
Yang, J. C. et al. (Eds.) (2018). Proceedings of the 26th International Conference on Computers in 

Education. Philippines: Asia-Pacific Society for Computers in Education 

 

Supporting Novices and Advanced Students in 

Acquiring Multiple Coding Skills 
 

Geela Venise Firmalo FABICa*, Antonija MITROVICa & Kourosh NESHATIANa 
a Computer Science and Software Engineering, University of Canterbury, New Zealand 

*geela.fabic@pg.canterbury.ac.nz 

 
Abstract: We present our study on PyKinetic with various activities to target several skills: 

code tracing, debugging, and code writing. Half of the participants (control group) received 

the problems in a fixed order, while for the other half (experimental group) problems were 

selected adaptively, based on their performance. In a previous paper, we discussed the 

general findings from the study. In this paper we present further analyses and focus on 

differences between low performing students and students with higher pre-existing 

knowledge. We hypothesized that: (H1) novices will benefit more than advanced students, 

and (H2) advanced students in the experimental group will benefit more than those in the 

control group. The results confirmed H1 and revealed that this version of PyKinetic was 

more beneficial for novice learners. Moreover, novices showed evidence of learning 

multiple skills: code writing, debugging and code tracing. However, we did not have enough 

evidence for hypothesis H2. 
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1. Introduction 
 

In 2015, we started developing PyKinetic, a mobile Python tutor for novices designed for Android 

smartphones where all activities are designed to be completed without typing, and only require tap 

and long-tap interactions (Fabic, Mitrovic & Neshatian, 2016). Our motivation was to develop a 

mobile tutor as a supplement to lectures and labs. The current version of PyKinetic targets multiple 

coding skills via five types of activities: regular Parsons problems, Parsons problems with 

incomplete lines of code (LOCs), identifying erroneous LOCs, fixing erroneous LOCs, and output 

prediction. We conducted a study comparing two versions of PyKinetic: a version with the fixed 

sequence of problems, and a version which selected problems for students adaptively, based on their 

performance. In a previous paper (Fabic, Mitrovic & Neshatian, 2018) we presented the overall 

results of that study, focusing on the differences between experimental and control groups and 

showed that the adaptive version was more beneficial for learning in comparison to the version with 

a fixed order of problems. In this paper, we delve deeper in the same study and present further 

analyses for novices and advanced students. Our hypothesis is that novices will benefit more than 

advanced students in using this version of PyKinetic (H1). We also hypothesize that advanced 

students in the experimental group will benefit more than advanced students in the control group 

(H2). Based on results from our previous study, advanced students benefit more with debugging 

activities (Fabic, Mitrovic & Neshatian 2017a). Therefore, the adaptive version may provide more 

suitable problems for advanced students and result in better-quality learning. 

A variety of skills necessary for programming have been discussed in the literature. 

Researchers found that code tracing must be learned before code writing (Lopez et al., 2008; 

Thompson et al., 2008; Harrington & Cheng, 2018). Further evidence proves existence of 

relationships between code tracing, code writing and code explaining (Lister et al., 2009; Venables, 

Tan & Lister, 2009). A strong positive correlation was found between code tracing and code writing 

(Lister et al., 2010). Harrington & Cheng (2018) conducted a study and found that regardless of 

whether the student is better in either code tracing or code writing, a large gap between the two skills 

is most likely due to students struggling with understanding core programming concepts. 

Ahmadzadeh, Elliman & Higgins (2005) conducted a study on the debugging patterns of novices 



and found that most learners competent in debugging were advanced programmers (66%). However, 

only 39% of advanced programmers were also competent in debugging. These findings provide 

indications that debugging and tracing someone else’s program requires a higher order of skill than 

code writing. 

Parsons problems are exercises that aid learners in recognizing the sequential and non-

sequential aspects of programming. These problems were originally developed as a fun way to learn 

Turbo Pascal (Parsons & Haden, 2006) to improve syntactic skills. These problems are suitable for 

novices as they contain syntactically correct code that only needs to be arranged in the right order. 

There are variations of Parsons problems implemented such as Parsons problems with distractors 

(extra LOCs) (Fabic, Mitrovic & Neshatian 2016; Kumar, 2018), and Parsons problems with 

incomplete LOCs (Fabic, Mitrovic & Neshatian 2017a; Ihantola, Helminen & Karavirta, 2013). 

More variants are considered by Denny et al. (2008) and (Cheng & Harrington, 2017). To the best 

of our knowledge, most work in Parsons problems contains fragments of code containing multiple 

lines for each fragment. However, in our work, all versions of PyKinetic containing Parsons 

problems all had code fragments containing exactly one line per fragment, which requires more 

effort (moves) for a problem to be solved. Similarly, Kumar (2018) also implemented Parsons 

problems with fragments containing single LOCs. 

Self-explanation (SE) is a learning activity which promotes deeper learning, by producing 

inference rules and justifications which are not directly presented by the material (Chi et al., 1989). 

SE prompts were first introduced as open-ended questions which encourage learners to think without 

any set limitations. Over the years, SE activities have been proven useful in various domains such 

as geometry (Aleven, Koedinger & Cross, 1999), probability (Atkinson, Renkl & Merrill, 2003; 

Berthold, Eysink & Renkl, 2009), data normalization (Mitrovic, 2005), database modelling 

(Weerasinghe & Mitrovic, 2006), electrical circuits (Johnson & Mayer, 2010), and chemistry 

(McLaren et al., 2016). There were several studies comparing different forms of self-explanation 

(Wylie & Chi, 2014). In PyKinetic, we have used menu-based SE prompts, which provide choices 

from a menu, instead of traditional open-ended questions proven to be effective in our previous study 

(Fabic, Mitrovic & Neshatian, 2017a; 2017b). 

 

 

2. Types of Problems in PyKinetic 
 

A PyKinetic problem contains a description, a code snippet, and one or more activities. Activities 

can be Parsons problems, completing missing elements in LOCs, output prediction, identifying 

incorrect LOCs and fixing them. We defined seven types of problems (see Table 1, second column). 

Problem types 1–4 consist of a single activity each, whereas other types (5–7) are combinations of 

two or more activities. The problem types are ordered by the complexity and the number of coding 

skills involved. The code provided for problems with debugging activities contain 1–3 incorrect 

LOCs, whereas other problem types contain error-free code. PyKinetic covers six Python topics: 

string manipulation, conditional statements, while loops, for loops, lists, and tuples. 

The simplest problem type (Level 1) is a regular Parsons problem (Reg_Pars) which only 

requires LOCs to be rearranged by dragging and dropping. Correct indentations are provided for all 

LOCs as scaffolding. For each Reg_Pars, there is one predefined hint. Subsequent incorrect attempts 

result in alternating simple feedback and a predefined hint. When the learner successfully reorders 

the LOCs in the correct order, PyKinetic provides positive feedback. 

On Level 2 (Out), the student is given one or more test cases, and needs to predict the output 

of the given code. For each Out activity, there are three incorrect and one correct choice. One 

predefined hint is provided if the learner selects an incorrect choice. After an incorrect attempt, a 

choice cannot be made without first closing the output prediction dialog box to encourage learners 

to review the code. 

Level 3 problems consist of a single debugging activity (Dbg), requiring the student to 

identify n erroneous LOCs, where n is given. In Dbg activities, the learner is given the problem 

description and some test cases with the actual output the code produces. If the solution is correct, 

the student receives positive feedback. When the solution is incorrect, feedback is firstly given if the 

student selects too many or too few incorrect LOCs. If the learner selects exactly n lines, but the 

selections are all incorrect, this would result in alternating simple feedback and a predefined hint 



like given in Reg_Pars (Level 1). Also, like Reg_Pars, there is only one predefined hint given for 

each Dbg activity. Moreover, the learner is notified when their solution was partially correct. 

Level 4 contains Parsons problems with incomplete LOCs and SE prompts (Pars_Inc). 

Initially, the student is given the description of the problem and the expected output. Each Pars_Inc 

problem contains up to three incomplete lines. An incomplete LOC contains a blank line, which may 

require one or more keywords. The length of the blank line is indicative of keywords needed. To 

complete a LOC, an answer is chosen by tapping between provided options instead of typing like 

work of Ihantola, Helminen, & Karavirta, (2013). When the learner selects the correct option, the 

learner next gets the SE prompt, which is associated to the line just completed. The learner is only 

allowed to attempt the SE question once to avoid guessing and is not allowed to avoid it. 

Level 5 problem is a combination of debugging and output prediction (Dbg –> Out). Dbg –

> Fix (Level 6) is a combination of debugging and fixing activities. Lastly, the most complex 

problem type is Dbg –> Out –> Fix (Level 7), which is a combination of three activities: identifying 

erroneous LOCs, predicting the output for the same erroneous code, and fixing the identified errors. 

 

 

3. Experimental Design and Adaptive Problem Selection 
 

We recruited 30 participants from an introductory programming course at the University of 

Canterbury. The participants learnt all Python topics covered in PyKinetic before the study. The 

study was approved by the Human Ethics committee of the University of Canterbury. The 

participants were randomly assigned into control or experimental group. The session length was two 

hours. The participants were first given a brief introduction and their consent was obtained, followed 

by a pre-test on computers (18 minutes). Next, a briefing paper was given for PyKinetic, together 

with an Android phone with the app installed. For the experimental group, we entered the pre-test 

scores into PyKinetic, so that the adaptive strategy could select the first problem based on each 

learners’ pre-test score. Both groups had 14 problems to solve. A learner must complete a problem 

to proceed to the next one. Participants interacted with PyKinetic for an hour, then a post-test was 

given, with the same constraints as the pre-test. There were two tests of similar complexity that were 

alternatively used as the pre-test for half of the participants. Both tests had six questions of the same 

types as in PyKinetic. However, instead of having two variants Parsons problems, there was only 

one Parsons problem with three extra LOCs (distractors) completed by drag and drop. Moreover, a 

code writing question was included which required the learners to type their code without being able 

to run it. Other questions were answered by multiple choice and drop-down list boxes. Each question 

was worth 1 mark for each problem it required, apart from the Parsons problem with distractors (2 

marks), and the code writing question (5 marks). 

The control group received problems in the fixed order, as shown in Table 1. The problems 

given to the experimental group were selected adaptively based on each student’s performance. In 

steps 1–7, the participants could receive a regular Parsons problem (Reg_Pars), output prediction 

problem (Out) or be asked to identify erroneous LOCs (Dbg). Steps 8–14 were composed of more 

difficult problems (levels 4–7). The 14 problems that were given to the control group correspond to 

42 problems for the experimental group, to provide three difficulty levels. For example, problem 1 

was a Reg_Pars for the control group; for the experimental group, the same problem was given either 

as a Reg_Pars, Out or Dbg. For steps 2–14, the adaptive strategy selected the problem type based on 

the student’s score on the previous problem.  

For the experimental group, the first problem was selected based on the participant’s pre-

test score. If the participant scored below 50%, a Reg_Pars was given. Participants who achieved at 

least 50% but less than 75% were given an Out (level 2) problem; however, a Dbg (level 3) problem 

was given if the learner performed well on Out or performed similarly compared to Dbg. For 

participants who scored more than 75%, a Dbg problem was given. 

After the first problem, the adaptive strategy used the performance on the previous step to 

select the next problem. If the score is less than 50%, a problem of difficulty level 1 is selected. A 

difficulty level 2 problem is selected for scores more than 50% but less than 75%, and a difficulty 

level 3 if the score is at least 75%. PyKinetic calculates the score for each activity in a problem 

separately, and the problem score is the average of the activities scores. The score for an activity 

depends on the time taken (TimeScore) and the number of attempts (AttemptScore). The ideal 



number of attempts for an activity is the minimum number of submissions needed to complete. 

TimeScore is the quotient of ideal time and the actual time the student took. AttemptScore is 

calculated as the quotient of the ideal and the actual number of submissions the student made. Both 

scores are then combined to compute the score for the activity: ActivityScore = (0.5 * TimeScore + 

0.5 * AttemptScore) – Penalty. Furthermore, a penalty is applied if the time per attempt is less than 

10 seconds (0.17 min – AttemptTime). The penalty is calculated based on the time taken per attempt 

(AttemptTime) and on 10 seconds threshold. The shorter the AttemptTime, the bigger the penalty.  

 

Table 1 

Problems for each step: Fixed (Control group) vs. Adaptive (Experimental group) 

Step Fixed (Control) Adaptive (Experimental) 

1 
Regular Parsons problem (Reg_Pars) 

Difficulty level 1: Reg_Pars 

Difficulty level 2: Out 

Difficulty level 3: Dbg 

2 

3 
Output prediction (Out) 

4 

5 
Identifying erroneous Lines of Code (Dbg) 

6 

7 Parsons Problem with incomplete  

Lines of Code and Menu-based SE 

(Pars_Inc) 
8 

Difficulty level 1: Pars_Inc 

Difficulty level 2: Dbg –> Out 

Difficulty level 3: Dbg –> Fix 
9 

Dbg –> Out 
10 

11 Dbg –> Fixing erroneous Lines of Code 

(Fix) 
Difficulty level 1: Pars_Inc 

Difficulty level 2: Dbg –> Out 

Difficulty level 3: Dbg –> Out –> Fix 

12 

13 
Dbg –> Out –> Fix 

14 

 

 

4. Findings and Conclusions 
 

We eliminated one outlier from the control group and present the results for the remaining 29 

participants (15 in experimental and 14 in control). Due to the fixed session length, only 12 

participants (41%) finished all 14 problems (6 from each group). On average, the participants 

completed 89% of the problems (12.52, s = 1.6). We divided the participants based on the pre-test 

scores: the participants who scored less than the median (72.92%) were labelled as novices, while 

the rest were considered as advanced participants. Due to random allocation of participants, we 

discovered that numbers of novices vs. advanced students were unbalanced in both groups. There 

were 15 novices (ten from experimental and five from control), and 14 advanced students (five from 

experimental and nine from control). Table 2 reports the results of pre/post-test scores of novices 

and advanced students. 

Using the Wilcoxon Signed Ranks test, we found that the novices improved their scores 

significantly from the pre- to the post-test (W = 102, p = .017, Cohen’s d = 1.14). Furthermore, their 

improvement on the code writing question was also significant (W = 75, p = .039, Cohen’s d = .87). 

There were no significant improvements between the pre- to post-test scores for the advanced 

students. We also compared the scores of novices and advanced students. We expected to see 

significant differences for most of their pre- and post-test scores, due to the disparity between their 

abilities. The scores for identifying and fixing errors were significantly different only on the pre-test 

(U = 58.5, p = .023), but not on the post-test. Similarly, the output prediction scores on the pre-test 

were significantly different (U = 60, p = .029) but there was no difference on the post-test, showing 

benefits on the learning of novices. Even though novices improved significantly on their code 

writing scores, there was still a significant difference between their post-test scores when compared 

with advanced students (U = 59.5, p = .026). We used the Wilcoxon Signed Ranks test to identify 

whether there were significant improvements for the subgroups. Only novices in the control group 



improved significantly between pre-/post-test (W = 15, p = .043, Cohen’s d = 1.38). The imbalance 

of the students between control and experimental group likely affected our results.  

 

Table 2 

Some Pre-/Post-test Results for Novices and Advanced Participants 

Scores (%) 

 

Novices (15) 

10 Exp. and 5 Cont. 

Advanced (14) 

5 Exp. and 9 Cont. 

Mann-Whitney U 

test 

Pre-test 57.64 (12.9) 88.99 (8.5) U = 0, p = .000 

Post-test 74.17 (15.9) 89.88 (8.9) U = 48, p = .007 

Pre-test Dbg, Fix and Dbg –> Fix 60 (28.7) 83.33 (25.3) U = 58.5, p =.023 

Post-test Dbg, Fix and Dbg –> Fix 66.67 (28.2) 85.72 (21.5) ns 

Pre-test Out 60 (20.7) 82.14 (24.9) U = 60, p= .029 

Post-test Out 73.33 (32) 75 (32.5) ns 

Pre-test Code Writing 42.67 (32.6) 91.43 (16.6) U = 16, p = .000 

Post-test Code Writing 70.67 (31.7) 95.71 (6.5) U = 59.5, p = .026 

Normalized Gain 33.66 (46.74) 14.29 (74.3) ns 

 

We also compared performances of novices and advanced students within PyKinetic. There 

were no significant differences on the average time, number of attempts per problem and average 

problem level between novices and advanced students. However, average scores in PyKinetic of 

advanced students were significantly higher than scores of novices (U = 41, p = .004). Novices in 

the experimental group received significantly more Level 3 (Dbg) problems than novices in the 

control group (U = 7.5, p = .028); they were also significantly faster on the initial seven problems 

(U = 46, p = .008). Furthermore, advanced students from the experimental group received 

significantly harder problems in the first half of the session than advanced learners from the control 

group (U = 5, p = .019). Advanced students in the experimental group received significantly fewer 

Level 1 (Reg_Pars) problems (easiest activity in PyKinetic) than advanced in the control group (U 

= 40.5, p = .012). 

Our results show enough evidence to accept hypothesis H1, that PyKinetic is more beneficial 

for novices. Despite having only interacted with PyKinetic for an hour, novice students learned 

significantly from the pre- to post-test overall and on code writing. Furthermore, the Cohen’s d effect 

size on both were notably high, 1.14 for the overall improvement, and 0.87 for code writing. 

However, the post-test scores of novices for code writing were still significantly lower than scores 

of advanced students. This is consistent with results from literature, showing that code writing skills 

require higher order of knowledge than other coding skills. We also found some evidence that the 

novice learners were learning multiple coding skills. The scores of novices on debugging 

(identifying errors and code fixing) and output prediction questions on the pre-test were significantly 

lower than the scores of advanced students. However, their post-test scores for those question types 

were not significantly different; indicating that the novices have reduced their gap on debugging and 

code tracing skills. 

Hypothesis H2 was that advanced students in the experimental group would benefit more 

than those in the control group. Results revealed that advanced students in the experimental group 

received more difficult problems than those in the control group. However, that was not enough 

evidence to support hypothesis H2. There were only five advanced students in the experimental 

group but ten in the control group which most possibly affected our results. The main contribution 

of this paper is that a programming tutor in a smartphone can also be useful even for students with 

low prior knowledge to learn multiple coding skills by support of various activities. PyKinetic is 

designed to enhance coding skills in Python, and our findings support this. 

The limitations of this study include the small set of participants, unbalanced abilities of 

participants in both groups, and limited feedback provided by PyKinetic. One direction for future 

improvement of PyKinetic is to add more hints and provide more constructive feedback. This study 

has the potential of revealing which activities are most effective for specific coding skills. Our future 

work includes repeating the study with more participants, and possibly conducting a longer study to 

investigate the benefits of PyKinetic over a longer period. 
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