction 

(βM, βM^2 , βPC1, βM:PC1, p values < 0.001, Table 2). The full equation of this model is (site specific 

coefficient values in Supplementary Table 3): 

𝐿𝑜𝑔10 𝑁 = −5.81 − 0.077𝑃𝐶1 + (0.055𝑃𝐶1 −  0.94) 𝐿𝑜𝑔 10 𝑀 −  0.36𝐿𝑜𝑔 10 𝑀2 +  𝜖 

As expected, there was a strong, negative parabolic relationship to the number of individuals 

(N) within increasing body size bins (M) (βM = -0.937, p < 0.001; βM^2 = -0.356, p < 0.001; 

adjusted R2 = 0.85; F4, 284 = 405.5; p < 0.001, Figure 2). The magnitude of this curvature was not 

affected by the mining gradient (no βM^2:PC1 interaction term in the best fitting model, Table 1). 

Because size spectra analyses are generally not performed using quadratic equations, we 

compare the results of both linear and quadratic equations in the Supplementary Material, and 

show the coefficient estimates in Supplementary Table 4. The overall conclusions reached are 

generally similar, despite which model was used.  
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Table 1. AICc evidence table for model selection of quadratic size spectra relationship. The first 

six columns are the estimated parameter coefficients evaluated for a candidate model, with 

bold values indicating significance (p < 0.05). Blank entries indicate that that variable was not 

considered in that candidate model. K is the number of estimated parameters, including the 

residual error term. R2 is the coefficient of determination, logLik is the log Likelihood, AICc is 

Akaike’s information criterion, corrected for small sample size, ΔAICc is the difference in AICc for 

a candidate model from the lowest AICc value, last column is model weight. Models are ranked 

by ΔAICc values, where values < 2.00 indicate equivocal support. Only the first model has a 

ΔAICc < 2.00 and was used in all further analyses. 

Interce
pt 

M M2 PC1 M:PC1 M2:PC1 R2 K logLik AICc ΔAICc weight 

5.81 -0.9366 -0.3560 -0.0766 0.0551  0.85 6 -229.98 472.3 0.0 0.738 

5.81 -0.9362 -0.3592 -0.0750 0.0554 -0.0018 0.85 7 -229.97 474.3 2.1 0.262 

5.81 -1.0130 -0.3564 -0.0732   0.84 5 -241.43 493.1 20.8 0 

5.81 -1.0130 -0.3466 -0.0779  0.0055 0.84 6 -241.32 494.9 22.7 0 

5.80 -1.0220 -0.3111    0.82 4 -260.56 529.3 57.0 0 

5.40 -1.0000  -0.0368 0.0557  0.75 5 -302.76 615.7 143.5 0 

5.40 -1.0770  -0.0333   0.74 4 -309.93 628 155.7 0 

5.42 -1.0780     0.74 3 -312.73 631.6 159.3 0 

5.90  -0.5027 -0.0909   0.21 4 -471.85 951.8 479.6 0 

5.91  -0.5146 -0.0852  -0.0068 0.21 5 -471.82 953.9 481.6 0 

5.88  -0.4478    0.17 3 -478.14 962.4 490.1 0 

5.33      0.00 2 -505.06 1014.2 541.9 0 

5.31   -0.0348   0.01 3 -504.26 1014.6 542.4 0 
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Figure 1. Principal components analysis ordination of chemical variables. The first axis, PC1, 

explains 77% of the variation, and is strongly correlated with pH, conductivity, and 

concentrations of Fe, Al, Mg, Cd, Cu, Mn, Co, Ni and can be interpreted as a mining gradient, 

with mining stress increasing from left to right. PC2 explains 8.6% of the variation, and was not 

used in further analyses. The site specific scores for PC axis 1 were extracted, and used to 

represent the mining gradient in all further analyses.  
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Figure 2. Body mass – abundance relationships for 25 sites across a mining gradient (impact 

increasing from top left to bottom right). Points are the summed abundances within each size 

bin from empirical data with fitted values (line) for highest ranked model (see results for 

specifics) with its 95% prediction interval (grey shading). Regression formula: Log10 N = 5.81 – 

0.94 log10 M – 0.36 log10 M2 – 0.077PC1 + 0.055 log10 M:PC1 where N is the normalized 

abundance, M is the estimated dry mass in grams, and PC1 is the specific site score on PC axis 1 

representing the acid mine drainage gradient (see methods).   
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Table 2. Results of the top least squares regression model for size spectra across the mining 

gradient. Estimate is the estimated coefficient value as determined by the multiple linear 

regression, SE is the standard error of the coefficient estimate, and P is the P-value for the 

coefficient.  

Coefficient Estimate SE P 

Intercept 5.80572 0.04427 <0.001 
M -0.93663 0.03316 <0.001 

M2 -0.35596 0.0261 <0.001 
PC1 -0.07657 0.01111 <0.001 

M:PC1 0.05514 0.01139 <0.001 

 

The community height (y-intercept of the centered data) did vary significantly across the mining 

gradient (βPC1 = -0.077, p < 0.001), indicating a decrease in overall community abundance. To 

put this in context, we compared this with density estimates calculated directly from our Surber 

samples, and found general agreement in the conclusions reached (Supplementary Material).  

Additionally, there was an increase in the slope of the relationship across the mining gradient 

(βM:PC1 = 0.055, p < 0.001, Figure 3), leading to higher relative abundances of larger individuals 

in impacted streams. The Mrange decreased significantly across the mining gradient (p < 0.001, 

adjusted R2 = 0.58, F1, 23 = 34.11, intercept = 3.23, slope = -0.19, Figure 4A), and this was driven 

by the asymmetric loss of the largest individuals (Figure 4B). The size of the smallest organisms 

increases across the mining gradient (e.g. the smallest size classes were removed at impacted 

sites), although this is not statistically significant, as the confidence interval for the quantile 

regression (τ = 0.05) slope estimate includes 0 (coefficient estimate = 0.03, CI = [-0.85, 0.05]). 

However, the size of the largest  
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Figure 3. Estimated slope scaling coefficient for size spectra. Points are the site specific 

estimated slope coefficient for the best fitting model. The solid line and grey shading are the 

predicted slope coefficient and 95% prediction interval, respectively, across the mining gradient. 

Mining impacts increase left to right. 

 

organisms significantly decreases across the mining gradient (quantile regression τ = 0.95 

coefficient estimate = -0.14, CI = [-0.15, -0.11]), and this was due to the removal of the largest 

size classes. Communities at un-impacted streams had body sizes ranging from up to 4.5 orders 

of magnitude, while highly impacted streams had body sizes ranging less than 3 orders of 

magnitude. These changes in body mass range resulted from a loss of both the smallest and 

largest size classes, although the larger size classes were more affected. Impacted streams lost 

1 – 4 of the smallest size bins, but 5 – 8 of the largest size bins.  
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Figure 4. A) Range of body size, log10 [max(M) – min(M)], in grams. The range of M significantly 

decreases in response to the mining gradient, (black solid line, grey shading is 95% prediction 

interval. B) Quantile regressions of the 95th and 5th percentile (top and bottom solid lines, 

respectively) of body size (log10 M, in grams) present across the mining gradient (mine impacts 

increase from left to right).  

 

Functional feeding groups 

The proportion of FFGs in the un-impacted streams was remarkably similar (Fig. 5). Across the 

gradient, from less- to more-impacted streams, collector-browsers became the dominant 

group, which is entirely explained by the communities becoming dominated by the 

Chironomidae subfamilies Diamesinae and Orthocladiinae. Grazers were generally absent from 

the AMD impacted streams, which was mainly due to the loss of the New Zealand mud snail, 

Potamopyrgus antipodarum, whose shells are extremely sensitive to reduced pH. The grazers 

present in moderately impacted streams were dominated by the cased caddisfly Oxyethira spp. 

Although shredding taxa are generally poorly represented in New Zealand streams 

(Winterbourn, Rounick, and Cowie 1981), they were present in nearly all of the un-impacted 

sites, and completely absent in AMD impacted streams. The single exception to this was the 

presence of two individual Scirtidae beetles in a single stream, which is heavily impacted by 

AMD. Omnivores (predominantly the caddisfly Aoteapsyche spp.) accounted for a high 

proportion of the community in moderately AMD impacted streams, but were mostly excluded 
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from the most heavily impacted sites. Filter feeders (dominated by the mayfly Coloburiscus 

humeralis and the blackfly Austrosimulium spp.) were present in all un-impacted streams, and 

generally absent in the AMD impacted sites. Predators in the un-impacted streams were 

dominated by the large-bodied dobsonfly Archichauliodes diversus, and members of the 

caddisfly family Hydrobiosidae. The large stonefly Stenoperla prasina, was also present in 8 of 

the 12 un-impacted sites, although they were generally found in low densities. All of the large 

predators were absent from the impacted streams (although a single small S. prasina instar was 

found in a moderately impacted site). Predators were completely removed in about half of the 

impacted streams but when they were present, their proportions were relatively high 

compared to the un-impacted sites. Predators in the AMD impacted streams were mostly small 

individuals belonging to the Empididae and Ceratopogonidae families. Although both of these 

families are generally classified as predators, they are most likely consuming smaller Meiofauna 

(or very small instars of macroinvertebrates) due to their body sizes. A table of the dominant 

taxa (relative proportion ≥ 0.05) by site, their relative proportions and FFG, are presented in 

Supplementary Table 5. 

 

Figure 5. Proportion of individuals belonging to different functional feeding groups (FFG) at sites along 

an impact gradient of acid mine drainage. Site names are abbreviated where necessary for visualization, 

and are ordered by increasing impacts from left to right. The arrow in the axis label indicates where 

AMD impacts begin. All streams left of the arrow are un-impacted by acid mine drainage. CB = collector-

browser; FF = filter feeder; G = grazer; O = omnivore; P = predator; S = shredder.  
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Discussion 

The decreasing abundance of larger-sized organisms in communities is one of the most well 

documented allometric scaling relationships in ecology (White et al. 2007, Petchey and 

Belgrano 2010, Trebilco et al. 2013). Deviations from this relationship have been attributed to 

human impacts (Jennings and Blanchard 2004), environmental stress (e.g. drought, Woodward 

et al. 2012; warming, Yvon-Durocher et al. 2011, Dossena et al. 2012), and ecosystem size 

(Warburton 2015), and have been suggested as a potential metric for assessing ecological 

status (Petchey and Belgrano 2010, Gray et al. 2014). In the present study, we found systematic 

responses of benthic macroinvertebrate size spectra relationships to a gradient of AMD 

impacts. Previous research in AMD streams has noted a marked decline in taxonomic richness 

and subsequent change in community dominance and composition where acid and metal 

tolerant invertebrates survive (Winterbourn and McDiffett 1996, Winterbourn 1998, Clements 

et al. 2000, Hogsden and Harding 2012a). In addition to these well-documented community 

changes in response to AMD, our study shows changes in the distribution of biomass and size 

structure within the communities.   

 

There was a significant reduction in the intercept of the centered data along the AMD gradient, 

which reflects an overall decrease in community abundance (e.g. mean [min; max] individuals 

m-2 across all un-impacted sites were 4,669 [1,500; 10,122], compared with 1,021 [94; 3,344] at 

all AMD impacted sites). This is consistent with previous studies that have shown marked 

declines in macroinvertebrates densities in response to AMD inputs. The reduction in 

community abundance could be due to an increase in metabolic demands. Low pH and elevated 

trace metal concentrations can both impact respiration and osmoregulation efficiencies, 

leading to increased respiration rates. This in turn leads to higher energy demands, potentially 

at the cost of secondary growth, emergence success (for taxa with an adult aerial phase), and 

reproductive output (Havas and Hutchinson 1983, Herrmann and Andersson 1986, Herrmann 

1987, Adams et al. 2011). Predators may be at a greater risk of local extirpations due to their 

higher total energetic demands (due to larger body size; Brown et al. 2004) and the increased 

metabolic costs associated with an active foraging nature (e.g. searching, capturing, and 
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handling prey). The higher cost of living in AMD impacted environments removes sensitive 

species, but also likely lowers the number of individuals of tolerant taxa which can survive. An 

alternative explanation for the reduction in community abundance could be lower primary 

production or lower quantity or quality of basal resources, which cannot support large 

communities. However, Hogsden, Winterbourn & Harding, (2013) showed that both the 

quantity and quality of basal resources was not likely a limiting factor for primary consumers 

across an AMD gradient, lending support to our metabolic cost hypothesis.   

  

There was also a significant increase in the estimated slope coefficient in response to the AMD 

gradient. Differences in slopes indicate changes to the trophic transfer efficiency within 

communities. Shallow slopes, in combination with a lower y-intercept, have been attributed to 

a reduction in trophic transfer efficiency. However, this assumes a fixed body mass of the 

largest and smallest organisms within a community, respectively (O’Gorman et al. 2012). In the 

current study, the situation is more complex, due to the complete removal of the largest sized 

organisms. Generally speaking, with a few notable exceptions (e.g. parasitoids are often s imilar 

in size to their hosts, Brose et al. 2006), niche space and trophic level are highly size dependent, 

particularly in aquatic systems (Stouffer, Rezende, and Amaral 2011), the reduction in the range 

of body sizes present has strong implications for the structure of the food web, number of 

trophic levels, and the number of energy pathways available to the community. This is 

consistent with the changes to the proportion of individuals within each FFG across the 

gradient. Although predator FFGs are present in some of the most heavily impacted sites, they 

are entirely composed of small bodied predators that are likely predating upon meiofauna or 

extremely small macroinvertebrate instars, which are likely below the size range sampled in the 

present study.  

 

Predators can also directly influence the shape of the size spectrum of their prey (Blanchard et 

al. 2009, Hartvig, Andersen, and Beyer 2011, Brose et al. 2016). Predator-prey interactions are 

largely size-structured, where a large predator generally consumes smaller individuals, which 

transfers energy from abundant small individuals, to fewer, larger, ones. This, in turn, causes a 
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reduction in the abundance of the smaller individuals, leading to the theoretical and empirically 

observed slopes of about -1 (Jennings and Blanchard 2004, Brown et al. 2004, Trebilco et al. 

2013). However, in communities feeding on non-size structured resources (e.g. detritus), size 

spectrum slopes are shallower (e.g. -0.56 to -0.87, Blanchard et al., 2009) than in predator prey 

communities. In the present study, the estimated slope coefficients for the AMD impacted 

streams ranged from -0.97 to -0.62, and the most heavily impacted sites had a slope coefficient 

shallower than -0.80. The complete removal of large predators at the most heavily impacted 

sites likely causes a release from top-down control on the smaller prey (Daan et al. 2005), 

explaining the resemblance of slopes of size spectra at impacted sites to the size spectra slopes 

observed in detritivore communities (Blanchard et al. 2009).  

 

The loss of predators, coupled with changes in proportions of FFGs represents a simplification 

of the food web, with fewer links and energy pathways possible, and this has implications for 

food web stability. Food webs with many weak interactions are generally considered to be 

more stable compared with food webs dominated by a few strong links (Wootton and Stouffer 

2015). The strength of predator-prey feeding links are often considered to be proportional to 

the predator-prey body size ratios (Emmerson and Raffaelli 2004, Berlow et al. 2009, Tang, 

Pawar, and Allesina 2014), with stronger interactions occurring between large predators and 

small prey. Likewise, (Tang, Pawar, and Allesina 2014) found that stability is directly influenced 

by the correlation of interaction strengths between predators and their prey, and that these 

strengths can be largely determined by body size. Our findings suggest conflicting 

interpretations regarding the stability of AMD impacted food webs. On the one hand, the 

reduction and absence of large predators means that the links present are likely weaker than in 

un-impacted streams, and therefore the food web should be more stable. However, the 

simplification of the food web and the loss of FFGs and alternative energy pathways means that 

there are fewer potential links, and that the links present will have stronger interaction 

strengths relative to un-impacted streams. This suggests that the food webs in impacted 

streams would be less stable than un-impacted streams. Further research is needed to tease 
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these interacting mechanisms apart, and determine if AMD impacted food webs are more or 

less stable.  

 

Changes in food web structure also have implications for the restoration of sites impacted by 

environmental perturbations. Biotic responses in systems which are recovering from physical or 

chemical impacts can be delayed or patchy in nature, are modulated by the species and 

interactions present, and do not follow a reverse trajectory of the response to the original 

impact (Scheffer et al. 2001), thereby causing the community to appear to be impacted for long 

after the stressor has been removed (Layer et al. 2011, Gray et al. 2014, 2016). One explanation 

for this is that impacted communities have found an alternative stable state, and that this state 

has internal ecological inertia (Layer et al. 2011), or “negative resilience”  

(Lake 2013), which impedes the community returning to a non-impacted state. Studies of food 

web stability across productivity gradients suggest that food webs alternate between stable 

and unstable conditions. Simple food webs in low productivity sites can be organized into stable 

configurations. As productivity increases, the community can support more biomass at the top 

of the food chain, which in turn causes stronger, destabilizing top-down interactions. When 

larger individuals or taxa colonize these communities, they primarily predate upon the larger 

species present, which decreases their abundance (and hence indirectly reducing the top-down 

control on smaller individuals), and ultimately rearranges the organization and strength of 

feeding links, leading to more stable food web configurations (Neutel et al. 2007). A similar 

mechanism was found in Broadstone Stream in the UK, where biotic recovery lagged chemical 

remediation by several years, and was characterized by the successive re-invasion of 

consistently larger bodied predators (Layer et al. 2011). Therefore, if the goal of a restoration 

project is to return the community to an un-impacted state, in addition to remediating the 

chemical or physical stressor, it may be necessary to assist in biotic recovery with species 

reintroductions, particularly when large predators have been removed.  

 

In addition to the strong response of the communities to AMD inputs, we found a remarkable 

agreement in the communities at the un-impacted streams, despite covering a wide range of 
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natural conditions (e.g. pH 4.8 to 7.3). For example, the shape of the size spectrum, and the 

proportion of individuals in the different FFGs were both very similar in the un-impacted sites. 

This adds to the growing body of literature showing that size spectra relationships are a good 

proxy variable for ecological status (Petchey and Belgrano 2010, Trebilco et al. 2013, Warburton 

2015). This result is encouraging, because it indicates that community-level responses avoid 

some of the challenges that traditional, taxonomic based biomonitoring programs have faced 

e.g. variable species distributions, biogeographical constraints, context and pollutant specific 

sensitivities (Gray et al. 2014).  

 

We found that AMD affected stream macroinvertebrate size spectra in consistent ways, 

represented conceptually in Figure 6. Specifically, we found that community abundance and 

overall body size decreased in AMD streams, resulting in smaller communities, with more 

homogenous distributions of biomass. The harsh environment caused by heavy AMD inputs 

likely increased the energetic demands on macroinvertebrates, lowering the overall community 

abundance (lowered y-intercept). These impacts were greater on larger individuals (asymmetric 

reduction in range of body sizes present). Since most predators are generally larger bodied, 

their removal causes a release from predation pressure, allowing the abundance of smaller 

individuals to decline less significantly than would be expected otherwise (shallower size 

spectrum slope). These findings have implications for the structure, function, and stability of 

food webs in impacted streams, and should be taken into account when designing remediation 

efforts.    
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Figure 6. Conceptual figure of impacts of acid mine drainage to stream macroinvertebrate size 

spectra. Inputs of acid mine drainage (AMD) cause consistent changes to reference spectra. A) 

Spectra impacted by acid mine drainage resulted from a vertical shift (reduced community 

abundance) and asymmetric horizontal shift (large body sizes are more impacted). B) The loss of 

large predators also resulted in a reduction in top-down control of prey abundances, causing an 

increase in the slope (dashed arrow) of spectra impacted by acid mine drainage.  

 

 

These findings add a new perspective to the impact of AMD which to our knowledge has not 

been previously reported, and which would not be captured by using traditional biomonitoring 

methods. For example, if taxonomic or functional groups were aggregated and their biomass 

measured directly, the relationships would be skewed as the individual-level information would 

be lost. Likewise, construction of food webs across a large number of streams (e.g. 25 in the 

present study) via visual identification of gut contents would require much greater allocations 

of effort. Food webs could be constructed using stable isotope methods, but again the 

individual level data would be lost. However, size spectra incorporate information from the 

individual-, population- and community-level regarding energy transfer efficiency, and the 

partitioning of nutrients and biomass within an ecosystem (Woodward et al. 2005, Martinez et 
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al. 2016). Likewise, with the individual-level data retained it is easy to aggregate and to 

different organizational levels and analyses them separately, as needed. Therefore, we feel that 

the information gained from size spectra analyses far outweighs the additional labor required. 

Further work is needed to assess the sensitivity of size spectra across other environmental 

gradients, in order to further our understanding of their potential use as an indicator of 

ecological status.   
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Supplementary Material 

Table S1. Chemical variables for the 25 sites analyzed in this study. PCA was performed on pH, 

specific conductivity, and metal concentrations in order to determine the acid mine drainage 

impact gradient. PC1 are the site specific scores determined by the PCA, and are ordered by 

increasing impact. Stream X and Y were located on private property in the same region, and 

sampling access was granted on the condition that their names and locations would not be 

disclosed. EC is specific conductivity in μS cm-1.  Metal concentrations are in mg L-1. 

Site PC1 pH EC Mg Al Mn Fe Co Ni Cu Zn As Cd Pb 

Sullivan 
East 

-3.66 4.8 19 
0.248

2 
0.147

6 
0.001

2 
0.231

2 
0.000

0 
0.000

2 
0.000

3 
0.005

1 
0.000

2 
0.000

0 
0.00
02 

Italian -3.48 6.5 48 
2.333

2 
0.049

6 
0.006

8 
0.100

8 
0.000

0 
0.000

3 
0.000

4 
0.003

5 
0.001

8 
0.000

0 
0.00
01 

Burnett 
Trib. 

-3.20 5.6 16 
0.306

9 
0.243

0 
0.008

7 
0.387

9 
0.000

3 
0.000

8 
0.000

6 
0.008

6 
0.000

4 
0.000

0 
0.00
03 

Coorang -3.18 6.4 31 
1.187

0 
0.291

8 
0.005

0 
0.321

2 
0.000

1 
0.000

5 
0.000

6 
0.001

7 
0.003

4 
0.000

0 
0.00
02 

Burnett -3.12 5.5 15 
0.276

9 

0.239

0 

0.007

3 

0.426

7 

0.000

1 

0.000

4 

0.001

2 

0.011

3 

0.000

4 

0.000

0 

0.00

03 

Murray -2.93 7.1 73 
4.909

7 

0.071

4 

0.009

1 

0.080

5 

0.000

1 

0.001

1 

0.000

8 

0.004

9 

0.003

3 

0.000

0 

0.00

03 

Charmin

g 
-2.79 6.5 50 

0.840

6 

0.403

0 

0.012

6 

0.662

4 

0.000

2 

0.001

6 

0.000

5 

0.007

8 

0.000

4 

0.000

0 

0.00

02 

Chasm -2.54 6.9 70 
1.386

6 

0.250

2 

0.012

5 

1.147

1 

0.000

2 

0.002

3 

0.000

7 

0.007

3 

0.000

8 

0.000

0 

0.00

02 

Burke -2.44 6.6 69 
4.180

8 
0.277

3 
0.025

2 
0.331

6 
0.000

5 
0.002

7 
0.000

4 
0.015

0 
0.000

5 
0.000

0 
0.00
01 

Kiwi -2.28 6.5 60 
1.543

5 
0.090

2 
0.003

5 
0.215

7 
0.000

0 
0.000

8 
0.002

9 
0.165

2 
0.000

5 
0.000

0 
0.00
08 

Lankey -2.21 7.3 92 
7.177

0 
0.130

1 
0.086

7 
0.163

3 
0.002

0 
0.003

9 
0.000

8 
0.013

3 
0.001

2 
0.000

0 
0.00
01 

One 
Horse 
Creek 

-1.74 6.9 42 
2.557

8 
0.715

9 
0.013

4 
0.473

8 
0.000

4 
0.001

4 
0.002

9 
0.017

2 
0.081

6 
0.000

0 
0.00
04 

Cannel -0.58 3.7 197 
3.449

9 
2.619

8 
0.072

9 
1.799

7 
0.003

1 
0.008

6 
0.001

4 
0.039

2 
0.000

2 
0.000

0 
0.00
02 

Coalbroo
kedale 

-0.05 3.5 144 
1.573

5 
2.203

6 
0.070

5 
1.420

4 
0.007

0 
0.012

7 
0.002

3 
0.116

0 
0.000

2 
0.000

0 
0.00
10 
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Warne 0.01 3.5 318 
2.776

2 
5.293

5 
0.174

7 
1.664

3 
0.004

0 
0.012

7 
0.001

3 
0.119

5 
0.000

3 
0.000

1 
0.00
03 

Stream X 0.18 5.6 259 
22.47

37 
0.241

6 
0.848

7 
0.827

4 
0.011

6 
0.022

1 
0.009

8 
0.083

7 
0.000

5 
0.000

1 
0.00
01 

Granity 1.56 3.3 270 
2.952

1 
9.134

1 
0.183

6 
2.363

5 
0.015

7 
0.035

3 
0.008

7 
0.223

5 
0.001

1 
0.000

2 
0.00
15 

Sullivan 
West 

2.40 2.7 687 
5.835

2 
11.25

88 
0.312

2 
15.14

40 
0.033

5 
0.066

6 
0.008

2 
0.397

4 
0.003

8 
0.000

1 
0.00
08 

Packtrac
k 

2.94 2.5 982 
11.78

91 
21.62

26 
0.851

8 
7.753

3 
0.035

0 
0.080

7 
0.013

1 
0.510

7 
0.007

0 
0.000

3 
0.00
05 

Miller 3.03 2.6 923 
13.90

81 
29.19

45 
0.873

2 
7.410

0 
0.036

0 
0.084

5 
0.013

1 
0.534

8 
0.005

5 
0.000

3 
0.00
05 

Mine 3.62 2.5 1285 
20.17

27 
51.27

92 
1.370

7 
10.23

36 
0.056

8 
0.136

8 
0.015

0 
0.844

7 
0.007

9 
0.000

5 
0.00
02 

Coal 3.78 2.7 889 
38.25

80 
17.43

06 
1.671

5 
21.69

75 
0.086

9 
0.233

7 
0.008

9 
0.810

3 
0.000

6 
0.000

5 
0.00
09 

Stream Y 5.24 3.3 1607 
156.4
894 

9.685
7 

13.06
68 

14.58
08 

0.322
3 

0.489
6 

0.011
6 

1.364
5 

0.001
2 

0.000
8 

0.00
24 

Portal 5.64 1.9 2183 
38.48

71 

86.24

35 

3.058

3 

23.04

97 

0.123

7 

0.305

1 

0.106

2 

1.706

8 

0.010

9 

0.000

9 

0.00

09 

Hot 5.80 2.3 2227 
50.49

21 

99.29

91 

3.887

0 

38.39

05 

0.152

8 

0.381

3 

0.073

0 

2.077

3 

0.023

4 

0.001

2 

0.00

05 

 

Number of bins 

The number of bins used when constructing size spectra relationships is known to affect the 

conclusions reached. On the one hand, wide logarithmic bins reduce the number of bins with 

zero observations in them (White, Enquist, and Green 2008), while broadly retaining the 

spectral features, whereas on the other hand wide bins can substantially mask the finer spectral 

details (Gaedke 1992, Sprules and Barth 2015). The two most commonly used bin widths are 

log10 and log2, which we examined here. When using log2 bins, there were a total of 18 bins 

across all sites (Fig. S1). Eleven of the twenty five sites had a single empty bin within the size 

range of their data, respectively. No sites had more than one empty bin within their data range. 

Additionally, the range and abundance of body sizes present in each Surber sample was similar 

within a site, hence, we feel that each sample per site was an adequate representation of the 
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size spectra present at that site. Of the 18 bins used, between 6 and 16 contained values, 

depending on the site (Fig. S1). Missing values in bins represent missing size classes within a 

community, and were not included in the regression analyses. 

 

Figure S1 Log2 width bins. Points represent midpoint of bins with observed size classes present 

at that site. Sites are ordered by increasing AMD impacts from left to right. 

While there were no empty bins across the observed size range when using log10 width bins, 

the number of bins was reduced to a total of 6 (Fig. S2). Due to the decrease in size range 

across the mining gradient, this resulted in only 2-6 bins per site having observed body sizes 

within them.  
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Figure S2. Log10 width bins. Points represent bins with observed size classes present at that site. 

Sites are ordered by increasing AMD impacts from left to right. 

When using log2 width bins, our number of observations increased significantly, allowing for 

more robust regressions (log2 N = 289; log10 N = 103). Importantly, the coefficient estimates, 

and therefore the interpretation, are similar when using log10 width bins (Table S1), indicating 

the strength of the response of size spectra to AMD impacts. When carrying out the statistical 

model selection using the dredge function in the MuMIN package for R (Bartoń 2016) for the 

log10 width bins, two models are selected (ΔAIC <2) with approximately equal weight (0.475 and 

0.362, respectively). Both of these models have significant coefficients for M, M2, and an M:PC1 

interaction. The first model contains terms for PC1 and an interaction term for M2:PC1, 

although neither one of these effects are significant (p-value > 0.10). The second model 

contains a term for PC1, although this is barely non-significant at the α = 0.05 level (p-value = 

0.0502).  
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Table S2. Coefficient estimates for the top 2 models using log10 width bins, and for the top 

model using log2 width bins. See main text for model selection. Coefficients in bold are 

significant at α = 0.05 level, while italics indicates coefficients which are likely biologically 

significant (p-value < 0.10). -- indicates that term was not present in the model. The ΔAIC and 

weight columns for the 2 log10 models can be compared directly, while the value for the log2 

model is independent.  

Model Intercept M M2 PC1 M:PC1 M2:PC1 Adj R2 ΔAIC weight 

Log10 - top model 5.696 -0.902 -0.360 -0.016 0.072 -0.035 0.832 0 0.479 

Log10 - second model 5.650 -0.952 -0.290 -0.050 0.051 -- 0.830 0.56 0.361 

          
Log2 - top model 5.806 -0.937 -0.356 -0.077 0.055 -- 0.851 0 0.738 

 

Table S3. Quadratic equations for size spectra across the mining gradient. PC1 are the site 

specific scores determined by the PCA, and are ordered by increasing impact. Intercept and 

slope are the estimated coefficients taking into account the effects of the mining gradient (PC1). 

The quadratic term did not vary significantly across the gradient.  

Site PC1 Intercept Slope Quadratic term 

Sullivan East -3.66 6.086 -1.138 -0.356 

Italian -3.48 6.072 -1.128 -0.356 

Burnett Trib. -3.20 6.051 -1.113 -0.356 

Coorang -3.18 6.049 -1.112 -0.356 

Burnet -3.12 6.045 -1.109 -0.356 

Murray -2.93 6.030 -1.098 -0.356 

Charming -2.79 6.019 -1.090 -0.356 

Chasm -2.54 6.000 -1.077 -0.356 

Burke -2.44 5.993 -1.071 -0.356 

Kiwi -2.28 5.980 -1.062 -0.356 

Lankey -2.21 5.975 -1.058 -0.356 

One Horse Creek -1.74 5.939 -1.033 -0.356 

Cannel -0.58 5.850 -0.969 -0.356 

Coalbrookedale -0.05 5.810 -0.940 -0.356 

Warne 0.01 5.805 -0.936 -0.356 

Stream X 0.18 5.792 -0.927 -0.356 

Granit 1.56 5.686 -0.850 -0.356 

Sullivan West 2.40 5.622 -0.804 -0.356 

Packtrack 2.94 5.581 -0.775 -0.356 

Miller 3.03 5.573 -0.769 -0.356 

Mine 3.62 5.529 -0.737 -0.356 

Coal 3.78 5.516 -0.728 -0.356 
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Stream Y 5.24 5.405 -0.648 -0.356 

Portal 5.64 5.374 -0.626 -0.356 

Hot 5.80 5.361 -0.617 -0.356 

 

 

 

Fish presence / absence 

Twelve of the 25 sites were un-impacted by AMD inputs. However, of these 12 sites, 6 of the 

streams were naturally fishless. Because the presence of top predators can change the shape of 

the size spectra of their prey (Brose et al. 2016), we compared the relationship between un-

impacted streams with and without fish. The size spectra for the un-impacted streams is shown 

in Fig. S1. We tested for significant effects of fish presence by conducting a linear regression 

with a categorical variable of fish presence (Y/N), and an interaction term between the slope 

and fish presence. There were no significant effects of fish presence (p-value = 0.789) or a 

significant interaction between fish presence and the slope of the relationship (p-value = 

0.130). Only the macroinvertebrate size spectra were compared across all 25 streams.  
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Figure S1. Size spectra for the macroinvertebrate community in un-impacted streams both with 

(red triangles) and without (black circles) fish present. The points are jittered for visualization.  

 

Linear vs. quadratic model 

The majority of previously published work on size spectra examines linear models of log-

transformed variables. However, as Sprules and Barth (2015) note, the relationship between 

body size and abundance are actually a series of repeating, negative parabolic domes, which 

only take on a linear shape when sampling over a large enough range of body sizes. When 

examining size spectra across a limited range of body sizes, they recommend fitting quadratic 

models to account for the secondary curvature of the relationship, and using model selection 

(e.g. Akaike’s information criterion, Burnham and Anderson 2004). We fit linear and quadratic 

models to the size spectra across the AMD gradient. We found that the quadratic model had far 

greater support than the linear model, despite the cost of extra parameters (Linear AIC c = 615; 

Quadratic AICc = 473). However, due to the lack of quadratic relationships in previously 

published work, we wanted to compare the results obtained using both models, to see if there 

were significant differences in the conclusions reached. 

Model selection was carried out for both the linear and quadratic models as described in the 

main text. For both models, a single top model was chosen (ΔAICc < 2.0). Coefficient estimates 
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are shown in Table S2. The linear model had lower estimates for the intercept, and the effect of 

PC1. However, all other shared coefficient estimates are similar. The major differences are in 

the model intercept, and the magnitude of the PC1 coefficient. This is likely due to the 

difference in estimated intercept (and therefore, the magnitude that PC1 changes the 

intercept) of a straight line compared with a parabolic curve. Additionally, the adjusted R 2 value 

was higher for the quadratic model, likely due to the extra explanatory power provided by 

accounting for the secondary curvature with the quadratic term. However, it is important to 

note that the overall conclusions of both models are largely in agreement. Both show a 

decrease in abundance (N) across increasing body mass (negative M coefficient). Likewise, both 

models show a decrease in intercept in response to PC1, and show highly similar changes to the 

slopes (M:PC1 coefficient) across the mining gradient. 

Table S4 Coefficient estimates (SE) and adjusted R2 values for both the linear and quadratic 

models, using log2 width bins. Significant coefficient estimates are in bold. Note the similarity of 

coefficient estimates.   

 Intercept M PC1 M:PC1 M2 ADJ R2 

Linear 5.396 -1.00 (0.04) -0.037 (0.01) 0.056 (0.01) -- 0.7508 

Quadratic 5.806 -0.94 (0.03) -0.077 (0.01) 0.055 (0.01) -0.356 (0.03) 0.8498 

 

Comparing size spectra intercept with density estimates 

To place our results in context, we compared the y-intercept results of our top model for size 

spectra (main text) with density estimates calculated directly from the Surber samples. The 

log10 transformed number of individuals in each Surber sample was regressed across the PC1 

values. Model: 

Log10 (No. individuals) = β0 + β1PC1 + ϵ 

We found that the density of individuals significantly declines across the mining gradient (F-

statistic1, 72 = 19.77, P < 0.001, adjusted R2 = 0.205). The estimated coefficient for the effect of 

the mining gradient (βPC1) on the log10 estimated density was -0.095. Although it’s difficult to 

compare them directly, the sign and magnitude of this coefficient is similar to that found for the 

effect that the mining gradient had on the y-intercept of the size spectra (e.g. βPC1 in Table 3, 
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main text = -0.077). Hence, we find general agreement in the decrease of the y-intercept in the 

size spectra model, and decreases in density calculated using more “traditional” means.  

Table S5. Dominant taxa by site (listed in order of increasing impact), their relative abundance 

their functional feeding group (FFG), and their maximum, mean, and minimum dry weight in mg. 

The site scores from PC axis 1 are also listed for reference. AMD impacts start at Cannel stream. 

CB = collector-browser; G = grazer; FF = filter feeder; S = shredder; O = omnivore; P = predator.  

Site PC1 Taxa 
Relative 

Abundance 
FFG Max mg Mean mg Min mg 

Sull. East -3.66 Deleatidium 0.378 CB 3.409 0.190 0.005 

Sull. East -3.66 Orthocladiinae 0.381 CB 1.645 0.383 0.020 

Italian -3.48 Aoteapsyche 0.116 O 8.868 0.275 0.004 

Italian -3.48 Beraeoptera 0.148 CB 0.477 0.163 0.002 

Italian -3.48 Deleatidium 0.151 CB 3.433 0.785 0.003 

Italian -3.48 Pycnocentria 0.155 CB 0.070 0.011 0.002 

Burnet Trib -3.20 Deleatidium 0.190 CB 2.291 0.641 0.028 

Burnet Trib -3.20 Oligochaete 0.145 CB 0.026 0.007 0.001 

Burnet Trib -3.20 Orthocladiinae 0.320 CB 2.351 0.672 0.019 

Burnet Trib -3.20 Zelandobius 0.130 CB 0.367 0.119 0.022 

Coorang -3.18 Austrosimulium 0.146 FF 0.575 0.207 0.003 

Coorang -3.18 Deleatidium 0.341 CB 3.291 0.340 0.007 

Coorang -3.18 Orthocladiinae 0.144 CB 2.904 0.691 0.007 

Coorang -3.18 Zelandobius 0.114 CB 1.745 0.226 0.016 

Burnet -3.12 Deleatidium 0.153 CB 2.310 0.285 0.008 

Burnet -3.12 Oligochaete 0.198 CB 0.139 0.017 0.001 

Burnet -3.12 Orthocladiinae 0.306 CB 2.154 0.287 0.006 

Burnet -3.12 Zelandobius 0.179 CB 0.461 0.182 0.027 

Murray -2.93 Deleatidium 0.314 CB 2.460 0.196 0.004 

Murray -2.93 Oligochaete 0.119 CB 0.028 0.011 0.001 

Murray -2.93 Orthocladiinae 0.166 CB 2.295 0.303 0.030 

Charming -2.79 Deleatidium 0.373 CB 2.489 0.212 0.002 

Charming -2.79 Oligochaete 0.324 CB 0.113 0.010 0.001 

Charming -2.79 Orthocladiinae 0.119 CB 1.446 0.203 0.009 

Chasm -2.54 Coloburiscus 0.107 FF 10.499 2.428 0.014 

Chasm -2.54 Deleatidium 0.285 CB 2.519 0.658 0.003 

Chasm -2.54 Orthocladiinae 0.124 CB 2.396 0.299 0.026 

Chasm -2.54 Paraleptamphopus 0.105 CB 1.852 0.161 0.001 

Burke -2.44 Chironominae 0.109 CB 1.302 0.179 0.014 

Burke -2.44 Oligochaete 0.133 CB 1.271 0.029 0.001 

Burke -2.44 Orthocladiinae 0.301 CB 1.430 0.191 0.015 

Kiwi -2.28 Deleatidium 0.505 CB 1.088 0.093 0.003 

Kiwi -2.28 Oligochaete 0.156 CB 0.062 0.010 0.001 
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Kiwi -2.28 Orthocladiinae 0.125 CB 1.326 0.106 0.008 

Lankey -2.21 Coloburiscus 0.102 FF 8.660 0.267 0.010 

Lankey -2.21 Deleatidium 0.343 CB 5.046 0.321 0.003 

One Horse -1.74 Coloburiscus 0.111 FF 9.959 1.633 0.012 

One Horse -1.74 Deleatidium 0.247 CB 3.007 0.614 0.002 

One Horse -1.74 Orthocladiinae 0.339 CB 1.049 0.180 0.013 

Cannel -0.58 Aoteapsyche 0.200 O 3.762 2.200 1.291 

Cannel -0.58 Orthocladiinae 0.667 CB 0.273 0.089 0.019 

Cbdale -0.05 Oligochaete 0.161 CB 0.009 0.006 0.003 

Cbdale -0.05 Oxyethira 0.258 G 0.192 0.101 0.044 

Cbdale -0.05 Zelandobius 0.161 CB 0.440 0.145 0.042 

Warne 0.01 Deleatidium 0.144 CB 3.374 0.690 0.015 

Warne 0.01 Orthocladiinae 0.288 CB 0.416 0.212 0.031 

Warne 0.01 Oxyethira 0.222 G 0.183 0.050 0.007 

Warne 0.01 Spaniocercoides 0.111 CB 0.359 0.037 0.006 

Stream X 0.18 Oligochaete 0.344 CB 0.040 0.012 0.004 

Stream X 0.18 Spaniocerca 0.188 CB 0.330 0.067 0.003 

Granity 1.56 Diamesinae 0.167 CB 0.990 0.424 0.041 

Granity 1.56 Orthocladiinae 0.596 CB 1.009 0.235 0.016 

Granity 1.56 Oxyethira 0.193 G 0.137 0.024 0.004 

Sull. West 2.40 Diamesinae 0.701 CB 1.227 0.371 0.035 

Sull. West 2.40 Orthocladiinae 0.175 CB 0.996 0.151 0.005 

Packtrack 2.94 Orthocladiinae 0.991 CB 1.531 0.220 0.016 

Miller 3.03 Diamesinae 0.195 CB 0.661 0.316 0.014 

Miller 3.03 Orthocladiinae 0.756 CB 0.920 0.420 0.073 

Mine 3.62 Diamesinae 0.581 CB 1.389 0.374 0.014 

Mine 3.62 Orthocladiinae 0.370 CB 0.713 0.280 0.031 

Coal 3.78 Orthocladiinae 0.649 CB 0.612 0.287 0.014 

Stream Y 5.24 Empididae 0.576 P 0.217 0.121 0.053 

Stream Y 5.24 Orthocladiinae 0.353 CB 0.734 0.274 0.045 

Portal 5.64 Orthocladiinae 1.000 CB 0.877 0.196 0.012 

Hot 5.80 Orthocladiinae 0.957 CB 0.651 0.245 0.029 
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Chapter Three:  

Inferring predator-prey interactions in food webs 

Preface 

This chapter consists of an accepted manuscript titled Inferring predator-prey interactions in 

food webs. Methods in Ecology and Evolution. In press. This manuscript is co-authored by 

Timothée Poisot, Ross Thompson, and Jon Harding. As lead author of this manuscript, I 

designed the study, analyzed the data, developed the models, wrote the first and final draft of 

the manuscript and designed all tables and figures. Jon Harding provided funding for this 

project and advice on study design, Ross Thompson provided data, Timothée Poisot provided 

critical feedback on an early version of the manuscript and suggested additional analyses, and 

all co-authors provided feedback on the manuscript. 

 

Abstract 

Food webs are a powerful way to represent the diversity, structure, and function of ecological 

systems. However, the accurate description of food webs requires significant effort in time and 

resources, limiting their widespread use in ecological studies. Newly published methods allow 

for the inference of feeding interactions using proxy variables. Here, we compare the accuracy 

of two recently described methods, as well as describe a composite model of the two, for the 

inference of feeding interactions using a large, well-described dataset. Both niche and neutral 

processes are involved in determining whether or not two species will form a feeding link in 

communities. Three different models for determining niche constraints of feeding interactions 

were compared, and all three models were extended by incorporating neutral processes, based 

on relative abundances. The three models compared here infer niche processes through 1) 

phylogenetic relationships, 2) local species trait distributions (e.g. body size), and 3) a 

composite of phylogeny and local traits.  We showed that all three methods perform well at 

predicting individual species interactions, and that these individual predictions scale up to the 

network level, resulting in food-web structure of inferred networks being similar to their 
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empirical counterparts. Our results indicated that inferring food-web structure using 

phylogenies can be an efficient way of getting summary webs with minimal data, and offers a 

conservative test of changes in food-web structure, particularly when there is low species 

turnover between sites. Inferences made using traits requires more data, but allows for greater 

understanding of the mechanisms underlying trophic interactions. A composite model of the 

two methods provides a framework for investigating the importance of how phylogeny, trait 

distributions, and relative abundances, affect species interactions, and network structure.   

Introduction  

Food webs represent networks of species’ trophic interactions within an ecological community. 

Understanding the structure and function of food webs offers important insight into how 

communities change across environmental gradients (Thompson and Townsend 2004, 

Tylianakis, Tscharntke, and Lewis 2007, Layer et al. 2010, Pellissier et al. 2018), their potential 

resilience to disturbances (reviewed by Ives and Carpenter 2007), and offers a framework for 

integrating aspects of biodiversity and ecosystem function (reviewed by Thompson et al. 2012). 

The assembly of food webs in nature requires a significant commitment  of sampling and 

laboratory effort and resources, which restricts their widespread use in ecological studies 

(Thompson et al. 2001, Woodward and Hildrew 2001, Gray et al. 2014, but see Jordano 2016 

for a discussion of sampling ecological interactions). The lack of well-resolved (e.g. taxa 

identified to species level) and comparable (e.g. equal allocation of effort, consistent level of 

taxonomic identification) sets of food webs, particularly along environmental and stress 

gradients, is a significant impediment to better understanding food-web assembly and 

dynamics (Thompson and Townsend 2000, Dunne 2006, Thompson et al. 2012).  Given this, 

there is a strong need for a robust method for accurately inferring species interactions from 

less detailed datasets, such as proxy data (Gray et al. 2014, Morales-Castilla et al. 2015).  

Trophic interactions are largely determined by two processes, niche and neutral, which 

establish the possibility and realization of pairwise interactions, respectively (Canard et al. 

2014, Poisot, Stouffer, and Gravel 2015, Bartomeus et al. 2016). We define niche and neutral 

processes sensu Poisot, Stouffer, and Gravel 2015), where niche processes are based on species 

traits and determine if species can interact, and neutral processes are based on their (local) 
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relative abundances, and determine if they are likely to encounter one another. In other words, 

niche processes determine the probability of two species interacting based on some relevant 

biological characteristics such as body size (e.g. Brose et al. 2006), phenology (e.g. Hegland et 

al. 2009), or co-occurrence (e.g. Morales-Castilla et al. 2015). Species unable to interact based 

on these constraints are termed "niche forbidden links" (Olesen et al. 2008) and can be 

determined based on traits, phylogenetic relationships or geographic distribution (reviewed in 

Morales-Castilla et al. 2015).  

The probability that species can interact with one another is conditional upon them being able 

to meet, the likelihood of which is driven by neutral processes (Canard et al. 2012, 2014). In an 

entirely neutral world, the probability of two species interacting is proportional to the product 

of their relative abundances (Canard et al. 2014, Poisot, Stouffer, and Gravel 2015), with more 

abundant species having a higher encounter probability and therefore more interactions 

(Canard et al. 2014). Interactions between rare species, below some yet undefined threshold in 

abundance,  are termed "neutrally forbidden links" (Canard et al. 2012, Poisot, Stouffer, and 

Gravel 2015). Neutral processes can be accommodated by forbidding links between rare 

species, or by a random draw with probability proportional to the product of their relative 

abundances.  

Two methods have recently been proposed for the inference of species trophic interactions as a 

result of niche processes; the ‘WebBuilder method’, which is based on phylogenetic 

relationships (Gray et al. 2015), and a ‘trait-matching method’ based on body size (Gravel et al. 

2013). The WebBuilder method (Gray et al. 2015) is a function in the R programming language, 

which uses a registry of previously published feeding interactions which includes phylogenetic 

classifications. Feeding interactions are often determined by some combination of traits, which 

can be phylogenetically conserved, and evolutionary relationships have been used to accurately 

re-create empirical food-web structure (e.g. Eklöf et al. 2013). WebBuilder allows altering the 

level of relationship per taxa individually, and independently for their role as consumers and 

resources. This method allows for the transparent, reproducible construction of food webs, and 

only requires a list of taxa for a given site together with the registry of feeding interactions 

(Gray et al. 2015, 2016). A potential limitation of the WebBuilder method is that it assumes that 
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if species have ever been documented to interact, they will always interact whenever they co-

occur (Gray et al. 2015). This can lead to the over-representation of rare links (Poisot et al. 

2016a), and insensitivity to changes in food-web structure in the absence of species turnover 

(Poisot et al. 2012, Gray et al. 2015).  

The trait-matching method proposed by Gravel et al. (2013) also relies on previously published 

feeding interactions, but uses the body sizes of interacting partners to determine trophic links. 

The relationship between predator and prey body size in food webs is well documented (Brose 

et al. 2006, Riede et al. 2011, Eklöf et al. 2013), and is the basis of the niche food web model 

(sensu Williams and Martinez 2000). The trait-matching method uses log10-transformed body 

sizes of predators and their prey, with logistic regressions (e.g. 0.01 and 0.97 quantiles) to 

parameterize the niche food-web model of Williams and Martinez (2000). The trait-matching 

method has been shown to be remarkably robust to sampling effort, successfully predicting 

links even when up to 80% of the calibration data was withheld (Gravel et al. 2013). When 

measuring populations at a given location, this method allows for the variability of species 

interactions through space (assuming that the relationship is conserved) by taking into account 

local body-size distributions (Poisot, Stouffer, and Gravel 2015).  

Here we inferred the pairwise species interactions for 17 previously published communities and 

food webs from streams in New Zealand (Thompson and Townsend 1999, 2004) using the 

WebBuilder and trait-matching methods separately, as well as a composite model combining 

both methods (Fig. 1). We assessed whether species pairs were capable of interacting (niche 

processes) and then examined interaction realization, by forbidding links between species 

whose relative abundance products were below arbitrarily defined thresholds (neutral 

processes). We hypothesized that both niche and neutral processes would be important in 

predicting pairwise species interactions, and that these processes would scale up to higher-level 

network properties, resulting in similar structure and food-web measures as those of the 

previously published empirical webs (Thompson and Townsend 1999, 2004) 
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Figure 1. Conceptual illustration of the trait matching (A-C), WebBuilder (D-E) and composite (F-

G) models tested. The nodes are represented by shapes, and feeding interactions are 

represented by solid black lines. The size of the shape corresponds to the average biomass of 

the node, while the shape corresponds to the taxonomic identity. Dashed lines represent links 

that were removed based on niche (green), or neutral (red) processes, or where trait 

distributions differ from expected (blue). A) Trait-matching biomass inference. B) Trait-matching 

+ niche pruned (e.g. green circle is an herbivore). C) Neutrally forbidden links are removed. D) 

Nodes are assigned by taxonomic identity (shape). E) Neutrally forbidden links are removed. F) 

Links are assigned by taxonomic identity (shape) and body size (size of shape). The blue diamond 

is too large to be a prey of the half circle, and this link is removed. G) Neutrally forbidden links 

are removed. 
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Methods 

Dataset description and preparation 

The data used for evaluating these two methods were a series of previously published 

freshwater stream food webs from New Zealand (Thompson and Townsend 1999, 2004).The 

goal of the original studies was not to document every link within a food web, but to sample 

food webs using standardized allocations of effort and taxonomic resolution across streams in 

differing land-use types. Therefore, the observed links represent a “true” interaction, while un-

observed links could represent either an actual lack of interaction, or could be a false negative 

(e.g. the species do interact but it was not detected by the original sampling; Jordano 2016, 

Stock et al. 2017). The original food webs included basal resources, invertebrate consumers and 

predators, and predatory fish. All fish in these streams are predatory. Only the predator-prey 

interactions (fish – invertebrate, and invertebrate – invertebrate) were used, as the relationship 

between basal resources (detritus and primary producers) and consumer body size follows 

different mathematical relationships (Riede et al. 2011). The animal communities were 

dominated at all sites by invertebrate taxa (>90%), and contained up to 4 fish species, with a 

majority of communities only containing a single fish species. In order to resolve naming 

discrepancies between food webs and associated metadata, original food webs were modified, 

and taxa were aggregated at the genus level for most groups (subfamily for members of 

Chironomidae, family for all other Diptera, Order for non-insect taxa).  

The original studies included a total of 22 food webs from sites along 18 streams. Two of the 

streams (Dempsters and Sutton) were sampled seasonally (spring, summer and autumn), 

although only the spring and summer food webs from Sutton were available for the present 

analysis. Therefore, a total of 21 food webs were available for the WebBuilder registry (see 

below for details).  

Average body lengths for invertebrate taxa were only available for 17 of the streams sampled 

during the summer season (all except Akatore A). This subset of food webs were available to 

parameterize coefficients for the niche model in the trait-matching method (see below for 

details). The body lengths were converted to dry mass estimates using published length-weight 
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regressions for New Zealand fauna (Towers, Henderson, and Veltman 1994, Stoffels, Karbe, and 

Paterson 2003). The original data set included empirical estimates for all invertebrate taxa 

densities (Thompson and Townsend 1999, 2004), and these were used when considering 

neutral processes (see below for details).    

Only data on fish presence/absence were available for these sites. We used the average 

minimum length per fish species for the Taieri watershed (the catchment that contained all  

empirical food webs) in the New Zealand Freshwater Fish database 

(https://www.niwa.co.nz/our-services/online-services/freshwater-fish-database). These lengths 

were used to estimate fish dry weights with length-weight regressions for New Zealand fish 

(Jellyman et al. 2013). Fish abundances were estimated using allometric scaling equations 

between body mass and abundance: N = Mb. Where N is the numerical abundance, and M is 

body mass. The scaling exponent b is theorized to equal -1 (Brown et al. 2004), and has been 

shown to vary from -0.1 to -1.5 in empirical data (Reuman et al. 2009). During preliminary 

analyses, we varied the exponent from -0.7 to -1.2. Although the estimated abundance of fish 

varied based on the value of the exponent (e.g. [min, max] no. m-2 for Anguilla = [0.010, 0.066] 

and Galaxias = [3.62, 9.11], respectively), this variation paled in comparison to the total number 

of macroinvertebrates per m2 (e.g. 1,500 – 22,000). Furthermore, to estimate neutrally 

forbidden links, absolute abundances are converted to relative abundances (see below), and 

the degree of variation observed in response to varying the scaling exponent did not greatly 

alter the results of these models.  Here we only present the results using an exponent of -1.  

Only 17 of the stream food webs had all available information, so only these empirical food 

webs were inferred using the two methods. Of these 17 food webs, species average lengths 

were not available for all taxa present at a site. When a taxa did not have a length estimate, it 

was removed from the observed food webs, and the WebBuilder, and trait-matching 

inferences, in order to make the comparisons equitable (e.g. to ensure that the same number 

and identity of taxa were present for all comparisons). Additionally, when inferring feeding 

interactions for a given empirical food web, the local feeding interactions for that food web 

were withheld from the global WebBuilder registry and from the global trait-matching 

parameterization dataset, respectively, in order to avoid circularities. For example when 

https://www.niwa.co.nz/our-services/online-services/freshwater-fish-database
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inferring the pairwise interactions for Blackrock Stream, the WebBuilder registry only contained 

feeding interactions from the other 20 streams, while the trait-matching dataset to 

parameterize the niche model only contained predator-prey body sizes from the other 16 

streams.  

The food webs used in this analysis were modified from the originals in order to resolve 

discrepancies between the food web and associated metadata. All data manipulation and 

analyses were conducted in R version 3.3.3 (R Development Core Team 2017), and all of the 

data used in this analysis, along with R scripts for reproducibility, are available at [Dryad data 

DOI here upon article acceptance].  

Trait-matching 

The trait-matching method (Gravel et al. 2013) was implemented using parameter coefficients 

of quantile regressions (0.01, 0.5, 0.99) through Log10 transformed body sizes of interacting taxa 

to estimate the range (minimum, optimum, and maximum) of body sizes that a taxa can 

consume. Estimated dry weights of predator-prey pairwise interactions were compiled from all 

17 food webs. Separate quantile regressions were performed for the parameterization of the 

niche model for each food web (with the local food-web data withheld from the global 

parameterization dataset). 

After the models were parameterized, potential feeding links were inferred where the body size 

of a resource falls within the niche range of a consumer. Feeding links were transformed into 

adjacency matrices (Atrait, Fig. 2A), which are square matrices (S x S, where S = the number of 

taxa present) in which the rows contain all taxa as a resource, and the columns contain all taxa 

as a consumer. Both rows and columns are ordered by increasing body size. Aij = 1 where taxa j 

can consume taxa i based on their relative body sizes, and 0 otherwise.  
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Figure 2. Example of predation matrices for Dempsters Creek for the trait-matching (top panel; 

A) initial inference, B) Niche pruned, C) Niche + Neutral pruned), WebBuilder (second panel; D) 

initial inference, E) Neutral pruned) and WebBuilder: trait-matching (third panel; F) initial 

inference, G) Neutral pruned) inferences. The empirical network (H) is also shown. All matrices 

are ordered by increasing body size from left to right and top to bottom. 
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Trait-matching inferred food webs were then pruned to remove niche forbidden links (Morales-

Castilla et al. 2015). Niche forbidden links are defined here as links that are predicted to occur 

based on body size, but are impossible due to morphology. Links were pruned conservatively, 

and based on functional feeding groups as defined by morphology. For example, mayflies in the 

Leptophlebiidae family which have mouthparts specialized for “brushing” diatoms from benthic 

surfaces, and filter feeding taxa which have specialized morphological features, such as the 

cephalic fan of the blackfly genus Austrosimulium, were considered to be incapable of 

consuming animal prey. However, all filter feeders were not considered to be niche forbidden. 

For example, filter feeders which construct nets to collect food and have generalized 

mouthparts, such as the caddisfly genus Aoteapsyche, did not have their inferred links pruned. 

A list of all forbidden taxa present in the food web database is presented in Supplementary 

Table S1. Taxa considered to be forbidden had their column values in A set to zero (e.g. Ai● = 0, 

Fig. 2B).  

Neutrally forbidden links were also pruned from the inferred food webs based on relative 

abundances (Canard et al. 2014). Relative abundances were used because they account for 

variable encounter probabilities based on total community abundance.  Relative abundances 

were calculated using empirical estimates of invertebrate densities, along with fish densities 

calculated using allometric size density relationships. The relative abundance for a given 

species, ni, was calculated by dividing their abundance by the sum of all abundances at a site, 

respectively. Neutral abundance matrices (N) were constructed as Nij = ni * nj, where n is a 

vector of all species relative abundances. The product of all species pair relative abundances 

below a given threshold, n’, were set to 0, and were considered to be neutrally forbidden (e.g. 

the probability of the two species meeting and interacting was so low as to be considered 

negligible). The two matrices were then multiplied together element-wise to calculate the 

adjacency matrices (Atrait’ = N * Atrait, Fig. 2C). Atrait’ were the final inferred networks, and these 

were compared to results from the WebBuilder function (see below) and the observed 

networks (Aobs, Fig. 2H). 

As the probabilities of encounter are proportional to Nij, and it was unknown at what relative 

abundance a link was less likely to occur, a sensitivity analysis was conducted by setting the 
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elements of Nij below a given threshold of relative abundances equal to 0 (absent), and all 

elements greater than the threshold equal to 1 (present). This was done before multiplying 

them with the adjacency matrices (Atrait), so that inferred links were retained only if they were 

present (e.g. equal to 1) in both the Atrait and the N matrices. Neutral thresholds were tested 

ranging from 1 x 10-8 to 0.1. Model performance was evaluated by calculating the area under 

the curve (AUC) of the receiver operating characteristic for each food web at each neutral 

abundance threshold. First, we fit a logistic regression using the glm() function in R, (family = 

binomial), where Atrait’ was the single, binary, predictor variable, and Aobs was the response 

variable. We then used the prediction and performance functions from the ROCR package in R 

to calculate the AUC for each food web: neutral abundance threshold combination. AUC values 

were averaged across all webs for each neutral abundance threshold, and the threshold with 

the highest AUC average was chosen as our best model. Annotated R scripts for the full analysis 

presented here are available at https://github.com/Jpomz/honestly-you-eat-this. AUC values 

can be interpreted as the probability that a randomly chosen positive interaction receives a 

higher score than a randomly chosen negative interaction (e.g. AUC ≥ 0.5 has a ≥ 50% chance of 

being correct). 

Pruning neutrally forbidden links performed well in predicting which invertebrate taxa 

interacted, however it performed poorly at predicting fish-invertebrate interactions. 

Abundances used in this analysis were calculated on a per m2 basis, which likely encompasses 

the scale of interactions of an individual macroinvertebrate. However, fish have greater 

energetic requirements due to their body size, and have subsequently greater search and 

consumption rates (Pawar, Dell, and Savage 2012), necessitating larger foraging areas (Jetz et 

al. 2004). Ingestion rates were estimated based on body size using allometric relationships 

(Pawar, Dell, and Savage 2012), and found to be 3-4 orders of magnitude greater for fish than 

for invertebrate taxa. In order to take this into account, we multiplied the cross product of the 

fish’s relative abundances by a correction factor. This artificially increases the relative 

abundance of fish, while still taking into account variable prey abundances. We examined 

increasing fish relative abundances from 1 to 4 orders of magnitude. All correction factors 

improved prediction outcomes, with larger correction factors resulting in greater average AUC 
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values (Supplementary Fig. S1). Because ingestion rates for fish were approximately 3-4 order 

of magnitude larger than invertebrates, and a correction factor of 104 only slightly increased 

the AUC compared with a correction factor of 103 (Supplementary Fig. S1), despite being an 

order of magnitude larger, we used a correction factor of 103 in all models for all further 

analyses.  

WebBuilder 

WebBuilder is an R function originally presented in Appendix B in (Gray et al. 2015). The 

function was not modified from the original, and its full description and use is described 

elsewhere (Gray et al. 2015). Briefly, to infer feeding interactions at a site, a taxa list from that 

site is run through a registry of previously published feeding interactions. The registry contains 

the phylogenetic relationships of both interacting species (e.g. Order, Family, Genus), and 

interactions can be inferred based on varying levels of phylogenetic relationship. To implement 

the WebBuilder function in the present study, (Gray et al. 2015) all 21 webs in the Thompson 

and Townsend data set were compiled to make the registry of trophic links. Empirical links for a 

local food web were withheld in the construction of the registry for that web inference, in order 

to avoid circularities. Additional feeding interactions for New Zealand streams were compiled 

from published (sources in Supplementary Table S2) and unpublished data (K. Hogsden, R. 

Gregersen and P. Jellyman, unpublished data). Feeding links were inferred with the WebBuilder 

function and transformed into adjacency matrices (Awb Fig. 2D). Neutrally forbidden links were 

removed (Fig. 2E), and a sensitivity analysis was carried out exactly as described above, after 

correcting the relative abundances of fish.  

WebBuilder: trait-matching composite 

In addition to testing the ability of the trait-matching and WebBuilder methods to predict 

feeding interactions, we examined a composite model of the two. The initial inferred matrices 

from both methods were combined, in order to infer links based on traits and phylogeny 

(Acomposite = Atrait * Awb; Fig. 2F). Therefore, inferred links were only retained when both models 

predicted them. Neutrally forbidden links were pruned (Fig. 2G) after correcting for fish relative 

abundances, and a sensitivity analysis was carried out as above.  
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Comparing inferred food webs 

We examined the predictive potential of a total of 7 models (TM initial, TMniche, TMneutral + niche, 

WBinitial, WBneutral, TM:WBinitial, TM:WBneutral, where TM = trait-matching, WB = WebBuilder, and 

TM:WB = composite models; Fig. 1). All neutral models were assessed after correcting for fish 

relative abundances (see above). The performance of all of the models were evaluated by 

calculating the AUC, and the true skill statistic (TSS). The TSS is an overall measure of model 

performance, and is calculated as: 

𝑇𝑆𝑆 = (𝑎𝑑 − 𝑏𝑐) ((𝑎 + 𝑐)(𝑏 + 𝑑))⁄  

Where a is the proportion of true positives (link both predicted and observed), b is the 

proportion of false positives (link predicted but not observed), c is the proportion of false 

negatives (link not predicted, but observed), and d is the proportion of true negatives (link not 

predicted and not observed; Allouche, Tsoar, and Kadmon 2006). TSS scores range from 1 

(perfect prediction) to -1 (inverted prediction).  

In addition to total model performance, we examined the proportion of false positives (b) and 

false negatives (c) for each inference model. False positive rates are difficult to interpret, since 

it is extremely difficult to document all links in a food web (but see Stock et al. 2017) for 

evaluating likelihood of negative interactions in ecological network data). False positives may 

indicate links that do occur but were not recorded, or may falsely predict interactions that do 

not occur. False negatives, however, provide clear indications of a models’ shortcomings 

(Morales-Castilla et al. 2015), by failing to predict a link that does occur empirically.  

Food-web measures 

A suite of common food-web measures were calculated for the networks inferred using the 

trait matching and WebBuilder methods, and these were compared to those of the observed 

networks. Seven measures were considered, including the number of links (L), connectance (C = 

L/S2), proportion of basal (B), intermediate (I) and top (T) species, and the standard deviations 

of normalized generality (resources per consumer; Gi) and normalized vulnerability (consumers 

per resource; Vi): 
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Normalizing with L/S makes these measures comparable across webs with different numbers of 

species (Williams and Martinez 2000). A principal components analysis (Legendre and Legendre 

2012) was performed on food-web measures, and the 7 inference models were compared by 

measuring the Euclidean distance between them and the observed networks in multi -

dimensional (n = 7) space.  

Table 1. Comparison of model inferences and observed networks. Cross products of relative 

abundances below the neutral threshold were removed from inferences. False positive and 

negative values are proportions of links in the two categories. Euclidean distance is between the 

food-web measures calculated for model inferences and observed networks in multidimensional 

space.  

Model 
Inference 

step 

Average 

AUC 

Average 

TSS 

Neutral 

threshold 
False positive False negative 

Euclidean 

distance 

     mean (sd) mean (sd)  

Trait-matching Initial 0.5457 0.0915 NA 0.8325 0.0986 0.0013 0.0019 24.5027 

Trait-matching 
Niche 

pruned 
0.6513 0.3026 NA 0.6339 0.1100 0.0013 0.0019 5.7767 

Trait-matching 

Niche + 

Neutral 

pruned* 

0.7680 0.5361 3.00E-04 0.2663 0.0893 0.0114 0.0099 4.2088 

WebBuilder Initial 0.8286 0.6573 NA 0.2042 0.0359 0.0059 0.0055 3.3091 

WebBuilder 
Neutral 

pruned* 
0.8419 0.6837 1.50E-05 0.1724 0.0356 0.0065 0.0068 3.1795 

WebBuilder: 

Trait-matching 
Initial 0.8225 0.6449 NA 0.1966 0.0341 0.0069 0.0059 3.3365 

WebBuilder: 

Trait-matching 

Neutral 

pruned* 
0.8342 0.6684 1.50E-05 0.1676 0.0342 0.0075 0.0074 3.1276 

* Networks were pruned for neutrally forbidden links after multiplying relative fish abundances by a 

correction factor of 103. 
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Results 

The number of pairwise interactions used to parameterize the trait matching model ranged 

from 379 to 469, depending on which stream was withheld from the training data. 

Approximately 14% of the pairwise interactions had resource body masses which were greater 

than consumer body masses. However, in these cases the consumer body size was between 70-

100% of the body size of the resource (mean = 90%). The initial trait matching inferences were 

a poor predictor of feeding interactions, with an average AUC of 0.546, e.g. as accurate as a 

coin toss. However, predictions improved when pruning niche forbidden links, as well as 

neutrally forbidden links, after correcting for fish relative abundances (neutral threshold = 3 x 

10-4, Table 1) resulting in an average AUC of 0.768 (Supplementary Fig. S2). Average TSS also 

improved with each additional step (final TSS = 0.536 ± 0.112). Proportion of false positive links 

decreased from 0.833 (± 0.099) to 0.266 (± 0.090), while false negative links was low (e.g. < 

0.02, Table 1) at all inference steps.  The Euclidean distance in 7-dimensional space of the food 

web measures decreased with each additional step, from 24.50 to 4.21.  

The registries used in the WebBuilder function varied from 1356 to 1488 pairwise interactions, 

depending on which stream was withheld. More than 50% of the links in the registries were 

from the studies originally published by Thompson and Townsend (1999, 2004). WebBuilder 

generally performed very well, with a high average AUC of 0.829, and a high mean TSS of 0.657 

± 0.100 (± SD, Table 1). Performance improved slightly when pruning neutrally forbidden links 

at a relative abundance threshold of 1 x 10-5 (Table 1, Supplementary Fig. S3). The average 

proportion of false positive links decreased slightly, while the proportion of false negatives 

remained essentially unchanged (Table 1). Euclidean distance of WebBuilder inferences were 

closer to the observed measures than the trait matching inferences, and decreased slightly 

when pruning neutrally forbidden links, from 3.31 to 3.18. Composite model performance was 

similar to WebBuilder models (Table 1).  

Discussion 

Understanding the structure and function of ecological networks is of both fundamental and 

applied interest (Memmott 2009, Thompson et al. 2012, McDonald-Madden et al. 2016). 

Knowledge of food webs’ assembly rules and functioning can inform diverse management 
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questions in conservation biology (McDonald-Madden et al. 2016), restoration ecology (Fraser 

et al. 2015), fisheries management (Eddy et al. 2017), pest management (Gómez-Marco et al. 

2015) and in human-ecological systems (Dee et al. 2017). However the description of food webs 

requires considerable sampling and laboratory effort, limiting their widespread use (Thompson 

et al. 2001, Woodward and Hildrew 2001, Gray et al. 2014). Developing robust and repeatable 

approaches to inferring ecological network structure from community composition data would 

provide abundant new data to test basic food-web theory and develop management-relevant 

insights (Gray et al. 2014, Morales-Castilla et al. 2015). Here, we used two recently described 

methods for the inference of food-web structure (Gravel et al. 2013, Gray et al. 2015), and 

applied them to a dataset of existing stream food-webs.  

All inferred networks had more links than their empirical counterparts. This result is not 

surprising, as it is extremely difficult to document all realized links at a site (Woodward, Speirs, 

and Hildrew 2005), even when considerable effort is expended, it is likely that observed links 

are significantly lower than those realized (Goldwasser and Roughgarden 1997, Martinez et al. 

1999, Woodward, Speirs, and Hildrew 2005). Indeed, the original Thompson and Townsend 

(1999, 2004) studies clearly stated that the goal was not to describe every link, but to 

standardize the sampling effort and taxonomic resolution.  

Models compared here significantly reduce the number of potential links within a site. The 

number of possible links at a site ranged from 225 to 1296, depending on the number of taxa 

present. The average proportion of realized links in the empirical networks was approximately 

5%, while the models predicted approximately 25%. However, the reduction in false positive 

rates and consistently low false negative rate, means that these models are effective at 

discriminating against links which do not occur empirically, while retaining those that do. This is 

an encouraging result. First, links which are predicted but have not been observed empirically 

can inform future research by focusing observations, sampling effort, or designing experiments 

between species pairs which are predicted to interact (Stock et al. 2017). These new 

observations can be used to refine our predictive models, aiding in our ability to infer feeding 

interactions. Second, it suggests that these models are good at eliminating links which are 

trivially absent. Low false negative rates indicate that the models are accurately restricting links 
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which are not observed empirically. Studying the difference, in ecological terms, between false 

and true positives will refine our understanding of the mechanisms involved in interactions.  

The WebBuilder method infers feeding interactions based on phylogenetic identity and 

performed well. Phylogenetic identity can incorporate information on both niche and neutral 

processes. Closely related species share an evolutionary history, and are often similar in 

important traits that determine interactions, including body size, morphology, and behaviour 

(Eklöf et al. 2013). Traits of closely-related species may also lead to similar abundance 

hierarchies (e.g. all sites dominated by a common core of taxa; Thompson and Townsend 2004). 

Knowing the phylogenetic identity of a taxa can essentially account for much of the total 

variation in potential interactions by accounting for the full variability of species’ trait 

distributions and relative numerical dominance. When traits and relative abundances within 

the populations are approximately as expected under “normal” conditions (e.g. local mean 

body size and numerical dominance similar to observations at most other locations), 

phylogenetic identity will likely be a good predictor of interactions. There was little variation in 

the average body size of a taxa across sites. Similar taxa were numerically dominant across 

sites, but their local abundances varied between sites. Therefore, phylogenetic identity alone 

was a good proxy variable for the traits which determine interactions. Forbidding links between 

locally rare species pairs did improve model predictions slightly, and will likely be an important 

mechanism to consider when inferring interactions across sites with a greater variability in local 

abundances. Likewise, further work is needed to explore the performance of phylogenetic 

inferences when inferring interactions across a large spatial scale where the trait distributions 

of local populations diverge (e.g. body size varies due to mean annual temperature changes 

across latitudinal or elevational gradients).  

The performance of the WebBuilder function is highly dependent on the size and sources used 

for the registry. The predictive ability decreases when restricting the registry database size 

(Gray et al. 2015), and the predictions are entirely dependent on having sufficient observations 

between the taxa of interest, or at least closely related taxa. In the present study, there are a 

number of taxa that only occur in the Southern Hemisphere, so using a registry of feeding 
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interactions compiled from Northern latitudes would do a poor job of predicting trophic 

interactions (e.g. see Poisot et al. 2016).  

One limitation of the WebBuilder function is the inability to allow species interactions to vary. 

Currently, WebBuilder is likely to only be capable of detecting changes in food-web structure 

between sites when there is a large concomitant species turnover rate. This method has been 

used to infer changes in food-web structure across a changing pH gradient through space and 

time in the United Kingdom (Gray et al. 2016). However in that case, community composition 

altered through time with increasing pH due to recolonization by large bodied, acid intolerant 

predators (Layer et al. 2011, Gray et al. 2016). Since large taxa are generally more well 

connected due to their wide diet breadth (Brose et al. 2017), inferring food-web responses 

where they have recolonized may be an ideal use of WebBuilder. This may be particularly 

relevant to situations where large predators are being re-introduced (e.g. wolves in Yellowstone 

National Park; Smith, Peterson, and Houston 2003) and where large-bodied species go locally 

extinct (e.g. Christmas Island land crab; O’Dowd, Green, and Lake 2003) or are extirpated as a 

consequence of pest control (e.g. cat removal from Macquarie Island; Bergstrom et al. 2009). 

 WebBuilder appears to be very effective at inferring all potential feeding interactions in a 

community.  Diets can change seasonally (Thompson and Townsend 1999), and results of food-

web studies are generally only comparable if they were collected at the same time. Food webs 

constructed using gut content analysis only provides a snapshot in time, and is unlikely to 

illustrate all feeding links present (Thompson et al. 2001). WebBuilder describes “summary 

webs” that may be useful for controlling effects of sample effort, and allow for conservative 

comparisons of food webs across large spatial scales (Warren 1990, Thompson and Townsend 

2003) along environmental gradients (Post, Pace, and Hairston 2000, McHugh, McIntosh, and 

Jellyman 2010) or to seek fundamental ecological patterns (Martinez 1992, Strong 1992).  

The trait-matching method requires more data and inference steps, but was able to accurately 

infer food-web structure. This adds to the growing body of literature which supports the 

importance of both neutral and niche processes in determining interactions (Canard et al. 2014, 

Poisot, Stouffer, and Gravel 2015). Furthermore, the structure of many food webs is strongly 
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determined by body size relationships (Brose et al. 2006, Eklöf et al. 2013, Laigle et al. 2018), 

and we feel that the methods outlined here would apply to a range of habitats and ecosystems. 

Because biomass, trait values, and abundances of taxa can vary based on location, and the trait -

matching method is a function of these variables, it may provide a more site-specific inference 

of interactions. Thus, this method may be more appropriate for addressing questions that look 

at local changes in food-web structure at smaller scales (Nakano, Miyasaka, and Kuhara 1999, 

Thompson and Townsend 2005, Layer et al. 2011), or for predicting interactions among novel 

species pairs (e.g. invasive species, range shifts due to climate change; Van der Putten, Macel, 

and Visser 2010), where information on interactions may be lacking. Paradoxically, it may also 

perform better at predicting interactions across large spatial scales, particularly at the edges of 

a species geographic distribution, where trait values may differ more significantly.  

Another potential strength of the trait matching method is the ability to infer the probability of 

a link occurring, rather than as a simple binary network. Bartomeus et al. (2016) extended the 

framework of Gravel et al. (2013) to estimate probabilities of a link occurring between two 

species based on traits. Newly developed tools allow for the probabilistic analysis of ecological 

networks, which allows for researchers to incorporate the inherit dynamic variability in species 

interactions within a network (Poisot et al. 2016a). At present, the WebBuilder function only 

provides presence/absence data on interactions. It is possible to modify WebBuilder by using 

species average traits, but this would negate the use of site-specific data.  

The composite model performed similarly to WebBuilder on its own. This is an interesting 

finding, because it shows that both models essentially predicted the same interactions. This 

offers the potential to explore the relative importance of phylogenetic identity, local trait 

distributions, and neutral processes all in a single model. For example, it allows for the 

understanding of food webs in environments where species trait distributions are being skewed 

in a consistent manner, such as commercial fishing, which preferentially removes the largest 

individuals (Jennings and Blanchard 2004) shifting the distribution of biomass within a species, 

without necessarily removing them completely.  
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The need to artificially increase fish relative abundances to account for neutrally forbidden links 

was an interesting, and unexpected, result. When present in empirical webs, fish consumed 

approximately half of all prey species present. The large body size of fish, as compared with 

invertebrate consumers, offers a number of potential explanations for this observation. Firstly, 

energetic demands scale with body size which results in greater consumption rates. This in turn 

can lead to larger foraging areas (Jetz et al. 2004), or segregation of individuals into size-based 

hierarchies and optimal foraging locations to maximize net energetic intakes (Gowan and 

Fausch 2002). Whether fish have larger foraging areas, segregate into optimal foraging 

locations, or both, at the population scale they are sampling a range of habitats with varying 

hydrologic conditions and productivity levels. Therefore, fish diet samples are a representation 

of the food web at the reach scale (101 - 102 m2) whereas invertebrate diet samples are at the 

channel unit scale (e.g. invertebrates generally sampled from riffles; 10-1 to 10-2 m2). An 

alternative, but not mutually exclusive, explanation may be an increased detection probability 

in fish diets. Fish stomachs have a greater volume, and their foraging habits of swallowing prey 

whole lead to a higher likelihood of detecting identifiable body parts. When inferring 

interactions, it is important to consider the different sampling scales and detection 

probabilities, and which compartments of the meta-food web these samples represent.  

All approaches offer powerful ways to infer food-web structure in the absence of well-

quantified empirical data on trophic interactions, but they can also be used to aid in our 

understanding of both theoretical and applied issues. Predicted links that have not been 

observed empirically can inform sampling to be verified in the field (Stock et al. 2017). Likewise, 

links which are predicted to occur but only observed variably can aid our understanding of how 

interactions change through space and time (Poisot et al. 2012), and identify other important 

traits or ecological variables that affect link presence. However, future work is needed to 

explore food web inferences where species trait distributions and abundances vary more 

significantly between sites, and the effects that sampling scale has on food web structure. 

Additionally, application of these inference methods needs to recognize their relative strengths, 

and direct the appropriate method to the spatial and temporal scale of the research question 

being considered.  
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Supplementary Material 

 

Supplemental Figure S1. AUC for the trait-matching inference varies in response to neutral 

abundance threshold n’ and correction factor used. Five correction factors tested, red = 1 (no 

correction); blue = 10; green = 100, purple = 1000, yellow = 10 000. Each point is the AUC value 

for a single site at the neutral abundance threshold (x-axis), with colors matching the correction 

factor used (e.g. each threshold + color combination has 17 points). Points are jittered for 

visualization. Lines represent average AUC values for a given threshold. Consumption rates of 

fish were calculated to be ~3-4 orders of magnitude greater than invertebrates, and the highest 

average AUC values were at correction factor of 103 to 104.However, the correction factor of 104 

increases the AUC values only slightly more than a correction factor of 103, despite being an 

order of magnitude larger. Therefore, a correction factor of 103 was used in all further analyses.  
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Supplemental Figure S2. AUC values for trait-matching inferences vary in response to neutral 

abundance threshold n’. Points are AUC values for individual food webs after pruning niche 

forbidden links, and multiplying fish relative abundances by 103, grey line is average AUC value 

at that threshold. 
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Supplemental Figure S3. AUC values for WebBuilder inferences vary in response to neutral 

abundance threshold n’. Points are AUC values for individual food webs after multiplying fish 

relative abundances by 103, grey line is average AUC value at that threshold. 

 

Supplementary Table S1. Niche-forbidden taxa. Taxa considered to be non-predatory based on 

morphological features.  

Non-predatory taxa Justification 

Amphipoda Filter feeder 

Atalophlebioides sp. “Brushing” mouthparts 

Austroclima sp. “Brushing” mouthparts 

Austrosimulium australense Filter feeder 

Coloburiscus humeralis Filter feeder 

Deleatidium spp. “Brushing” mouthparts 

Nesameletus ornatus Biofilm “Grazer” 

Oligochaetae Detritivore / deposit feeder 

Oxyethira albiceps Biofilm “Grazer” 

Potamopyrgus antipodarum Biofilm “Grazer” 

Zephlebia spp. “Brushing” mouthparts 
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Supplementary Table S2. Additional sources of published New Zealand freshwater feeding 

interactions added to the WebBuilder registry.  

Bonnett M.L. & Lambert P.W. (2002) Diet of giant kokopu, Galaxias argenteus. New Zealand 
Journal of Marine and Freshwater Research 36, 361–369. 

Collier K.J., Wright‐Stow A.E. & Smith B.J. (2004) Trophic basis of production for a mayfly in a 
North Island, New Zealand, forest stream: Contributions of benthic versus hyporheic habitats 
and implications for restoration. New Zealand Journal of Marine and Freshwater Research 38, 

301–314. 

Cowley D.R. (1978) Studies on the larvae of New Zealand Trichoptera. New Zealand Journal of 
Zoology 5, 639–750. 

Crosby T.K. (1975) Food of the New Zealand trichopterans Hydrobiosis parumbripennis 
McFarlane and Hydropsyche colonica McLachlan. Freshwater Biology 5, 105–114. 

Devonport B.F. & Winterbourn M.J. (1976) The feeding relationships of two invertebrate 
predators in a New Zealand river. Freshwater Biology 6, 167–176. 

Hogsden K.L. & Harding J.S. (2012) Anthropogenic and natural sources of acidity and metals 
and their influence on the structure of stream food webs. Environmental Pollution 162, 466–

474. 

Hollows J.W., Townsend C.R. & Collier K.J. (2002) Diet of the crayfish Paranephrops 
zealandicus in bush and pasture streams: Insights from stable isotopes and stomach analysis. 

New Zealand Journal of Marine and Freshwater Research 36, 129–142. 

Jellyman D.J. (1996) Diet of longfinned eels, Anguilla dieffenbachii, in Lake Rotoiti, Nelson 
Lakes, New Zealand. New Zealand Journal of Marine and Freshwater Research 30, 365–369. 

Jellyman D.J. (1989) Diet of two species of freshwater eel (Anguilla spp.) in Lake Pounui, New 
Zealand. New Zealand Journal of Marine and Freshwater Research 23, 1–10. 

Jellyman P.G. & Harding J.S. (2016) Disentangling the stream community impacts of 
Didymosphenia geminata: How are higher trophic levels affected? Biological Invasions 18, 

3419–3435. 

McDowall R.M., Main M.R., West D.W. & Lyon G.L. (1996) Terrestrial and benthic foods in the 
diet of the shortjawed kokopu, Galaxias postvectis Clarke (Teleostei: Galaxiidae). New Zealand 

Journal of Marine and Freshwater Research 30, 257–269. 

Rounick J.S. & Hicks B.J. (1985) The stable carbon isotope ratios of fish and their invertebrate 
prey in four New Zealand rivers. Freshwater Biology 15, 207–214. 

Winterbourn M.J. (1996) Life history, production and food of Aphrophila neozelandica 
(Diptera: TipuIidae) in a New Zealand stream. Aquatic Insects 18, 45–53. 

Winterbourn M.J., Cowie B. & Rounick R.S. (1984) Food resources and ingestion patterns of 
insects along a west coast, south island, river system. New Zealand Journal of Marine and 

Freshwater Research 18, 379–388. 
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Chapter Four: Inferring food web structure and stability across 

an anthropogenic stress gradient 

Preface 

This chapter consists of a manuscript in preparation titled “Inferring food web structure and 

stability across an anthropogenic stress gradient”. The target journal for this manuscript is 

Ecology. This manuscript is co-authored with Jon Harding. As lead author of this manuscript, I 

designed the study, analyzed the data, developed the models, wrote the first and final draft of 

the manuscript and designed all tables and figures. Jon Harding provided funding and advice on 

study design and provided feedback on drafts of the manuscript.  

Abstract 

Understanding what makes food webs stable has long been a goal of ecologists. Topological 

structure and the distribution and magnitude of interaction strengths in food webs have been 

shown to confer important stabilizing properties. However, little work has been conducted 

investigating how variable food web structure affects the stability of food webs. Here, I  applied 

mechanistic models to infer pairwise species interaction probabilit ies in communities across an 

anthropogenic stress gradient. Multiple food webs were iterated for each community based on 

these probabilities, in order to incorporate the variability of realistic food web structure. 

Interaction strengths were estimated in a number of ways, and stability analyses were 

conducted. I found that realistic food web structure increases stability compared to randomly 

assembled food webs. Additionally, I found that impacted (e.g. small) communities are 

generally more stable than reference communities. However, the stability of some impacted 

communities becomes bimodal depending on how interaction strengths are estimated. 

Management and restoration of impacted sites needs to consider their increased stability, as 

this has important implications for the re-colonization of desirable species. Furthermore, active 

species introductions may be required to overcome the internal ecological inertia of affected 

communities. 
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Introduction 

The relationship between food web diversity and stability has had a long and contentious 

debate in ecology (May 1972, Yodzis 1981, Pimm 1984, McCann, Hastings, and Huxel 1998, 

Montoya et al. 2006, Christianou and Kokkoris 2008, Wootton and Stouffer 2015, Brose et al. 

2017). Early studies of large, randomly connected food webs found a negative relationship 

between stability and complexity (May 1972). However, since that time, ecologists have 

discovered a number of features that stabilize real food webs. For example, the topological 

structure of natural food webs is decidedly non-random (Yodzis 1981, Williams and Martinez 

2000), and this non-random structure provides stability to communities (Neutel, Heesterbeek, 

and de Ruiter 2002, Allesina and Tang 2012). Likewise, the distribution of interaction strengths 

in large, stable food webs is skewed towards many weak interactions with relatively few strong 

ones (de Ruiter et al. 1995, McCann, Hastings, and Huxel 1998, Neutel, Heesterbeek, and de 

Ruiter 2002, Wootton and Stouffer 2015). Low magnitude interactions likely distribute any 

perturbations weakly though out the community, and dampen oscillations between resources 

and consumers (McCann, Hastings, and Huxel 1998), increasing the likelihood of the community 

returning to an equilibrium state (Neutel et al. 2007). 

Body size is a strong organizing principle in food webs, particularly in aquatic habitats (Cohen, 

Jonsson, and Carpenter 2003, Brose et al. 2006, Petchey et al. 2008). Body size can determine 

who interacts with whom, as well as the strength of the interactions. Predators are generally 

larger than their prey (Brose et al. 2006) and diet breadth also correlates with body size, 

resulting in the largest-sized predators also having the widest diet breadth (Brose et al. 2017). 

Interaction strengths also correlates with predator: prey body size ratios (Emmerson and 

Raffaelli 2004, Berlow et al. 2009) and these allometries contribute to local food-web stability 

(Brose, Williams, and Martinez 2006, Tang, Pawar, and Allesina 2014). Finally, a strong, negative 

correlation between the positive and negative interaction magnitudes (e.g. effect of resource 

on consumer, and consumer on resource, respectively) has also been shown to drive stability in 

natural food webs (Tang, Pawar, and Allesina 2014).  

Stability is generally considered a positive attribute of a community, but this is not always the 

case (Tylianakis et al. 2010). Stable communities are also often resistant to the introduction of 
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new species which has implications for remediation activities aimed at returning the 

communities to non-impacted conditions (Monteith et al. 2005, Hildrew 2009, Tylianakis et al. 

2010). This may explain the commonly observed lag in biotic recovery of sites, even after the 

restoration of the original physical or chemical disturbance (Hildrew 2009, Gray et al. 2014). For 

example, small, stable communities have been observed in acidified streams, and high stability 

has been suggested as a potentially general feature of acid-impacted streams (Layer et al. 

2010).  

Broadstone Stream in the United Kingdom has been studied since the 1970’s and represents 

one of the most well characterized freshwater food webs in the literature (Gray et al. 2014). 

Broadstone Stream experienced a gradual reduction of surface water pH from the 1970’s to 

1990’s, in response to international efforts to reduce acid deposition (Woodward and Hildrew 

2002, Hildrew 2009, Layer et al. 2011). As pH increased, there was an expectation of a 

concomitant change in community structure, becoming more similar to analogous 

circumneutral streams nearby. However, even as pH increased, the macroinvertebrate 

community composition remained relatively unchanged, and the abundance of some species 

even declined (Hildrew 2009, Gray et al. 2014). Biotic recovery (i.e. increasing community size 

and complexity and the return of acid-sensitive species) of Broadstone Stream only occurred 

after the reinvasion of successively larger-sized predators, culminating in the colonization of 

brown trout (Layer et al. 2011). As larger predators became established, their presence re-

organized the food-web architecture and caused a redistribution of biomass throughout the 

community (Layer et al. 2011), potentially creating opportunities and opening niche space for 

other species to occupy. For example, the presence of acid-tolerant generalist detritivores filled 

the ecological role of acid-sensitive specialist grazers, and prevented their re-colonization, even 

after pH increased. However, the colonization of larger predators may have exerted top-down 

control on the generalists, allowing the successful re-colonization of the specialist grazers 

(Ledger and Hildrew 2005, Hildrew 2009, Layer et al. 2010, 2011). 

Research in soil food webs also supports the importance of colonization by new top predators 

during the process of community succession. Neutel et al. (2007) sampled soil food webs across 

natural productivity and plant successional gradients, and found a pattern of communities 
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alternating between stable and less stable structures. As productivity and plant successional 

stage increased, the biomass of the top trophic level also increased (e.g. predatory nematodes 

in mid-level successional stage), leading to stronger top-down interaction strengths which 

resulted in a reduction of community-wide local stability. However, this was counteracted by 

the arrival of a new top predator (e.g. predatory mites in later successional stages), which 

reduced the biomass of the former top trophic level, leading to an overall reduction in top-

down effects, and an increase in local stability at the community level. During this process, 

additional intermediate consumers also successively colonized, leading to increases in 

community size and complexity (Neutel et al. 2007). These findings indicate that the order 

and/or timing of colonization is paramount in their contribution to community succession. For 

example, the buildup of biomass in the current top trophic level may be necessary to exert top-

down control on lower consumers, opening up niche space and allowing the colonization of 

other intermediate consumers. Likewise, the buildup of biomass may be necessary as a prey 

base for the successful establishment of a higher trophic level.   

While work in the last four decades has significantly improved our understanding of the 

mechanisms that stabilize food webs, nearly all of the previous work assumes that network 

structure is static. Food webs, however, are not static. Pairwise species links are variable, can 

change through space and time and are based on resource availability (Thompson and 

Townsend 1999, Poisot et al. 2012, 2016, Poisot, Stouffer, and Gravel 2015). In fact, this 

variability in trophic interactions has been theorized as promoting stability because consumers 

will allocate foraging effort differentially based on resource availability, potentially dampening 

environmental effects on population densities (Kondoh 2003). Likewise, larger predators are 

generally more mobile and can rapidly moderate their behavior in response to changing 

resource conditions, which can connect spatially-distant food webs and increase stability across 

the meta-webs (McCann, Rasmussen, and Umbanhowar 2005). Incorporating the variability in 

species interactions and network structure is an important next frontier in our understanding of 

food web stability.  

The presence, structure, and strength of interactions all play important roles in conferring 

stability to an ecological network. Our primary aim was to determine if network theory can 
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offer mechanistic explanations for if and why mining impacted communities are more stable. 

We used a dataset of stream communities across an anthropogenic stress gradient of acid mine 

drainage (AMD) known to affect network size (e.g. species richness), local population densities, 

and biomass distributions (Chapter Three, Pomeranz et al.2019). Secondly, we incorporated 

variable food-web structure into our assessments in order to explore the effects of variable 

species interactions and how the range of realistic food-web topologies affects our analytical 

results. We expected the structure of food webs across the AMD gradient to change in a 

consistent manner. Specifically, we expected webs to become small (e.g. lower species 

richness), simple (e.g. fewer links), and well-connected (e.g. high proportion of potential links 

realized) with increasing AMD impact. Furthermore, we expected these structural changes to 

lead to food webs with higher stability. We explored the robustness of our results by estimating 

interaction magnitudes in one of four ways (see methods). Finally, we compared our results to 

randomly-assembled null food webs in order to test whether “realistic” food web structure has 

a stabilizing effect. We expected randomly-assembled networks to be less stable with 

increasing size (May 1972) and that all randomly-assembled networks to be less stable than 

similarly-sized networks assembled using interaction rules.   
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Methods 

Study site and stream characteristics  

This study was conducted in the Buller-Grey region in the north-west of the South Island, New 

Zealand. The region has a long history of coal mining, and is part of the Westland Forest 

ecoregion, which has spatially-consistent climatic conditions, geology, and freshwater biota 

(Harding and Winterbourn 1997, Harding, Winterbourn, and McDiffett 1997). A total of twenty-

five streams were sampled based on known and relatively constant water chemistry (e.g., pH, 

conductivity, dissolved Al and Fe concentrations) over time (Winterbourn et al. 2000, Greig et 

al. 2010, Hogsden and Harding 2012a, Kitto et al. 2015). Thirteen of the streams sampled were 

along an AMD gradient (which we refer to as “impacted” streams), and twelve of the streams 

represented a natural gradient of pH (~ 4 – 7) and low metal concentrations. These were 

sampled in order to capture the range of natural variation present. To our knowledge, these 

twelve streams are not impacted by AMD inputs. All twenty-five streams were placed into a 

single gradient (see below) and analyzed together. All streams were chosen to be as similar as 

possible with respect to other physical parameters, and were in relatively isolated catchments 

dominated by native vegetation. All sampling occurred during January – February 2016 (Austral 

summer). Stream water pH, specific conductivity, dissolved oxygen and temperature were 

measured in the field using standard meters (YSI 550A & YSI 63, YSI Environmental 

Incorporated, Ohio, USA). Random water samples (50 ml) collected for analysis of dissolved 

metal concentrations were filtered in the field (0.45 μm mixed cellulose ester filter) and 

acidified (pH < 2) using ultrapure nitric acid. Samples were analyzed for metals using inductively 

coupled plasma mass spectrometry (ICP-MS) at the University of Canterbury (Christchurch, New 

Zealand).  

All water chemistry variables (Chapter Two, supplementary table 1) were analysed to generate 

an AMD gradient using principal components analysis (PCA) as described in Pomeranz et al. 

(2019, Chapter Two). Briefly, dissolved metal concentrations and conductivity were log10-

transformed (x +1) to satisfy assumptions of normality and were combined with pH in a 

resemblance matrix centered at 0 and scaled by their standard deviations. Site scores for PC 

axis 1 were extracted and used as a proxy for the AMD gradient.  
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Community sampling and body mass estimation 

Benthic macroinvertebrates were randomly collected in three Surber samples (0.06 m2, 0.25 

mm mesh) from riffle habitats at each site (Blakely and Harding 2005). Samples were preserved 

with 100% ethanol in the field and returned to the laboratory for processing, as described in 

Pomeranz et al. (2019, Chapter Two). Macroinvertebrates were identified to the lowest 

practical taxonomic level and the body lengths of all individuals was measured (nearest 0.1 

mm). Body lengths were converted to dry weight estimates (grams) using published taxon-

specific length-weight regressions for New Zealand invertebrate fauna (Towers, Henderson, and 

Veltman 1994, Stoffels, Karbe, and Paterson 2003). Biomass estimates were averaged by taxa 

for food-web inferences (see below) for each site where they occurred. For this analysis, taxa 

which were rare or little was known about their ecology were removed from the dataset (e.g. 

non-insect taxa such as Acari, Ostracods, Platyhelminthes). After removal, a single stream only 

had one animal taxa remaining, and this site was removed from all further analyses (i.e. 24 sites 

used in all further analyses).   

Fish were sampled using quantitative electrofishing techniques from a 20 m reach within each 

site. Stop nets were placed at the top and bottom of the reach and fish were removed during 

three successive passes. All fish captured had their fork length measured and were converted to 

dry weight estimates using length-weight regressions for New Zealand fish (Jellyman et al. 

2013). Mean dry weight estimates for each fish taxa were calculated as above.  

Inferring food-web structure 

The probability of a link occurring between species pairs is proportional to their likelihood of 

encounter (neutral effects, sensu Canard et al., 2014, Poisot et al., 2015, Pomeranz et al., 2018, 

Chapter Three) multiplied by their ability to interact (niche effects, sensu Gravel et al., 2013, 

Poisot et al., 2015, Bartomeus et al., 2016, Pomeranz et al., 2018, Chapter Three). Encounter 

probabilities can be calculated as being proportional to the product of species relative 

abundances (Canard et al. 2014, Poisot, Stouffer, and Gravel 2015), and niche effects can be 

calculated based on  relevant traits of the potentially interacting species (e.g. body size; Gravel 

et al., 2013, Morales-Castilla et al., 2015, Bartomeus et al., 2016). Incorporating empirical 
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estimates of local densities and a method for inferring predator-prey interactions based on 

body size (Gravel et al. 2013) has been used to successfully recreate empirical food-web 

structure in streams from different land-use types in New Zealand (Pomeranz et al., 2018, 

Chapter Three).  

Bartomeus et al. (2016) extended the method of Gravel et al. (2013) for inferring the probability 

of species interactions, rather than simply as binary (presence/absence). We used the 

associated Traitmatch package (Bartomeus et al. 2016) in the R statistical language (R 

Development Core Team 2017) to infer the probability of antagonistic interactions based on 

body size at all of our streams. Individual predator-prey interactions from Broadstone Stream 

and Tadnoll Brook, originally published in Woodward et al. (2010), were used to parameterize 

the model. Using these parameter coefficients, we then predicted the probability of feeding 

interactions for all pairwise taxa combinations at each of our sites (Bartomeus et al. 2016). 

Species interaction probability vectors were converted to square (S x S, where S = the number 

of taxa present) interaction probability matrices, P. Columns and rows of P represent species in 

their role as consumers and resources, respectively. Therefore, Pij represents the probability 

that species j consumes species i. The matrices were ordered by increasing body size from left 

to right, and top to bottom.  

After inferring the probabilities of all possible pairwise interactions, we further refined these 

possible interactions by restricting niche forbidden links (sensu Morales-Castilla et al., 2015, 

Pomeranz et al., 2018, Chapter Three). Niche forbidden links were defined as in Chapter Three 

and Pomeranz et al., (2018). Briefly, we restricted predatory interactions between animals 

which are known to be non-predatory, or which lacked morphological adaptations for the 

consumption of animal prey (e.g. set P●j to 0). For example, members of the blackfly family, 

Simuliidae, have cephalic fans modified for filter feeding, and lack the ability to consume an imal 

prey, so their predatory probabilities (matrix column) were set to zero. Conversely, net-spinning 

Hydropsychid caddisflies construct nets to filter feed, but retain chewing mouthparts and are 

able to consume animal prey they capture, so their predation probabilities were not modified. 

Niche forbidden taxa in this study are presented in Supplementary Table 1.  
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We also scaled interaction probabilities based on the product of species relative abundances to 

account for neutral effects (sensu Canard et al., 2014). This simply takes into account that two 

rare species are less likely to interact than two abundant species. The modified interaction 

probabilities for each site were calculated as Pij’ = Pij * Nij, where Nij is the product of relative 

abundances of species i and j, scaled from 0.5 to 1 respectively (e.g. abundant species pairs = 1 

and are assumed to interact based on niche probabilities, while rare species are less likely to 

encounter one another, so their overall interaction probabilities are reduced).  

Finally, the probability matrices for each stream were converted to 250 binary adjacency 

matrices (A). Adjacency matrices are square matrices with taxa in their role as predators in 

columns and their role as prey in rows as in the probability matrices (P), where Aij = 1 when taxa 

j consumes taxa i, and 0 otherwise. This was done by conducting Bernoulli (i.e. binomial) trials, 

where the probability that Aij = 1 = Pij. This allowed us to assess the effect of variable food-web 

structure on network measurements and stability (see below).  

Food-web measures 

We calculated a suite of standard food-web measures including the number of links (L), 

connectance (C = L / S2, where S = the number of species), proportion of taxa which were 

bottom, intermediate, and top trophic levels, and the variability (standard deviation) of 

normalized vulnerability (mean number of consumers per resource) and normalized generality 

(mean number of resources per consumer) for all 6000 networks. Vulnerability and generality 

for each iteration were normalized by dividing them by L/S which forces their means to equal 1, 

and allows for comparison across networks of different size (Williams and Martinez 2000). 

Interaction strength 

The adjacency matrices Aij calculated above, were transformed into Jacobian matrices, where 

the element Jij quantifies the effect that species j has on species i growth rate. For antagonistic 

(e.g. predatory) interactions assessed here, Jij > 0 and Jji < 0. The magnitude, distribution, and 

correlation of interaction strengths are known to be an important component of food-web 

stability. In order to assess the effects of network structure (presence/absence of links), and the 

effects of interaction strength distributions and correlations, we estimated interaction 
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strengths in four ways: 1) Random interaction strength to test the effects of network topology. 

Using the methods of Sauve et al. (2016), we estimated all non-zero elements of J by sampling 

them from a half normal distribution |(µ = 1, σ2 = 0.1)| and multiplied the positive and negative 

interactions by 1 and -1, respectively; 2) Scaling interaction strengths by body size. Interaction 

strength is known to scale with predator: prey body size ratios, and this has been suggested as 

a key process increasing stability in natural food webs (Brose, Williams, and Martinez 2006). To 

examine these effects, we again sampled interaction strengths from a half normal distribution, 

but scaled them by predator:prey body size ratios (e.g. smallest positive and greatest negative 

effects between large predators and small prey); 3) Correlating the top-down (negative) and 

bottom-up (positive) interaction strengths. The correlation between positive and negative 

interactions has been shown to have important implications in local stability (Tang, Pawar, and 

Allesina 2014), with the magnitude of negative effects being greater than the magnitude of 

positive effects. For this, we sampled the negative interactions from a half normal distribution, 

and scaled the corresponding positive interactions by multiplying it by 0.7. This can be 

interpreted as a 70% conversion efficiency of prey biomass by predators from stream habitats 

as estimated from empirical studies (Woodward et al. 2005, Montoya et al. 2009); 4) 

Interaction strengths scaled by body size and positive and negative interactions correlated. 

Here, we sampled the negative effects as in (3), and scaled them by predator:prey body size 

ratios. We then calculated the corresponding positive effects by multiplying the scaled negative 

effect by 0.7. This takes into account the scaling of interaction strengths by body size and the 

correlation of positive and negative effects. For all interaction strength estimates, we used a 

modified version of the jacobian_binary() function available in the supplemental information 

from Sauve et al. (2016) 

Stability 

For each adjacency matrix (24 streams × 250 trials = 6,000 matrices), interaction strengths were 

estimated in one of four ways (see above) and a stability analysis was conducted. Here, a 

network is defined as stable if all of the real parts of its eigenvalues are negative. The stability 

metric, s, was defined as the minimum amount of intraspecific competition (e.g. the diagonal of 

the Jacobian matrix, Jii) necessary for a food-web iteration to be stable (Neutel, Heesterbeek, 
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and de Ruiter 2002, Tang, Pawar, and Allesina 2014, Sauve et al. 2016). Smaller values of s are 

considered to be more stable (Neutel, Heesterbeek, and de Ruiter 2002, Sauve et al. 2016), 

however this is a continuous qualitative measurement. There is no known value or threshold of 

s which separates networks from being stable or not. Lower values of s simply imply that that 

network is more stable than high values of s. We calculated the s metric using the stability() 

function available in the supplementary information of Sauve et al. (2016). This method is 

equivalent to that used by Allesina & Tang, (2012) and Tang, Pawar, and Allesina (2014).  

Null model 

To test the stabilizing properties of “realistic” network structure (e.g. inferred from interaction 

rules), we conducted stability analyses on random adjacency matrices while maintaining 

observed values of network size (S), and connectance (C) (i.e. Erdȍs-Rényi random directed 

graph, Tang, Pawar, and Allesina 2014). For each observed value of S in our empirical 

communities, we created S × S matrices, and assigned links randomly throughout the matrix 

with equal probability C. For each value of S, we used three values of C (mean, ± 1 SD), and 

generated 100 networks (24 sites × 3 values of C × 100 iterations = 7,200 networks). Some of 

the empirical communities had the same number of species (S) present (e.g. 3 sites each had 3 

species, and 2 sites each had 9 species), resulting in a total of 19 uniquely-sized communities. 

However, because values of C varied even among networks of the same size, we generated null 

models for each community and value of C (e.g. total of 9 random matrices with 3 species). All 

the parameter combinations assessed are presented in Supplementary Table S2.  

Statistical analyses 

We fitted linear regressions for each food-web measure and the stability metric, s, across the 

AMD gradient by conducting robust linear regressions using the lmrob() function from the 

robustbase package in R (Maechler et al. 2018). We conducted robust linear regressions 

because they are less sensitive to violations of assumptions compared to Ordinary Least 

Squares (OLS) regressions. Specifically, they are robust to the effects of outliers and 

heteroscedasticity of variance. Robust linear regressions generally use M-estimators (maximum 

likelihood type) to iteratively converge on a solution (Yohai 1987).  
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All food-web measures analyzed here displayed heteroscedasticity of variance (Breusch-Pagan 

test p-values all < 0.001). Because the variation in response variables are not homogenous 

across the AMD gradient, true F-statistics are not appropriate. However, the Wald statistic 

offers an alternative method for model selection by comparing nested models. Here, we fit null 

(intercept only), linear and quadratic models with the site specific PC1 scores as the 

independent variable, and selected the best fitting model (Wald test p-value < 0.05 supports 

model with greater number of terms). The quadratic model was a better fit than the linear or 

null models for all food web measures (Wald test p-values < 0.001) except for the proportion of 

species classified as top trophic levels (Wald test p-value = 0.592), which was best explained by 

a linear relationship.   

We also tested for changes in the number of species across the mining gradients. Because the 

value of S does not change between iterations, we only used one observation per site (e.g. N = 

24) to avoid pseudoreplication.  The variance in S was homoscedastic (Breusch-Pagan test p-

value = 0.26), so we compared null, linear, and quadratic OLS regressions using Akaike’s 

information criterion corrected for small sample size (AICc, Burnham & Anderson, 2004). Both 

the linear and quadratic models provided a better fit than the null model. AIC c analysis 

indicated equal support for both linear and quadratic models (ΔAICc < 2), however, the 

quadratic model explained more of the variation and was used in all further analyses.   

Results 

AMD gradient 

The Principal component results of Pomeranz et al. (2019, Chapter Two) were used to test 

responses of food web structure to increasing AMD stress. Briefly, Principal component axis 1 

explained 77% of the variation in chemical variables across the sites (Chapter Two, Fig 1), and 

the site specific scores on PC axis 1 were extracted and used as a measure of the AMD stress in 

all further analyses. 
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Figure 1 Number of species (A); inferred links (B); and inferred connectance (C) across the AMD 

gradient. Impacts increase right to left (PC1 axis reversed for visualization). Black line in panel A 

is OLS regression, and grey shading is 95% confidence interval. Black lines in panels B and C are 

robust linear regression estimate, and grey shading is 95% confidence interval.    
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Community composition 

Generally, there was a significant decline in species richness with increasing AMD-stress (Table 

1, Fig1A). Likewise, community structure was affected consistently. Fish were completely 

absent in AMD impacted streams, and most large-bodied invertebrate predators were also 

removed (Chapter Two, Pomeranz et al. 2019).  

Table 1 Statistics for robust linear regressions across the mining gradient. The best fitting model 

(linear, quadratic) is indicated with an X. Coefficient estimates in bold have P-values < 0.001. S = 

network size (number of species), L = links, C = Connectance (L / S2), B, I and T are the proportion 

of basal, intermediate, and top species, respectively. VulSD and GenSD are the standard 

deviations of normalized Vulnerability and normalized Generality, respectively.  

     Coefficient estimate 

Response Linear Quadratic 
Adjusted 

R2 
Intercept PC PC^2 

S  X 0.60 15.16 -2.97 0.27 

L  X 0.56 17.17 -7.142 8.92E-01 

C  X 0.38 0.087 3.00E-03 2.00E-03 

B  X 0.03 0.370 -2.00E-03 -1.00E-03 

I  X 0.41 0.205 -5.00E-02 7.00E-03 

T X  0.4 0.229 3.00E-02 NA 

VulSD  X 0.84 7.07E-03 3.10E-03 4.70E-04 

GenSD  X 0.86 1.02E-02 5.00E-03 7.40E-04 

 

Food-web measures 

All food-web measures varied significantly across the AMD gradient (Table 1). The number of 

inferred links were negatively related to the AMD gradient (Fig 1B). The variance in the number 

of inferred links also decreased across the gradient (Breusch-Pagan test p-value < 0.001), 

indicating that AMD impacted streams have fewer possible topological structures. In contrast, 

inferred values of connectance increase across the gradient (Fig 1C). This is due to the fact that 

a reduction in the number of species reduces the denominator of the connectance equation 

exponentially (e.g. C = L/S2).  
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Figure 2 Proportion of inferred intermediate (A) and top (B) species; inferred standard 

deviations of Vulnerability (C) and Generality (D) across the AMD gradient. Impacts increase 

right to left (PC1 axis reversed for visualization). Black lines are robust linear regression 

estimates, and grey shading is 95% confidence interval.  

The number of basal species slightly decreased across the AMD gradient, although the 

magnitude of the coefficient estimate was low, and the model poorly explained the observed 

variation (Table 1). However, the number of intermediate species significantly decreased and 
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the number of top species significantly increased across the AMD gradient (Table 1, Fig 2A and 

B).  

Vulnerability and generality (e.g. number of consumers per resource, and resources per 

consumer, respectively) both increased across the AMD gradient (Table 1, Fig 2B and C). This 

indicates a homogenization of food web structure in AMD-impacted streams. Essentially, 

consumers are utilizing a larger proportion of the resources available and all resources are 

being consumed by a larger proportion of the available consumers than in un-impacted 

streams.  

Stability 

In general, stability increased (lower s indicates higher stability) exponentially with increasing 

AMD stress (i.e. smaller network size), regardless of how interaction strengths were estimated 

(Table 2, Fig. 3). This finding was consistent across all methods of estimating interaction 

strengths (i.e. sampling interaction strengths randomly, scaling interaction strengths by body 

size, correlating positive and negative interaction strengths, and the combination of scaling and 

correlating interaction strengths). While the response of s across the gradient had the same 

general shape regardless of how interaction strengths were estimated, there are some key 

differences worth noting. First of all, the range of s when scaling the interaction strengths by 

body size was lower for all networks than all other interaction strength estimations. This 

supports the observation of stabilizing effects that predator:prey body size ratios have in 

natural food webs (Brose et al. 2006, Rooney and McCann 2012). Secondly, when interaction 

strengths were correlated (e.g. positive interactions = 0.7 × negative interactions), the 

distribution of s for some of the impacted streams becomes bimodal (Figure 3C and D) 

indicating that impacted sites vary between stable and unstable structures. This may also 

explain why the amount of variation explained decreases when correlating the interaction 

strengths (Table 2).  
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Figure 3 Inferred stability metric, s, across the AMD gradient when varying the estimate of 

interaction strengths (see methods). A) Random interaction strengths; B) random interaction 

strengths scaled by body size; C) Random interaction strengths, positive and negative 

interactions correlated; D) random interaction strengths, scaled by body size, and positive and 

negative interactions correlated. Note difference in scale of y-axis. AMD stress increases right to 

left. Black lines are robust linear regression estimates, and grey shading is 95% confidence 

interval.  
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The randomly-assembled networks also displayed a positive relationship between network size 

and s (slope coefficient estimate = 0.012, adjusted R2 = 0.486, Fig. 4). Although small randomly-

structured networks were more stable than large randomly-structured networks, all were less 

stable than networks of similar size inferred using interaction rules (note difference in scale of 

y-axis in Fig. 3 panels compared with Fig. 4).  

Table 2 Statistics for stability across mining gradient. Coefficient estimates in bold have P-values 

< 0.001.   

   Coefficient Estimate 

Interaction Strength 

Estimate 
Adjusted R2 Intercept PC PC^2 

Random 0.38 2.29E-02 -5.94E-03 6.35E-04 

Scaled 0.38 9.96E-03 -2.64E-03 2.91E-04 

Correlated 0.27 3.49E-02 -6.90E-03 7.67E-04 

S & C 0.34 2.05E-02 -5.24E-03 6.36E-04 

 

Figure 4 Stability metric for the randomly structured networks when sampling interaction 

strengths from a half normal distribution. Black line is robust linear regression estimate and grey 

shading is 95% confidence interval. Note difference in scale of y-axis compared with Figure 3.  
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Discussion 

We inferred the structure and stability of food webs across an anthropogenic stress gradient 

based on interaction probabilities determined by the local distribution of macroinvertebrate 

and fish body sizes and species densities. Our results show that AMD impacts lead to small, 

simple, and stable food webs. Furthermore, this study adds to our understanding of the 

stabilizing attributes of networks, including size (e.g. species number), topological structure, 

distribution of body sizes, and interaction strengths.   

Inferred network structure 

Species richness decreased significantly across the AMD gradient. Likewise, AMD-impacted 

communities had simplified structure, namely the loss of the largest sized taxa (e.g. fish, large-

bodied invertebrate predators). This is consistent with the findings of several studies showing a 

decline in species richness and trophic levels in response to AMD inputs (Chapter Two, 

Pomeranz et al., 2019, reviewed in Hogsden & Harding, 2012b). The number of pairwise 

interactions (e.g. feeding links) also decreased across the AMD gradient. A reduction in links 

may translate to fewer energy pathways available (Hogsden and Harding 2013), reducing 

ecological efficiency or functional diversity (Petchey and Gaston 2002). Likewise, the interaction 

magnitude in food webs with fewer links may increase relative to webs with many l inks. Having 

a few strong links is generally considered to be destabilizing (Wootton and Stouffer 2015). On 

the other hand, because interaction strengths are related to body size and AMD inputs cause 

the loss of the largest-sized predators (Chapter Two, Pomeranz et al., 2019), the links present in 

impacted streams are likely to be weak, possibly increasing stability. Indeed, when interaction 

strengths were scaled based on body size (see below) stability increased across all networks.  

Connectance increased significantly across the AMD gradient, which means that a high 

proportion of the possible links in the food web were realized. This is in agreement with 

previous work which has shown a negative relationship between network size and connectance 

(Schmid‐Araya et al. 2002). Generality and vulnerability also increased across the AMD gradient, 

meaning that each resource taxa was exploited by a high proportion of the consumer taxa 
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present, and also that each of the consumers was exploiting a high proportion of the resources 

available. Additionally, the proportion of intermediate species declined, while the proportion of 

top species increased. Previous work has also indicated a positive relationship in the proportion 

of intermediate species with network size (Schmid‐Araya et al. 2002). This indicates that top 

predators were lost, and the intermediate consumers replaced them at the top of the food 

chains. These results were as expected, because trophic position (Riede et al. 2011) and diet 

breadth (Brose et al. 2017) generally increase with body size and the AMD gradient is known to 

remove the largest body sizes from the community (Chapter Two, Pomeranz et al. 2019). All of 

these results support findings of previous studies on food webs in AMD impacted streams 

(Hogsden and Harding 2012a), and indicate a re-organizing of food web structure resulting in 

small, simple, and well-connected communities.  

Effects of network size and structure on stability 

Our results indicate that stability decreases with increasing network size, whether networks are 

constructed randomly or using mechanistic-based interaction rules. This supports May’s (1972) 

theoretical results finding a negative relationship with stability and network size, as well as 

empirical results from Layer et al. (2010) which showed small, simple stream food webs to be 

more stable than large ones. Although stability generally decreased with increasing network 

size, realistically structured networks were more stable than randomly assembled networks of 

similar size. This supports the idea that the non-random structure of food webs confers 

stabilizing properties to the community (Williams and Martinez 2000, Neutel, Heesterbeek, and 

de Ruiter 2002, Tang, Pawar, and Allesina 2014). 

Distribution of interaction strengths 

Scaling interaction strengths based on body size increased stability for all streams across the 

AMD gradient compared with sampling interactions strengths randomly which is in agreement 

with previous studies (Emmerson and Raffaelli 2004, Otto, Rall, and Brose 2007). When positive 

and negative interaction strengths are correlated, the distribution of the stability metric across 

all sites is similar to that observed when sampling interaction strengths randomly. However, in 

some impacted streams, the distribution appears to become bimodal (e.g. some impacted 
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streams more stable, some less). The streams which are “less” stable have stability metric 

distributions similar to un-impacted streams, potentially making them good candidates for 

restoration. For example, stable communities generally have high resistance to species 

introductions, but a typical goal of restoration is often the re-establishment of the pre-

disturbance community composition, or the return of sensitive species (Lockwood and Pimm 

1999). Therefore, focusing restoration actions on impacted communities which are less stable 

may provide a higher likelihood of recolonization by desirable species. Furthermore, when 

interaction strengths are both scaled by body size and positive and negative interactions are 

correlated, the general pattern of the stability metric across the gradient is similar to the 

pattern when estimating random interaction strengths. However, the “bimodal” distribution of 

some impacted streams is retained.  

Conclusions 

Our results indicate that AMD inputs consistently alter food-web structure, and that some 

AMD-impacted streams may be more receptive to restoration than others. When inferring 

realistic food web structure, along with more biologically-relevant estimations of interaction 

strengths (e.g. scaling and correlating magnitude) some of the impacted streams have high 

food-web stability. For successful restoration of all streams, the chemical conditions need to be 

returned to a pre-disturbance state. Streams with lower stability may lack internal inertia and 

have low resistance to species invasions and only require chemical remediation to place them 

on a trajectory of community succession. However, in impacted streams with high food web 

stability, beneficial disturbances (e.g. scouring flood, riparian plantings) or active species 

reintroductions may need to occur to overcome the internal ecological inertia of these 

communities. This is because small, stable communities have high resistance to changes in 

community composition and may inhibit the successful colonization of desirable species. 

However, because of their lower stability, it may also be necessary to actively monitor the sites 

to ensure that non-desirable (e.g. exotic invasive) species don’t colonize the site.  

Further work is needed to understand the effect of species introductions. If the goal of a 

restoration activity is for community composition to be similar to a pre-disturbance state, or 

the return of species with commercial value (e.g. fisheries), it may be necessary to set the 
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community on a trajectory of community assembly, rather than introduce the desired species 

at the outset (i.e. the “myth of fast-forwarding” sensu Hilderbrand, Watts & Randle, 2005). For 

example, it may be necessary to introduce primary or secondary consumers (e.g. grazers, filter-

feeders) in order to increase ecological efficiency and make more energy available for the 

successful establishment of higher trophic levels (Pimm 1982, Thompson and Townsend 2005). 

Likewise, it may be necessary to introduce medium sized predators (e.g. as occurred naturally in 

Broadstone Stream, Layer et al., 2011) in order to restructure the food web architecture before 

larger predators (e.g. fish) can successfully colonize the site.   
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Supplementary Material 

Table S1 Non-predatory taxa considered to be niche forbidden. Note: some “Non-predatory” 

taxa may predate upon microfauna, but because their prey are not adequately sampled using 

the methods here, they are considered facultative non-predatory. 

Taxa Justification 

Austroclima Scraper 

Austrosimulium Morphology 

Blephariceridae Scraper 

Coloburiscus Non-predatory 

Deleatidium Scraper 

Elmidae Non-predatory 

Helicopsyche Scraper 

Hydraenidae Non-predatory 

Nesameletus Non-predatory 

Oligochaetae Non-predatory 

Olinga Non-predatory 

Oxyethira Non-predatory 

Potamopyrgus Scraper 

Rakiura Scraper 

Scirtidae Shredder 

Spaniocerca Non-predatory 

Spaniocercoides Non-predatory 

Zelandobius Non-predatory 

Zelolessica Non-predatory 

Zephlebia Scraper 
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Table S2. All combinations of species (S) and connectance (C) values used in the generation of 

random adjacency matrices. 

S Mean C High C Low C 

3 0.208889 0.289296 0.128481 

3 0.230667 0.293472 0.167862 

3 0.276444 0.338817 0.214072 

4 0.12275 0.17201 0.07349 

5 0.14128 0.182642 0.099918 

6 0.173889 0.215176 0.132601 

8 0.06975 0.091129 0.048371 

9 0.090864 0.114718 0.06701 

9 0.136049 0.161023 0.111076 

10 0.0898 0.109789 0.069811 

12 0.113306 0.133531 0.093081 

16 0.102609 0.117033 0.088185 

17 0.101702 0.115332 0.088072 

17 0.084 0.095624 0.072376 

18 0.106383 0.118306 0.094459 

20 0.07139 0.081477 0.061303 

23 0.096711 0.107116 0.086306 

24 0.136035 0.145266 0.126804 

26 0.081124 0.089561 0.072687 

26 0.077213 0.085063 0.069363 

27 0.110074 0.118208 0.101941 

28 0.095577 0.103839 0.087314 

32 0.093223 0.100233 0.086212 

37 0.107947 0.114358 0.101537 
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Chapter Five: Discussion 

Ecological networks, such as food webs, are simplified representations of the species and their 

interactions within a community. The importance of incorporating species interactions in 

understanding the structure, function and stability of ecological communities has gained 

momentum in recent years. This is one reason why it has been recommended that ecological 

networks be included in standard biomonitoring activities (Gray et al. 2014). Likewise, There is 

increasing interest in the field of conservation biology about the importance of conserving 

networks, rather than individual species (Tylianakis et al. 2010).  

Despite their importance, ecological networks are rarely incorporated into biomonitoring or 

ecological studies across gradients (but see Thompson and Townsend 2004, Layer et al. 2010). 

This is primarily due to the considerable logistical constraints in constructing reasonable 

estimations of food webs. The quality of empirically constructed food webs is dependent on 

sampling effort with many hundreds of observations per taxa generally needed (Thompson et 

al. 2001, Layer et al. 2010). In impacted communities with low population densities, in can be 

difficult or overly destructive to collect enough individuals of each taxa to construct reasonable 

estimations of food webs (Hogsden and Harding 2012). One method to counter this limitation is 

the use of easy to measure alternative variables that can be used as a proxy for food web 

attributes, one such approach is the use of size spectra. Another method to avoid the 

constraints of traditional food web construction is the use of summary food webs (Gray et al. 

2015). Summary food webs simply assume that whenever a link has been observed between 

two species, it always occurs whenever those species co-occur within a community. However, 

there is growing evidence that links between species are dependent on other factors, including 

phenology, resource availability, and trait distributions (Morales-Castilla et al. 2015, Poisot, 

Stouffer, and Gravel 2015). However, summary webs do not account for species interactions 

varying among sites, and may be less sensitive to subtle changes in structure (Gray et al. 2015). 

I tested the utility of food web alternatives (e.g. size spectra), developed a novel, mechanistic 

method for inferring empirical food-web structure, and I applied this method using field survey 
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and modelling approaches in stream communities across an AMD gradient. I suggest that this 

work has increased our understanding of how AMD impacts food-web structure and stability.  

Size-spectra relationships are consistently affected by AMD inputs 

Size-spectra capture much of the variability in food-web structure, but require less effort to 

construct. In addition, size spectra have been shown to respond to environmental impacts, and 

have been suggested as a “universal” indicator of ecological conditions (Petchey and Belgrano 

2010). 

In my study, which used data from a wide range of AMD impacted streams, size-spectra 

responded consistently to increasing AMD inputs (Chapter Two). Shallower slopes of size 

spectra relationships in impacted streams indicated a reduction in energy transfer efficiency, 

and lower intercepts indicated a reduction in total community abundance. A decrease in the 

range of sizes, particularly the loss of largest individuals, indicated the loss of top predators and 

hence shorter food chain lengths. However, not all of the largest body sizes are predators. For 

example, the stonefly genus Austroperla is relatively large-bodied (compared to other New 

Zealand stream invertebrates)  but is classified as non-predatory (Chadderton 1988). However, 

a decrease in their abundance still leads to reduced energy transfer, because larger animals 

have greater total energy demands than smaller ones.  

While my results clearly indicate changes in food-web structure, they are equivocal on the 

implications for food-web stability. Specifically, a reduction in energy pathways and transfer 

efficiency suggests a decrease in stability due to a loss of ecological redundancy and reliance on 

only a few energy pathways. Alternatively, because interaction strengths are related to body 

size (Emmerson and Raffaelli 2004), and the largest size classes are lost (Chapter Two), this 

suggests that the magnitude of the remaining food web links in AMD impacted streams are 

weak, a network structure which is generally associated with stability (Neutel, Heesterbeek, 

and de Ruiter 2002). Therefore, my results suggest that size spectra analysis may not be 

appropriate for studies on food-web stability. However, size spectra analyses still provided 

useful approximations of food-web structure, and can be used for the rapid assessment of sites.  
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Size spectra analyses offers the ability to understand how novel stressors affect communities. 

Because this method is independent of taxa identity, it foregoes the necessity of having prior 

knowledge of species-specific responses to contaminants, or knowledge of sensitive and 

tolerant taxa. With the growing presence of synthetic chemicals in the environment (Bernhardt, 

Rosi, and Gessner 2017), increasing impacts of climate change (Dossena et al. 2012), and 

species introductions and extinctions (Pereira et al. 2010), the ability to rapidly assess food-web 

structure and function without having vast a priori knowledge of a specific system or species 

within the community will offer valuable insights for future management and mitigation of 

anthropogenic impacts on ecosystems. While my study supports the use of size-spectra analysis 

as an ecological indicator, further research is needed in different habitats and in response to 

additional stressors before a robust theory of size-spectra responses to environmental 

disturbances can be confidently formulated. 

These results support the use of size-spectra as an indicator of ecological health; however; this 

method has some limitations. For example, it is necessary to measure the size of all individuals 

(e.g. many hundreds to thousands) from a sample. If length-weight relationships are available, 

only linear measurements are necessary (Martínez et al. 2016). Otherwise, all individuals would 

need to be weighed, greatly increasing the laboratory processing time. However, when length-

weight relationships are known, size-spectra analyses are arguably faster than traditional food-

web methods, which require the visual identification of gut contents from a similar number of 

individuals. Furthermore, advances in analytic techniques such as machine learning may 

alleviate some of the logistical constraints of this process. For example, computer models have 

been trained to identify animal species from digital images captured from stationary camera 

traps (Willi et al. 2018, Norouzzadeh et al. 2018). Using similar techniques, it may be possible to 

train a computer model to identify and measure the longest axis of all objects in a digital image, 

greatly reducing the time necessary for these analyses 

While the shape of size spectra relationships are correlated with changes in food-web structure, 

there is evidence that other factors can also affect this shape. For example, the exploitation of 

allochthonous resources in the form of terrestrial invertebrates by trout leads to shallower 

slopes (e.g. higher abundance of large body sizes) than would be expected based on allometric 
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scaling predictions (Perkins et al. 2018). This makes it difficult to attribute changes in size 

spectra to changes in food-web structure with complete certainty. However, my research 

findings suggest that further studies of size spectra relationships across multiple habitats and 

under varying environmental conditions will increase our ability to use them as ecological 

indicators.  

Novel method accurately infers food-web structure 

The inference of food-web structure in order to avoid logistical constraints of sample size, 

laboratory time, expertise, and financial burdens is an important goal for contemporary 

ecologists (Morales-Castilla et al. 2015). In recent years, improvements in mechanistic 

understanding of what drives pairwise-species interactions, as well as improvements in 

computing and the widespread adoption of open-source programming languages such as R 

have led to the development of methods which can be used to infer biotic interactions (Gravel 

et al. 2013, Morales-Castilla et al. 2015, Bartomeus et al. 2016, Poisot et al. 2016). Methods 

exist for the inference of interaction backbones within networks (Morales-Castilla et al. 2015), 

as well as identification of links which are likely to occur, even in the absence of direct empirical 

evidence (Stock et al. 2017). 

I have developed a novel method of inferring food-web structure which accurately reproduces 

that observed empirically in streams under different land use types (Chapter Three). This novel 

method retains the ability of species-interactions to vary based on the local distributions of 

traits (e.g. body size) and population densities (Poisot, Stouffer, and Gravel 2015). This differs 

from methods using summary webs, which retain all pairwise species interactions, whenever 

the two species co-occur (Chapter Three, Gray et al. 2015). With data on species-average body 

sizes and densities, this method allows for the rapid assessment of potential food-web 

structure across spatial and temporal scales, and across environmental gradients (e.g. Poisot et 

al. 2016, Tylianakis and Morris 2017). Understanding changes in food-web structure can aid in 

our ability to test ecological theory across broad scales (e.g. How do so many species coexist? 

What are the processes driving community assembly? How will communities respond to climate 

change?). 
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One critical assumption of these models is that the relationship between predator and prey 

body sizes does not vary in response to changes in habitat or abiotic conditions. However, the 

strength of the allometric relationships between predator and prey body size has been shown 

to vary within and between habitats (Brose et al. 2006, Gravel et al. 2013), and there is 

evidence that the relationship can change in response to prey limitation (Costa-Pereira et al. 

2018). However, these shortcomings may be alleviated by the use of individual interaction data 

as opposed to species averages (Nakazawa 2017). Furthermore, this method greatly reduces 

the number of possible links to sample (e.g. Morales-Castilla et al. 2015) allowing researchers to 

focus their sampling efforts where they will be most beneficial (Stock et al. 2017). 

Inferring trophic interactions across an AMD gradient reveals changes to structure and stability  

In Chapter Four, I applied a modification of the method developed in Chapter Three in order to 

infer the food-web structure of 25 streams across an AMD gradient. I inferred link probability 

and generated 250 iterations of food webs for each stream in order to assess the effects of 

variable food-web structure. My results were in general agreement with a previous study of 

food webs in AMD impacted streams (Hogsden and Harding 2012). Namely, AMD impacted 

food webs were small, simple, and well-connected. Furthermore, the inferred reduction in links 

in AMD impacted streams indicates a reduction in energy pathways and lower trophic transfer 

efficiency to higher trophic levels. Reduced energy pathways and trophic transfer efficiency was 

also suggested by an experimental leaf breakdown study of AMD impacted streams in New 

Zealand (Hogsden and Harding 2013). This is in agreement with the conclusions reached in 

Chapter Two, where a shallower size-spectra slope also indicates reduction of trophic transfer 

efficiency.  

My results demonstrate that AMD impacted streams are generally more stable than non-

impacted streams. This supports the notion that stability may not always be desirable 

(Tylianakis et al. 2010, Lake 2013), which has implications for the restoration of AMD impacted 

streams. For example, macroinvertebrate community composition in restored streams was not 

significantly different from untreated sites after 11 years of passive AMD treatment (DeNicola 

and Stapleton 2016). Impacted streams with a high degree of food-web stability may require 
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other restoration activities in addition to the amelioration of abiotic conditions (Lake 2013). 

These may include physical disturbances (e.g. scouring flood) or active species reintroductions 

(Jourdan et al. 2018) in order to reorganize the food-web structure and allow the successful 

recolonization of extirpated sensitive species. However, some of the impacted streams had 

stability values similar to the un-impacted streams. While the mechanisms driving lower 

stability of some impacted streams remains unclear (Chapter Four), these streams may be 

better candidates for restoration than the more stable AMD impacted streams. Future work is 

needed to investigate the responses of impacted streams with varying levels of stability to 

restoration projects.  

Conclusions 

My research supports the use of size-spectra analysis as a tractable method for biomonitoring 

and assessing ecological condition (Chapter Two). Size spectra analysis may offer an important 

middle ground in biomonitoring, which incorporates some of the structural and functional 

changes in food-web structure (Chapters Two and Four), without the logistical constraints of 

constructing food webs through visual identification of gut contents. Furthermore, my work has 

expanded our understanding of how AMD inputs affect the structure, function, and stability of 

stream food webs by inferring links (Chapter Four). Finally, the method I developed for inferring 

food-web structure (Chapter Three) allows for the rapid assessment of potential food-web 

structure with reduced logistical burden compared to traditional empirical food web 

construction. Although my work focuses on the effects of AMD stress on stream communities, 

these results have much broader ecological implications, and support the use of alternative 

metrics in biomonitoring surveys. As size spectra analysis are taxonomy-free descriptors of 

communities, they provide endpoints for understanding the effects of novel impacts, without a 

priori knowledge of species-specific responses. Furthermore, modelling pairwise interactions 

based on species-average body size and densities allow for the construction of potential food-

web structure across spatial and temporal scales. This will aid in the abil ity to test foundational 

ecological theory, and provide evidence for the stability of communities.  

 



139 

 

References 

Bartomeus, I., D. Gravel, J. M. Tylianakis, M. A. Aizen, I. A. Dickie, and M. Bernard-Verdier. 2016. 

A common framework for identifying linkage rules across different types of interactions. 

Functional Ecology 30:1894–1903. https://doi.org/10.1111/1365-2435.12666. 

Bernhardt, E. S., E. J. Rosi, and M. O. Gessner. 2017. Synthetic chemicals as agents of global 

change. Frontiers in Ecology and the Environment 15:84–90. 

https://doi.org/10.1002/fee.1450. 

Brose, U., T. Jonsson, E. L. Berlow, P. Warren, C. Banasek-Richter, L.-F. Bersier, J. L. Blanchard, T. 

Brey, S. R. Carpenter, M.-F. C. Blandenier, L. Cushing, H. A. Dawah, T. Dell, F. Edwards, S. 

Harper-Smith, U. Jacob, M. E. Ledger, N. D. Martinez, J. Memmott, K. Mintenbeck, J. K. 

Pinnegar, B. C. Rall, T. S. Rayner, D. C. Reuman, L. Ruess, W. Ulrich, R. J. Williams, G. 

Woodward, and J. E. Cohen. 2006. Consumer-resource body-size relationships in natural 

food webs. Ecology 87:2411–2417. https://doi.org/10.1890/0012-

9658(2006)87[2411:CBRINF]2.0.CO;2. 

Chadderton, W. L. 1988. Faunal and chemical characteristics of some Stewart Island streams. 

New Zealand Natural Sciences 15:43–50. 

Costa-Pereira, R., M. S. Araújo, R. da S. Olivier, F. L. Souza, and V. H. W. Rudolf. 2018. Prey 

limitation drives variation in allometric scaling of predator-prey interactions. The 

American Naturalist 192:E139–E149. https://doi.org/10.1086/698726. 

DeNicola, D. M., and M. G. Stapleton. 2016. Using macroinvertebrates to assess ecological 

integrity of streams remediated for acid mine drainage. Restoration Ecology 24:656–

667. https://doi.org/10.1111/rec.12366. 

Dossena, M., G. Yvon-Durocher, J. Grey, J. M. Montoya, D. M. Perkins, M. Trimmer, and G. 

Woodward. 2012. Warming alters community size structure and ecosystem functioning. 

Proceedings of the Royal Society B 279:3011–3019. 

https://doi.org/10.1098/rspb.2012.0394. 

Emmerson, M. C., and D. Raffaelli. 2004. Predator–prey body size, interaction strength and the 

stability of a real food web. Journal of Animal Ecology 73:399–409. 



140 

 

Gravel, D., T. Poisot, C. Albouy, L. Velez, and D. Mouillot. 2013. Inferring food web structure 

from predator–prey body size relationships. Methods in Ecology and Evolution 4:1083–

1090. https://doi.org/10.1111/2041-210X.12103. 

Gray, C., D. J. Baird, S. Baumgartner, U. Jacob, G. B. Jenkins, E. J. O’Gorman, X. Lu, A. Ma, M. J. 

O. Pocock, N. Schuwirth, M. Thompson, and G. Woodward. 2014. Ecological networks: 

the missing links in biomonitoring science. Journal of Applied Ecology 51:1444–1449. 

https://doi.org/10.1111/1365-2664.12300. 

Gray, C., D. Figueroa, L. Hudson, A. Ma, D. Perkins, and G. Woodward. 2015. Joining the dots: an 

automated method for constructing food webs from compendia of published 

interactions. Food Webs 5:11–20. http://dx.doi.org/10.1016/j.fooweb.2015.09.001. 

Hogsden, K. L., and J. S. Harding. 2012. Anthropogenic and natural sources of acidity and metals 

and their influence on the structure of stream food webs. Environmental Pollution 

162:466–474. https://doi.org/10.1016/j.envpol.2011.10.024. 

Hogsden, K. L., and J. S. Harding. 2013. Leaf breakdown, detrital resources, and food webs in 

streams affected by mine drainage. Hydrobiologia 716:59–73. 

https://doi.org/10.1007/s10750-013-1544-3. 

Jourdan, J., M. Plath, J. D. Tonkin, M. Ceylan, A. C. Dumeier, G. Gellert, W. Graf, C. P. Hawkins, E. 

Kiel, A. W. Lorenz, C. D. Matthaei, P. F. M. Verdonschot, R. C. M. Verdonschot, and P. 

Haase. 2018. Reintroduction of freshwater macroinvertebrates: challenges and 

opportunities. Biological Reviews. https://doi.org/10.1111/brv.12458. 

Lake, P. S. 2013. Resistance, resilience and restoration. Ecological Management and Restoration 

14:20–24. https://doi.org/10.1111/emr.12016. 

Layer, K., J. O. Riede, A. G. Hildrew, and G. Woodward. 2010. Food web structure and stability in 

20 streams across a wide pH gradient. Advances in Ecological Research 42:265–299. 

Martínez, A., A. Larrañaga, A. Miguélez, G. Yvon-Durocher, and J. Pozo. 2016. Land use change 

affects macroinvertebrate community size spectrum in streams: the case of Pinus 

radiata plantations. Freshwater Biology 61:69–79. https://doi.org/10.1111/fwb.12680. 



141 

 

Morales-Castilla, I., M. G. Matias, D. Gravel, and M. B. Arau. 2015. Inferring biotic interactions 

from proxies. Trends in Ecology & Evolution 30:347–356. 

https://doi.org/10.1016/j.tree.2015.03.014. 

Nakazawa, T. 2017. Individual interaction data are required in community ecology: a conceptual 

review of the predator–prey mass ratio and more. Ecological Research 32:5–12. 

https://doi.org/10.1007/s11284-016-1408-1. 

Neutel, A., J. A. P. Heesterbeek, and P. C. de Ruiter. 2002. Stability in real food webs: weak links 

in long loops. Science 296:1120–1124. 

Norouzzadeh, M. S., A. Nguyen, M. Kosmala, A. Swanson, M. S. Palmer, C. Packer, and J. Clune. 

2018. Automatically identifying, counting, and describing wild animals in camera-trap 

images with deep learning. Proceedings of the National Academy of Sciences 

115:E5716–E5725. https://doi.org/10.1073/pnas.1719367115. 

Pereira, H. M., P. W. Leadley, V. Proença, R. Alkemade, J. P. W. Scharlemann, J. F. Fernandez-

Manjarrés, M. B. Araújo, P. Balvanera, R. Biggs, W. W. L. Cheung, L. Chini, H. D. Cooper, 

E. L. Gilman, S. Guénette, G. C. Hurtt, H. P. Huntington, G. M. Mace, T. Oberdorff, C. 

Revenga, P. Rodrigues, R. J. Scholes, U. R. Sumaila, and M. Walpole. 2010. Scenarios for 

global biodiversity in the 21st century. Science 330:1496–1501. 

https://doi.org/10.1126/science.1196624. 

Perkins, D. M., I. Durance, F. K. Edwards, J. Grey, A. G. Hildrew, M. Jackson, J. I. Jones, R. B. 

Lauridsen, K. Layer-Dobra, M. S. A. Thompson, and G. Woodward. 2018. Bending the 

rules: exploitation of allochthonous resources by a top-predator modifies size-

abundance scaling in stream food webs. Ecology Letters. 

https://doi.org/10.1111/ele.13147. 

Petchey, O. L., and A. Belgrano. 2010. Body-size distributions and size-spectra: universal 

indicators of ecological status? Biology Letters 6:434–437. 

https://doi.org/10.1098/rsbl.2010.0240. 

Poisot, T., D. Gravel, S. Leroux, S. A. Wood, M. J. Fortin, B. Baiser, A. R. Cirtwill, M. B. Araújo, 

and D. B. Stouffer. 2016. Synthetic datasets and community tools for the rapid testing of 

ecological hypotheses. Ecography 39:402–408. https://doi.org/10.1111/ecog.01941. 



142 

 

Poisot, T., D. B. Stouffer, and D. Gravel. 2015. Beyond species: why ecological interaction 

networks vary through space and time. Oikos 124:243–251. 

https://doi.org/10.1111/oik.01719. 

Stock, M., T. Poisot, W. Waegeman, and B. D. Baets. 2017. Linear filtering reveals false 

negatives in species interaction data. Scientific Reports 7:1–8. 

https://doi.org/10.1038/srep45908. 

Thompson, R. M., E. D. Edwards, A. R. McIntosh, and C. R. Townsend. 2001. Allocation of effort 

in stream food-web studies: the best compromise? Marine and Freshwater Research 

52:339–345. 

Thompson, R. M., and C. R. Townsend. 2004. Land‐use influences on New Zealand stream 

communities: Effects on species composition, functional organisation, and food‐web 

structure. New Zealand Journal of Marine and Freshwater Research 38:595–608. 

https://doi.org/10.1080/00288330.2004.9517265. 

Tylianakis, J. M., E. Laliberté, A. Nielsen, and J. Bascompte. 2010. Conservation of species 

interaction networks. Biological Conservation 143:2270–2279. 

https://doi.org/10.1016/j.biocon.2009.12.004. 

Tylianakis, J. M., and R. J. Morris. 2017. Ecological networks across environmental gradients. 

Annual Review of Ecology, Evolution, and Systematics 48:25–48. 

Willi, M., R. T. Pitman, A. W. Cardoso, C. Locke, A. Swanson, A. Boyer, M. Veldthuis, and L. 

Fortson. 2018. Identifying animal species in camera trap images using deep learning and 

citizen science. Methods in Ecology and Evolution. https://doi.org/10.1111/2041-

210X.13099. 

 

 

  



143 

 

Acknowledgements 

First, I would like to thank my advisor, Jon Harding. Thank you for letting me take some risks 

and explore what I was passionate about, even if you didn't always think it would work. The 

genetics idea didn't really pan out, but I think we were still able to do some cool work, and I 

hope it adds to the field of ecology.  

Thanks to my committee for all the help throughout the last few years. Particular thanks for the 

feedback on my writing, and dealing with my jokes through email, without the benefit of non-

verbal cues.  

Thanks to all of my co-authors and colleagues, near and far. Collaboration is one of my highest 

aspirations as a scientist, and working with y'all has been a delight.  

Thanks to my family back home for always being supportive, even when it means flying nearly 

to the antipodal point of this blue dust mote we all inhabit.  

Thanks to the CO dream team. You weren't directly involved in this little project, but your 

WhatsApp messages were warmly received, and reminded me of how great our community is, 

and how lucky I am to be a part of it.  

Last, but never least, thank you to my partner Carlyn Perovich. Thanks for joining me on this 

part of our adventure together. Thanks for being the best field technician, and bug picker a boy 

could ask for. Thanks for always being willing to talk to me about science, and particularly my 

hairbrained ideas and personal hypotheses. Thank you for your endless capacity to be my own 

personal editor, and doing your best to teach me proper grammar (some day I'll get it! 

(Maybe.)). Thank you for all of the nights spent under the open stars, the long backpacking trips 

to the middle of nowhere, always having me on belay, and always being ready to crack open a 

beer. You're without question the best.  

I gratefully acknowledge a research grant from the New Zealand MBIE Endeavour Fund (Grant 

CLRE 1202), funding from the University of Canterbury Doctoral Scholarship, and travel funds 



144 

 

from the New Zealand Freshwater Science Society S.I.L. Trust Fund (1987), which made this 

work possible, and allowed me to share it with the scientific community. 

  



145 

 

Appendix: Site Locations  

Table 1. Northing and Easting (New Zealand Transverse Mercator Projection) of all sites in this 

work. Stream X and Y were located on private property, and access was granted under the 

condition that their names and locations not be disclosed.  

Site Name Northing Easting 

Burke 534320 1510562 

Cannel 5309056 1457153 

One Horse Creek 5317165 1502552 

Coorang 5317347 1502974 

Lankey 5333406 1509167 

Murray 5334950 1507735 

Coal  5343749 1510569 

Italian 5344326 1510157 

Coalbrookedale 5376001 1500297 

Burnett 5376034 1500272 

Burnett Tributary 5376409 1500722 

Sullivan West 5377541 1498061 

Sullivan East 5377645 1498661 

Kiwi 5381937 1497425 

Portal 5389700 1506350 

Hot 5389900 1506300 

Packtrack 5389990 1506255 

Granity 5390385 1505783 

Miller 5390445 1505828 

Mine 5390549 1507076 

Charming 5395578 1512982 

Warne 5395728 1512120 

Chasm 5396388 1516324 

Stream X - - 

Stream Y  - - 

 


