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ABSTRACT

Saulder et al. (2019) have performed a novel observational test of the local expansion of the Universe for the standard cosmology
as compared to an alternative model with differential cosmic expansion. Their analysis employs mock galaxy samples from the
Millennium Simulation, a Newtonian N–body simulation on a ΛCDM background. For the differential expansion case the simulation
has been deformed in an attempt to incorporate features of a particular inhomogeneous cosmology: the timescape model. It is shown
that key geometrical features of the timescape cosmology have been omitted in this rescaling. Consequently, the differential expansion
model tested by Saulder et al. (2019) cannot be considered to approximate the timescape cosmology.
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1. Introduction

The standard Lambda Cold Dark Matter (ΛCDM) cosmology
is built on the assumption that average cosmic expansion ex-
actly follows that of a Friedmann-Lemaître-Robertson-Walker
(FLRW) model, and that all deviations from uniform expansion
are described by peculiar velocities, which can be expressed ex-
actly in terms of local Lorentz boosts about the FLRW back-
ground. However, this is not true of general inhomogeneous cos-
mological solutions in general relativity, nor in any theory that
incorporates key principles of general relativity.

Any observational test of differential cosmic expansion is
therefore an important probe of the foundations of the standard
cosmology. Given the high degree of isotropy of the cosmic mi-
crowave background, a notion of average isotropic expansion
does apply on the large scale (though not necessarily given by
the FLRW model). Tests of differential expansion must therefore
be performed on scales comparable to that over which an aver-
age isotopic expansion is seen to emerge, namely scales of or-
der at least 70–120 h−1Mpc (Hogg et al. 2005; Scrimgeour et al.
2012), and ideally extending to a few times this scale.

Tests of differential cosmic expansion on such scales rely
on very large catalogues of galaxy, group and cluster dis-
tances and redshifts, which are noisy and are subject to nu-
merous observational biases which must be accounted for. Fur-
thermore, any tests are ideally performed in a model inde-
pendent manner, which also requires removing assumptions
of the FLRW model which are often taken for granted in
many analyses. To date, such a model independent test has
been performed for full sky spherical averages of local ex-
pansion (Wiltshire et al. 2013; McKay & Wiltshire 2016), us-
ing the COMPOSITE (Watkins et al. 2009; Feldman et al. 2010)
and Cosmicflows-II (Courtois & Tully 2012) catalogues. It was
found with very strong Bayesian evidence that the spherically
averaged expansion is significantly more uniform in the rest
frame of the Local Group (LG) of galaxies than in the standard
CMB rest frame (Wiltshire et al. 2013). However, while this may
at first seem at odds with the expectations of the standard cos-

mology, it was subsequently shown by Kraljic & Sarkar (2016)
that the result is consistent with Newtonian N-body simulations
in the ΛCDM framework, given a suitably large bulk flow.

In a new paper, Saulder et al. (2019) rigorously perform a
new type of test of differential expansion that they have previ-
ously proposed (Saulder et al. 2012). They consider line-of-sight
averages that account for intervening structures on each line of
sight, and possible effects on the variation of expansion. This is
a considerably more ambitious test than the previous tests in-
volving spherical averages, as it requires detailed knowledge of
the intervening structures on any line of sight sampled. This can
compound any problems relating to observational and statistical
biases.

Saulder et al. (2019) analyse fundamental plane distances
(Saulder et al. 2013, 2015) which they combine with informa-
tion from the SDSS (Alam et al. 2015) and 2MRS (Huchra et al.
2012) surveys to create a catalogue of structures in the local Uni-
verse covering some 22.7% of the northern hemisphere sky. Set-
ting aside possible systematic uncertainties arising from incom-
plete sky coverage, which Saulder et al. (2019) discuss, then the
test that they propose based on determining the fraction of “finite
infinity regions” (Ellis 1984; Wiltshire 2007a) along individual
lines of sight is a perfectly reasonable one, given robust model-
independent estimates of the masses of all galaxies along the
lines of sight.

In a magnitude-limited survey, and with large intrinsic scat-
ter in the data, model-independent estimates of the masses of all
galaxies close to the line of sight are impossible. Consequently,
Saulder et al. (2019) choose to estimate both the masses and sys-
tematic uncertainties in the case of the ΛCDM model in a com-
bined analysis that includes mock galaxy catalogues from the
Millennium Simulation (Springel et al. 2005). While certainly
justified in the case of the ΛCDM model, any rescaling of the
simulation to attempt to mimic non-FLRW inhomogeneous ex-
pansion has inherent problems. In addition to various systematic
issues discussed by Saulder et al. (2019), I will point out a fur-
ther geometrical issue that they have not considered.
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2. Key geometrical features of the timescape

cosmology

The timescape model (Wiltshire 2007a,b, 2009) is a phenomeno-
logical cosmology model without dark energy, which provides
one possible interpretation of the Buchert (2000, 2001) averag-
ing scheme for general inhomogeneous cosmological solutions
in general relativity. In this framework Einstein’s equations ap-
ply exactly on small scales on which the fluid approximation
for the average energy momentum tensor holds. However, aver-
age evolution on larger scales need not follow an exact solution
of Einstein’s equations. In particular, it need not coincide with
a FLRW model with constant spatial curvature on large scales.
A dynamical coupling of matter and geometry on small scales
which allows spatial curvature to vary is a natural feature of
general relativity. The requirement that spatial curvature remains
constant on arbitrarily large scales of cosmological averaging is
not a natural consequence of any principles of general relativ-
ity. Rather the FLRW models are historically the best known
and tested means of imposing average spatial homogeneity and
isotropy on the largest scales, to be consistent with observations,
albeit with the introduction of dark energy.

Since generic inhomogeneous cosmologies can exhibit arbi-
trarily large differential expansion, any proposal to describe aver-
age cosmic evolution which differs substantially from the FLRW
model must explain why average cosmic expansion nonetheless
appears to be so close to homogeneous and isotropic. An inter-
pretative framework is also required for the Buchert averaging
scheme, since it deals with statistical volume averages and does
not automatically incorporate a means to relate local observables
to the statistical quantities.

In the timescape model both of these matters are dealt with
by revisiting Einstein’s strong equivalence principle, and extend-
ing it to general averages of the cosmological Einstein equations
(Wiltshire 2008). In the presence of gradients of spatial curvature
between expanding regions of vastly different densities, the re-
gional Hubble parameter related to the quasilocal1 expansion is
calibrated in terms of regional rulers and clocks. But the relative
calibration can vary from region to region.

The observation of average spatial homogeneity is then ac-
counted for differently. As a consequence of the cosmological
equivalence principle (Wiltshire 2008) it is recognized that ex-
pansion appears to be uniform because the actual quasilocal ex-
pansion is uniform in terms of a canonical choice of regional
rulers and clocks that varies from region to region. In a uni-
verse which grows to be dominated in volume by (negatively
curved) voids at late epochs, there is a systematic drift between
the volume-average rulers and clocks (that best describe average
cosmic evolution) and the rulers and clocks of ideal observers
in overdense regions where the mass of the universe is mostly
concentrated. Implementing this requires care.

In the “two phase” model that has been studied to date
(Wiltshire 2007a,b, 2009; Duley et al. 2013) the average vol-
ume, V = Viā

3, expands as a disjoint union of spatially flat
“walls” and negatively curved voids. The walls are formally a
union of the “finite infinity regions” (Wiltshire 2007a), which
are the compact boundaries enclosing all gravitationally bound
structures within which the density averages to the timescape

1 The word “local” as typically used in phrases such as “the local Uni-
verse” is ambiguous as it implies a choice of scale. In general relativity,
“local” strictly means the neighbourhood of a point over which grav-
ity can be neglected – scales much smaller than galaxies. As soon as
one deals with larger regions in which gravity cannot be neglected then
another terminology – quasilocal – is required.

model critical density. The volume-average scale factor, ā, is re-
lated to the regional scale factors aw and av of the walls and voids
respectively by

ā3 = fwia
3
w + fvia

3
v , (1)

where fwi and fvi = 1 − fwi represent the fraction of the initial
volume, Vi, in wall and void regions respectively in the very
early universe when fvi ≪ 1. One may rewrite (1) as

fv(t) + fw(t) = 1, (2)

where fw(t) = fwia
3
w/ā

3 is the wall volume fraction and fv(t) =
fvia

3
v/ā

3 is the void volume fraction. Taking a derivative of (1)
with respect to the Buchert time parameter, t, gives

H̄ ≡
∂tā

ā
= fwHw + fvHv , (3)

where Hw ≡ (∂taw)/aw and Hv ≡ (∂tav)/av. This expresses the
relation between the “bare Hubble parameter”, H̄, and effective
Hubble parameters of the walls and voids respectively as deter-
mined by volume-average clocks. This parameterization allows
the Buchert evolution equation (Buchert 2000) to be written in a
form reminiscent of the Friedmann equation,

Ω̄M + Ω̄R + Ω̄k + Ω̄Q = 1, (4)

where Ω̄M ≡ ρ̄M0ā3
0
/(ā3ρ̄cr), Ω̄R ≡ ρ̄R0ā4

0
/(ā4ρ̄cr), Ω̄k ≡

3α2 fv
1/3/(8πGā2ρ̄cr), Ω̄Q ≡ −(∂t fv)2/[24πG fv(1 − fv)ρ̄cr],

ρ̄cr ≡ 3H̄
2
/(8πG) (5)

is the timescape model critical density, ρ̄M0 and ρ̄R0 are the
present epoch volume-average matter and radiation densities,
α2 ≡ −kv fvi

2/3c2, and kv < 0 is the curvature scale of the voids.
While the matter and radiation density parameters, Ω̄M and

Ω̄R, scale with the average volume, ā3, in a similar manner to the
FLRW model, the spatial curvature fraction, Ω̄k, is very different
since its time-variation depends not only on the average volume,
but also on the fraction of that volume occupied by voids, fv. Fi-
nally the kinematic backreaction term, Ω̄Q, is entirely absent in
the FLRW model. Eq. (4) is supplemented by an additional equa-
tion for the second derivative of fv (Wiltshire 2007a,b, 2009).

Eqs. (4), (5) refer to averaged geometrical quantities in terms
of a statistically average clock, but apart from the two phase ap-
proximation do not place any restriction on the Buchert scheme.
The timescape model implements the further restriction of the
uniform quasilocal Hubble flow condition as follows. Radial
light rays within finite infinity regions where the metric,

ds2
fi = −c2dτ2 + a2

w(τ)
[
dη2

w + η
2
wdΩ2

2
]
, (6)

is regionally spatial flat, are matched conformally to radial light
rays in a general spherically symmetric metric fit to a solution to
the Buchert equations. This results in an effective dressed metric
on radial lines of sight,

ds2 = −c2dτ2 + a2(τ)
[
dη̄2 + r2

w(η̄, τ) dΩ2
2
]

(7)

where a ≡ γ̄−1ā,

rw = γ̄0 (1 − fv)1/3

∫ t
0

t

c dt′

γ̄(t′)(1 − fv(t′))1/3ā(t′)
, (8)

γ̄0 = γ̄(t0), and

γ̄ ≡
dt

dτ
, (9)
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is the phenomenological lapse function which gives the differ-
ence of the proper time parameter, τ, of ideal observers in finite
infinity regions (in bound structures like ourselves) from the sta-
tistical volume-average time, t, that best encodes average cosmic
evolution.

There are two important geometrical issues to note. Firstly,
the effective dressed metric (7) is not spatially of constant cur-
vature, and thus cannot be obtained by a spatial rescaling of a
FLRW metric. Secondly, the dressed Hubble parameter

H ≡
1

a

da

dτ
=

1

ā

dā

dτ
−

1

γ̄

dγ̄

dτ
= γ̄H̄ −

dγ̄

dt
, (10)

not only has a contribution from rate of change of the average
volume, ā−1∂τā, but also a contribution, −γ̄−1∂τγ̄, from the rate
of change of the phenomenological lapse function.

As a numerical example, from a fit of the angular scale
of the CMB acoustic peaks using Planck satellite data,
Duley et al. (2013) find a bare Hubble constant, H̄0 = 50.1 ±
1.7 km s−1 Mpc−1, and a present epoch lapse γ̄0 = 1.348+0.021

−0.025
.

The corresponding dressed Hubble constant is H0 = 61.7 ±
3.0 km s−1 Mpc−1, which can be understood as being equal to
the fractional τ-rate of change of the volume-average scale fac-

tor, H̄τ,0 ≡ ā−1
0
∂τā

∣∣∣
0
= γ̄0H̄0 = 67.5+3.4

−3.5
km s−1 Mpc−1, as further

reduced by −γ̄0
−1∂τγ̄

∣∣∣
0
∼−5.8 km s−1 Mpc−1. We note that the

nonreduced value H̄τ,0 matches the value of the Hubble constant
obtained for the FLRW model from the same data (Ade et al.
2015), albeit with larger uncertainties since only the angular
scale of the acoustic peaks is fitted. This is precisely what should
be expected since the data fit compares the same physical scales
between last scattering and the present epoch: if one ascribes this
change solely to the rate of change of an average volume by the
same clock then there is a unique result.

3. Systematic problem of the Saulder et al. (2019)

rescaling

To create mock samples for calibrating their differential expan-
sion model, Saulder et al. (2016, 2019) determine finite infinity
radii from the “millimil” run of the Millennium simulation as

R f =

(
3Mtot

4πρcr f

)1/3

(11)

where Mtot is the mass within a simulated finite infinity region
(Saulder et al. 2016, Sec. 3.5), ρcr is the critical density of the
simulation, and f is a factor that modifies the critical density
according to

f =

(
H̄0

H0

)2

≃


2(2 + fv0)

4 f 2
v0
+ fv0 + 4


2

(12)

where H̄0 = H̄(t0) and H0 = H(t0) are respectively the bare
and dressed Hubble constants for the timescape model as above,
fv0 = fv(t0), and in the last equality we have used the exact track-
ing limit solution (Wiltshire 2007b, 2009).

Using the above definitions, Saulder et al. (2019) empirically
define average fractions of lines of sight in finite infinity regions
from the mock catalogues according to

ffiH̃0,w + (1 − ffi)H̃0,v = H̃0,av, (13)

assuming H̃0,av to coincide with the dressed Hubble constant,

H0. We introduce a tilde on H̃0,w and H̃0,v to distinguish these

empirical quantities from the present epoch values of Hw and Hv

as given in (3). Eq. (3) is a volume average using the time pa-
rameter, t, whereas (13) invokes an average over 1-dimensional
lines of sight, with expansion referred to our own time param-
eter, τ. By the uniform quasilocal Hubble flow condition, the
regionally measured Hubble constant within spatially flat finite
infinity regions would coincide with the bare Hubble constant,

i.e., H̃0,w = H̄0 = 50.1 ± 1.7 km s−1 Mpc−1. However, eq. (10)
which defines the dressed Hubble parameter is not linearly re-

lated to any void fraction. Thus the quantity H̃0,v and the relation
(13) have no obvious counterparts in the timescape model.

There is, furthermore, a geometrical problem with the
volume-based assumption (11) that has gone into this construc-
tion. In flat space a sphere of radius, R, has Euclidean volume
VE =

4
3
πR3. For a negatively curved space, the volume of a

sphere of the same fixed radius is larger than 4
3
πR3. Equivalently,

a shorter line-of-sight distance is required in a negatively curved
void to obtain the same volume as the Euclidean case. Regional
Hubble parameters are based on volume expansion. But the re-
lation between line-of-sight distance and volume changes in the
presence of spatial curvature gradients. Consequently, the finite
infinity fraction on a line of sight to any observed galaxy must
differ between the two models as a consequence of geometry.

While the bare Hubble parameter is related to the critical
density ρ̄cr by (5), as shown by eq. (10) the dressed Hubble pa-
rameter includes a contribution from the rate of change of the
phenomenological lapse function. Thus it is not directly related
to any scaling of the average volume as in the definition of the
critical density, ρcr = 3H0

2/(8πG), in the FLRW model.
Furthermore, since spatial curvature is not constant in the

timescape model, it is impossible to simply “correct” the
Saulder et al. (2016, 2019) analysis by replacing the dressed

Hubble constant in (12) by the term H̄τ,0 = ā−1
0
∂τā

∣∣∣
0
. The un-

derlying problem is that a density is a mass divided by a volume.
For a space of constant spatial curvature the relation between ra-
dius and volume is fixed. However, in the timescape model the
average spatial curvature changes with time in a way which does
not scale in direct proportion to the spatial volume.

In an attempt to overcome some of the limitations of their
approach, Saulder et al. (2019) introduce an additional empiri-
cal parameter, bsoft, which can be tuned to adjust the amount of
differential expansion. In this way they can impose a match of
the relative Hubble constant to the value H̄0/H0 in the limit that
the line-of-sight finite infinity fraction ffi → 1, as predicted by
the uniform quasilocal Hubble flow condition.

Unfortunately, even with an additional empirical scaling, a
basic problem still remains. It is impossible for individual galax-
ies to simultaneously have identical values of both the relative
line-of-sight Hubble parameter Hi/H0 and of the line-of-sight fi-
nite infinity fraction, ffi, as derived from a simulation by (11)

in both the FLRW and timescape models.2 In the FLRW case
the relationship between the line-of-sight H0 and the average
volume of the simulation is prescribed by Euclidean geometry
in any density calibration; in the timescape case it is not. For
the timescape, the relationship between the dressed parameter
H0 and the average volume in the Buchert averages is highly
nonlinear, since the later has negative spatial curvature. The fact
that Saulder et al. (2019) plot the expectations for both ΛCDM
and the differential expansion model against data with identical

2 This is purely a geometrical statement which holds irrespective of the
fact that the finite infinity notion plays no role in the Millennium sim-
ulation, and irrespective of the fact that the relative Hubble parameters
assume different values of H0.
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Hi/H0 and ffi values indicates that there is an inconsistency as
far as a timescape approximation is concerned.

4. Discussion and conclusions

Nonkinematic differential cosmic expansion – i.e., a distance-
redshift relation which differs from that of a FLRW model plus
local Lorentz boosts – is a generic feature of inhomogeneous
cosmological models (Bolejko et al. 2016). Such models include
averages of the Einstein equations with backreaction, which may
present viable alternatives to dark energy as a source of late
epoch apparent cosmic acceleration.

Saulder et al. (2019) have conceived a novel test for dif-
ferential expansion, and have undertaken a heroic effort in
their detailed analysis of a large data set. The data has var-
ious systematic limitations when applied to the test in ques-
tion. To overcome this, they combine the data with simulated
data from the ΛCDM N-body Newtonian Millennium simula-
tion (Springel et al. 2005). This gives a reasonable estimate of
the magnitude of the Kaiser (1987) effect, which can be consid-
ered as a kinematic differential expansion (Bolejko et al. 2016).
They then use a rescaled version of the simulation which accen-
tuates the differential expansion, since equivalent simulations are
unavailable in the case of the timescape model which inspired
their analysis.

Although the details of differential expansion in the
timescape model must differ3 from those of the Kaiser effect
in the ΛCDM model, there are no a priori grounds by which
we should expect its magnitude to be greater than the Kaiser
effect. Indeed, just as the ΛCDM model has a restriction on in-
homogeneity – that average expansion occurs exactly in hyper-
surfaces of constant spatial curvature, as in a FLRW model – the
timescape model also has an important simplifying restriction on
inhomogeneity, namely the uniform quasilocal Hubble flow con-
dition, eq. (10). This restriction is geometrically very different to
that of the FLRW model.

Eq. (10) exactly prescribes how the time rates of change
of the volume-average scale factor and phenomenological lapse
must be combined to match observations when we attempt to ex-
tract a Hubble constant from distance-redshift data in the usual
manner (on scales larger than the statistical homogeneity scale).
Any approximation to the timescape cosmology should incorpo-
rate this restriction. As we have shown here, the Saulder et al.
(2016, 2019) scaling does not.

A question remains as to whether some nonlinear defor-
mation of the Millennium simulation could effectively approx-
imate the restriction of Eq. (10). This is unclear. Rácz et al.
(2017) have performed a simulation without dark energy, the
“AvERA model”, in which standard Newtonian N-body codes
are evolved with the Friedmann equations on small scales, and
then averaged at each time step to determine a collective volume-
average scale factor in analogy to the Buchert approach. The
resulting distance-redshift relation tracks very close to that of
the timescape model.4 Since it is a Newtonian N-body frame-

3 Smaller scale “fingers of God” redshift-space distortions due to ve-
locity dispersions within gravitationally bound structures are under-
stood in the timescape model similarly to the standard cosmology. On
scales on which space is expanding, however, the conceptual framework
is fundamentally different.
4 The comoving distance-redshift relation in the AvERA model
(Rácz et al. 2017, Fig. 5(b)) is empirically very close to that of the
timescape model fitted to the same Planck data (Wiltshire 2014,
Fig. 8(a)). The timescape result lies between the ΛCDM and AvERA
curves, but is closer to the AvERA result overall.

work, it does allow for a direct comparison between the Millen-
nium simulation and a phenomenological backreaction frame-
work (Beck et al. 2018). However, since the scheme is arrived at
by making empirical changes to cosmic evolution at the level of
a computer code, it is unclear how these changes relate directly
to physical questions associated with effective spatial curvature
or simplifying physical principles for average cosmic evolution,
such as those which underlie the timescape model (Wiltshire
2008). Nonetheless, it may provide a framework for considering
the Saulder et al. (2019) test, and deserves further investigation.

Other tests of nonkinematic differential expansion are pos-
sible. For example, apparently anomalous features in the large
angle CMB multipoles are a generic prediction, as quantified
by Bolejko et al. (2016, Eq. (2.3), (2.4)). Simple ray–tracing
estimates using the Lemaître–Tolman–Bondi model show that
the precision to definitively distinguish nonkinematic differen-
tial expansion from the standard expectation is not reached with
present data (Dam 2016), however. That test, comparisons of
the integrated Sachs–Wolfe effect (Beck et al. 2018), and the
Saulder et al. (2019) test are all complementary ways for test-
ing the possibility of nonkinematic differential expansion once
substantial advances in observational precision are made.

In the case of the timescape cosmology, substantial theo-
retical advances are also required to make predictions with the
level of detail available in N–body Newtonian simulations on the
FLRW background, in order to allow a direct implementation of
the proposed test of Saulder et al. (2019).

Acknowledgements I thank Christoph Saulder and Nezihe
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