VALUE SETS OF SPARSE POLYNOMIALS

IGOR E. SHPARLINSKI AND JOSÉ FELIPE VOLOCH

Abstract

We obtain a new lower bound on the size of value set $\mathscr{V}(f)=f\left(\mathbb{F}_{p}\right)$ of a sparse polynomial $f \in \mathbb{F}_{p}[X]$ over a finite field of p elements when p is prime. This bound is uniform with respect of the degree and depends on some natural arithmetic properties of the degrees of the monomial terms of f and the number of these terms. Our result is stronger than those which canted be extracted from the bounds on multiplicities of individual values in $\mathscr{V}(f)$.

1. Introduction

The value set of a polynomial $f(X) \in \mathbb{F}_{q}[X]$ over a finite field \mathbb{F}_{q} of q elements, is the set $\mathscr{V}(f)=\left\{f(a): a \in \mathbb{F}_{q}\right\}$ and we define $V(f)=$ $\# \mathscr{V}(f)$. A much studied problem is to estimate $V(f)$ in terms of f. An easy lower bound is $V(f) \geqslant q / \operatorname{deg} f$ as $f(x)=c$ has at most $\operatorname{deg} f$ solutions for any c. This is essentially best possible in general but, given conditions on f it can sometimes be improved. In this paper, we study the question of bounding from below $V(f)$ as a function of the number of terms in f, rather than its degree. Specifically, if $f(X)=a_{0}+\sum_{i=1}^{t} a_{i} X^{n_{i}}$, we want to estimate $V(f)$ in terms of t and q. When the degree of f is much higher than t, the polynomial f is said to be sparse. One can bound the number of roots of sparse polynomials (see [CFKLLS00, Lemma 7]) and convert this to a lower bound on $V(f)$, as above. Oftentimes, as described in [BCR16, CGRW17] a sparse polynomial may have many roots. We prove, however, that for $q=p$ prime one can give a nontrivial lower bound on $V(f)$, for f sparse, even when equations of the form $f(x)=a$ have many roots in \mathbb{F}_{p}. In addition, this bound is always better than the one obtained from the upper bound of [CFKLLS00, Lemma 7] on the number of roots, when it applies, for $t \geqslant 9$.

We obtain our results in three steps. First, using a monomial change of variables we reduce the degree of the polynomial, as in [CFKLLS00]. Second, we bound the number of irreducible components of $f(X)$ -

[^0]$f(Y)$ by adapting a result of Zannier [Z07]. Finally, we use the results of [V89] to get our bounds.

We also give a special treatment in the case of binomials, via different arguments and we obtain stronger results in that case.

We recall that the notations $U=O(V), U \ll V$ and $V \gg U$, are all equivalent to the statement that $|U| \leqslant c V$ for some constant c which throughout this work may depend on the positive integer parameter t (the number of terms of the polynomials involved), and is absolute otherwise.

2. Factors of differences of sparse Laurent polynomials

We say a polynomial $g(X, Y)$ is a factor of rational function $f(X, Y)$ if it is a factor of its numerator (in its lowers terms).

The following result and its proof are motivated by a result in [Z07].
Theorem 2.1. Let K be a field of positive characteristic p and let

$$
f(X)=\sum_{i=1}^{t} a_{i} X^{n_{i}} \in K(X)
$$

be a nonconstant Laurent polynomial over K with $a_{i} \neq 0$ and nonzero integer exponents $n_{1}<\ldots<n_{t}$ with $n_{t} \geqslant\left|n_{i}\right|, i=1, \ldots, t$. If $h(X, Y)$ is an irreducible polynomial factor of $f(X)-f(Y)$ of degree d not of the form $X-\alpha Y$ or $X Y-\alpha, \alpha \in K$. Then $d \gg \min \left\{p / n_{t}, \sqrt{n_{t} / t^{2}}\right\}$.

Proof. Let \mathscr{X} be a smooth model of the curve $h=0$. The genus of \mathscr{X} is at most $(d-1)(d-2) / 2$. On \mathscr{X}, the functions x and y have at most d zeros and d poles (on the line at infinity) so they are S-units for some set S of places of \mathscr{X} with $\# S \leqslant 3 d$. Consider the functions $x^{n_{i}}, y^{n_{i}}, i=1, \ldots, t$ which are also S-units. Let $u_{1}=x^{n_{t}}, u_{2} \ldots, u_{m}$ be a subset of these functions such that

$$
u_{1}=\sum_{i=2}^{m} c_{i} u_{i}, \quad c_{i} \in K
$$

and m minimal. Note that $m \leqslant 2 t$ as the equation $f(x)-f(y)=0$ yields a relation of this form with $m=2 t$ but may not be minimal. Note also that $m>1$. If $m=2$, then u_{2} is a power of y as, otherwise h would be a polynomial in X which is clearly not possible. Let $u_{2}=y^{n_{j}}$. As, on the curve $h=0$, we have $x^{n_{t}}=c_{2} y^{n_{j}}$ we must have $n_{j} \neq 0$ and $y=c x^{n_{t} / n_{j}}$ for some c (as algebraic functions) and plugging this into $f(x)-f(y)=0$ and comparing powers of x yields $n_{j}=n_{t}$ or n_{1} (the latter only if $n_{1}=-n_{t}$) consequently, $h=X-\alpha Y$ or $h=X Y-\alpha$, $\alpha \in K$, contrary to hypothesis, so $m \geqslant 3$.

The u_{i} are functions on \mathscr{X} so

$$
\left(u_{1}: \ldots: u_{m-1}\right)
$$

defines a morphism $\mathscr{X} \rightarrow \mathbb{P}^{m-1}$ of degree at most $3 d n_{t}$, since each coordinate is a monomial in x or y or their inverses to a power at most n_{t}. If $3 d n_{t} \geqslant p$, the desired result follows immediately. If $3 d n_{t}<p$, then [V85, Theorem 4] holds with the same proof in characteristic $p>0$ (as the morphism has classical orders by [SV86, Corollary 1.8]). Also $\operatorname{deg} u_{1} \geqslant n_{t}$ so we get

$$
n_{t} \leqslant \operatorname{deg} u_{1} \leqslant(m(m+1) / 2)(d(d-3)+3 d) \ll d^{2} m^{2} \leqslant d^{2} t^{2}
$$

proving the desired result.

3. Value sets of sparse polynomials

Here we only concentrate on the case of a prime field \mathbb{F}_{p}, where p is a prime.

We start with the following simple application of the of the Dirichlet pigeonhole principle (see also the proof of [CFKLLS00, Lemma 6]).

Lemma 3.1. For an integer $S \geqslant 1$ and arbitrary integers n_{1}, \ldots, n_{t}, there exists a positive integer $s \leqslant S$, such that

$$
s n_{i} \equiv m_{i} \quad(\bmod p-1) \quad \text { and } \quad\left|m_{i}\right| \ll p S^{-1 / t}, \quad i=1, \ldots, t .
$$

Proof. We cover the cube $[0, p-1]^{t}$ by at most S cubes with the side length $p S^{-1 / t}$. Therefore, at least two of the vectors formed by the residues of modulo $p-1$ of the $S+1$ vectors $\left(s n_{1}, \ldots, s n_{t}\right), s=0, \ldots, S$ fall in the same cube. Assume they correspond to $S \geqslant s_{1}>s_{2} \geqslant 0$. It is easy to see that $s=s_{1}-s_{2}$ yields the desired result.

Furthermore, by [CFKLLS00, Lemma 7] we have:
Lemma 3.2. For $r \geqslant 2$ given elements $b_{1}, \ldots, b_{r} \in \mathbb{F}_{p}^{*}$ and integers k_{1}, \ldots, k_{r} in \mathbb{Z} let us denote by T the number of solutions of the equation

$$
\sum_{i=1}^{r} c_{i} x^{k_{i}}=0, \quad x \in \mathbb{F}_{p}^{*}
$$

Then

$$
\begin{equation*}
T \leqslant 2 p^{1-1 /(r-1)} D^{1 /(r-1)}+O\left(p^{1-2 /(r-1)} D^{2 /(r-1)}\right) \tag{3.1}
\end{equation*}
$$

where

$$
D=\min _{1 \leqslant i \leqslant r} \max _{j \neq i} \operatorname{gcd}\left(k_{j}-k_{i}, p-1\right) .
$$

We also use that by the Cauchy inequality

$$
\begin{align*}
p^{2} & =\left(\sum_{a \in \mathbb{F}_{p}} \#\left\{x \in \mathbb{F}_{p}: f(x)=a\right\}\right)^{2} \\
& \leqslant V(f) \sum_{a \in \mathscr{V}(f)}\left(\#\left\{x \in \mathbb{F}_{p}: f(x)=a\right\}\right)^{2} \tag{3.2}\\
& =V(f) \#\left\{(x, y) \in \mathbb{F}_{p}^{2}: f(x)=f(y)\right\}
\end{align*}
$$

see also [V89, Lemma 1].
We are now ready to estimate $V(f)$.
Theorem 3.3. For any $t \geqslant 2$ there is a constant $c(t)>0$ such that for any primes p and integers $1 \leqslant n_{1}, \ldots, n_{t}<p-1$ integers with
(i) $\max _{1 \leqslant j<i \leqslant t} \operatorname{gcd}\left(n_{j}-n_{i}, p-1\right) \leqslant c(t) p$,
(ii) $\operatorname{gcd}\left(n_{1}, \ldots,, n_{t}, p-1\right)=1$,
for any polynomial

$$
f(X)=\sum_{i=1}^{t} a_{i} X^{n_{i}} \in \mathbb{F}_{p}[X] \quad \text { with } a_{i} \neq 0, i=1, \ldots, t
$$

we have $V(f) \gg \min \left\{p^{2 / 3}, p^{4 /(3 t+4)}\right\}$.
Proof. We chose the integer parameter

$$
\begin{equation*}
S=\left\lceil p^{3 t /(3 t+4)}\right\rceil \tag{3.3}
\end{equation*}
$$

and define s and m_{1}, \ldots, m_{t} as in Lemma 3.1.
We see from Lemma 3.2 that for a sufficiently small $c(t)$ the condition (i) guarantees that there is $c \in \mathbb{F}_{p}^{*}$ such that

$$
\begin{equation*}
\sum_{i \in \mathscr{I}} a_{i} c^{n_{i}} \neq 0 \tag{3.4}
\end{equation*}
$$

for all non-empty sets $\mathscr{I} \subseteq\{1, \ldots, t\}$.
We now fix some $c \in \mathbb{F}_{p}^{*}$ satisfying (3.4) and for the above s, we consider the polynomial $f\left(c X^{s}\right)$, then the values of $f\left(c X^{s}\right)$ in \mathbb{F}_{p}^{*} coincide with those of

$$
g(X)=\sum_{i=1}^{t} b_{i} X^{m_{i}} \quad \text { with } b_{i}=a_{i} c^{n_{i}}, i=1, \ldots, t
$$

and, after collecting like powers of X, we consider two situations: when $g(X)$ is a constant functions and when $g(X)$ is of positive degree.

We observe that due to the condition (3.4) the number of terms of $g(X)$ is exactly the same as the number of distinct values among m_{1}, \ldots, m_{t}.

If $g(X)$ is a constant then $m_{1}=\ldots=m_{t}=0$ and thus using that $s n_{i} \equiv m_{i} \equiv 0(\bmod p-1), i=1, \ldots, t$, we also see that

$$
s \operatorname{gcd}\left(n_{1}, \ldots,, n_{t}, p-1\right) \equiv 0 \quad(\bmod p-1)
$$

This implies that

$$
S \geqslant s \geqslant \frac{p-1}{\operatorname{gcd}\left(n_{1}, \ldots,, n_{t}, p-1\right)}=p-1
$$

which is impossible for the above choice of S, due to the condition (ii).
So we can now assume that $g(X)$ is a nontrivial Laurent polynomial.
Furthermore, making, if necessary, the change of variable $X \rightarrow X^{-1}$, without loss of generality, we can assume that

$$
m_{t}=\max \left\{\left|m_{1}\right|, \ldots,\left|m_{t}\right|\right\}>0
$$

We now derive a bound on

$$
N=\#\left\{(x, y) \in \mathbb{F}_{p}^{2}: g(x)=g(y)\right\}
$$

which is based on Theorem 2.1.
If $\sqrt{m_{t}} \leqslant p / m_{t}$ then $m_{t} \leqslant p^{2 / 3}$ and the result is trivial. We immediately obtain

$$
\begin{equation*}
N \ll m_{t} p \ll p^{5 / 3} \tag{3.5}
\end{equation*}
$$

Hence we now assume that

$$
\begin{equation*}
\sqrt{m_{t}}>p / m_{t} \tag{3.6}
\end{equation*}
$$

First, in order to apply Theorem 2.1, we need to investigate the factors of $g(X)-g(Y)$ of the form $X-\alpha Y$ or of the form $X Y-\alpha$ with α in the algebraic closure of \mathbb{F}_{p}.

In fact for an application to N only factors of these forms with $\alpha \in \mathbb{F}_{p}$ are relevant.

Let $\mathscr{G}_{s} \subseteq \mathbb{F}_{p}^{*}$ be the multiplicative subgroup of elements $\alpha \in \mathbb{F}_{p}$ with $\alpha^{s}=1$. Note that \mathscr{G}_{s} is a subgroup of elements of multiplicative order $\operatorname{gcd}(s, p-1)$, and thus

$$
\# \mathscr{G}_{s}=\operatorname{gcd}(s, p-1)
$$

We show that for some $\gamma \in \mathbb{F}_{p}$ factors of $g(X)-g(Y)$ of the form $X-\alpha Y$ and $X Y-\alpha$ we have $\alpha \in \mathscr{G}_{s}$ and $\alpha \in \gamma \mathscr{G}_{s}$, respectively.

Clearly, if $g(X)-g(Y)$ has a factor of the form $X-\alpha Y$ then $g(X)-$ $g(\alpha X)$ is identical to zero. Since $g(X)$ is not constant, we see that $\alpha \neq 0$. Hence, denoting by m the multiplicative order of α in \mathbb{F}_{p}^{*} we see that by the condition (ii) we have

$$
m \mid \operatorname{gcd}\left(m_{1}, \ldots, m_{t}, p-1\right)=\operatorname{gcd}\left(s n_{1}, \ldots, s n_{t}, p-1\right)=\operatorname{gcd}(s, p-1)
$$

Hence $\alpha \in \mathscr{G}_{s}$.

The factors of $g(X)-g(Y)$ of the form $X Y-\alpha, \alpha \in K$ imply that $g(X)-g(\alpha / X)$ is identical to zero. This may occur only if for every $i=1, \ldots, t$ there exists $j=1, \ldots, t$ with $m_{i}=-m_{j}$ and $\alpha^{m_{i}}=b_{i} / b_{j}$. In particular, there is some $\beta \in \mathbb{F}_{p}^{*}$ (which may depend on m_{1}, \ldots, m_{t}) such that

$$
\alpha^{\operatorname{gcd}\left(m_{1}, \ldots, m_{t}, p-1\right)}=\beta
$$

which puts α in some fixed coset \mathscr{G}_{s}. Hence there are at most $s \leqslant S$ such values of α which contribute at most

$$
\begin{equation*}
N_{0} \ll p S \tag{3.7}
\end{equation*}
$$

to N.
We proceed to get an upper estimate on N and notice that any further contribution to N may only come from factors of $g(X)-g(Y)$ not of the form $X-\alpha Y$ or $X Y-\alpha$.

As $m_{t} \ll p S^{-1 / t}$, all such factors h_{1}, \ldots, h_{k} of $g(X)-g(Y)$ have degree $d_{j}=\operatorname{deg} h_{j}$ for which, then, by Theorem 2.1 and also using (3.6) we derive

$$
d_{j} \gg \min \left\{p / m_{t}, \sqrt{m_{t} / t^{2}}\right\}=p / m_{t} \geqslant S^{1 / t}, \quad j=1, \ldots, k
$$

and there are

$$
k \leqslant \frac{2 m_{t}}{\min \left\{d_{1}, \ldots, d_{k}\right\}} \ll p S^{-2 / t}
$$

such factors.
Let N_{1} and N_{2} be contributions to N from the factors h_{j} of degree $d_{j}<p^{1 / 4}$ and $d_{j} \geqslant p^{1 / 4}$, respectively.

If a factor h has degree $d<p^{1 / 4}$ the number of rational points on $h=0$ is $O(p)$ by the Weil bound (see [L96]), so those factors all together contribute

$$
\begin{equation*}
N_{1} \ll \sum_{\substack{j=1 \\ d_{j}<p^{1 / 4}}}^{k} p \leqslant k p \ll p^{2} S^{-2 / t} . \tag{3.8}
\end{equation*}
$$

The factors with degree $d \geqslant p^{1 / 4}$ contribute $O\left(d^{4 / 3} p^{2 / 3}\right)$ by [V89, Theorem (i)] and, in total they contribute

$$
N_{2}=\sum_{\substack{j=1 \\ d_{j} \geqslant p^{1 / 4}}}^{k} d_{j}^{4 / 3} p^{2 / 3}
$$

Using the convexity of the function $z \mapsto z^{4 / 3}$ and then extending the range of summation to polynomials of all degrees, we obtain

$$
\begin{equation*}
N_{2} \leqslant p^{2 / 3}\left(\sum_{j=1}^{k} d_{j}\right)^{4 / 3} \leqslant m_{t}^{4 / 3} p^{2 / 3} \ll p^{2} S^{-4 /(3 t)} \tag{3.9}
\end{equation*}
$$

Combining (3.7), (3.8) and (3.9) we obtain

$$
N \ll p S+p^{2} S^{-4 /(3 t)}
$$

which with the choice S as in (3.3), becomes

$$
\begin{equation*}
N \ll p^{(6 t+4) /(3 t+4)} \tag{3.10}
\end{equation*}
$$

Combining (3.5) and (3.10) with (3.2) we derive the result.
We now consider the case of binomials in more detail.
Theorem 3.4. If $f(X)=X+a X^{n} \in \mathbb{F}_{p}[X]$ and

$$
d=\operatorname{gcd}(n, p-1) \quad \text { and } \quad e=\operatorname{gcd}(n-1, p-1)
$$

then

$$
V(f) \gg \max \{d, p / d, e, p / e\} .
$$

Proof. Assume that $d \leqslant p^{1 / 2}$. There exists a positive $r \leqslant(p-1) / d$ with $r n / d \equiv 1(\bmod (p-1) / d)$ so that $r n \equiv d(\bmod p-1)$. Hence, if $x=u^{r}$, then $f(x)=g(u)$ where $g(u)=u^{r}+a u^{d}$.

The equation $g(u)=g(v)$ has degree $\max \{r, d\}$ in v so at most

$$
p \max \{r, d\} \leqslant p \max \{(p-1) / d, d\} \leqslant p^{2} / d
$$

solutions, as $d \leqslant p^{1 / 2}$. By (3.2), we have $V(f) \gg p^{2} / p d=p / d$. If $d>p^{1 / 2}$, note that $d>p / d$.

Now, regardless of the size of d, notice that for every u with $u^{d}=1$ the values $f(u)=u+a$ are pairwise distinct. Thus $V(f) \geqslant d$.

Similarly, there exists s with $s(n-1) / e \equiv 1(\bmod (p-1) / e)$ so that $s n \equiv e+s(\bmod p-1)$. Hence, if $x=u^{s}$, then $f(x)=h(u)$ where $h(u)=u^{s}+a u^{e+s}$. The equation $h(u)=h(v)$ becomes, with $v=t u$ the same as $u^{s}+a u^{e+s}=t^{s} u^{s}+a u^{e+s} t^{e+s}$ and we get that either $u=0$ or $1+a u^{e}=t^{s}+a u^{e} t^{e+s}$, which has at most pe solutions. By (3.2), we have $V(f) \gg p^{2} / p e=p / e$.

Furthermore, notice that for every u with $u^{e}=c$, where c is a fixed non-zero e-th power with $1+a c \neq 0$, the values $f(u)=u(1+a c)$ are pairwise distinct, and we can also add $f(0)=0$. Thus $V(f) \geqslant e$.

The result now follows.
We now immediately obtain:
Corollary 3.5. If $f(X)=X+a X^{n} \in \mathbb{F}_{p}[X]$ then $V(f) \geqslant p^{1 / 2}$.

4. Comments

Theorem 3.4 extends, with the same proof, for arbitrary finite fields. On the other hand, Theorem 3.3 is false as stated for arbitrary finite fields. Indeed, the trace polynomial $T(X)=X+X^{p}+\cdots+X^{p^{t-1}}$ has $T\left(\mathbb{F}_{p^{t}}\right)=\mathbb{F}_{p}$, so $V(T)=q^{1 / t}$ if $q=p^{t}$. The trace polynomial can be combined with a monomial $X^{(q-1) / d}$ for some divisor d to break the linearity of $T(X)$. Clearly, for $f(X)=X^{(q-1) / d}+T(X)$ we have $V(f) \leqslant(d+1) p$.

We note that one can use Lemma 3.2 directly in a combination with (3.2). However, in the best possible scenario this approach can only give a lower bound of order $p^{1 /(t-1)}$, which is always weaker than that of Theorem 3.3 for $t \geqslant 9$.

If p is a prime such that $(p-1) / 2$ is also prime, then it follows from Theorem 3.4 that, for $f(X)=X+a X^{n}, a \neq 0,2 \leqslant n \leqslant p-1$, we have $V(f) \geqslant(p-1) / 2$. It can be proved that equality is attained if $n=p-2$ and a is a non-square. In this case the pre-image of non-zero elements of \mathbb{F}_{p} have zero or two elements and the pre-image of zero has three elements. A different example is $f(X)=X-X^{(p+1) / 2}$, which has $V(f)=(p+1) / 2$ and the pre-image of 0 has $(p+1) / 2$ elements and other pre-images zero or one elements.

For arbitrary primes, we have the following. Assume that $d \mid(p-1)$ and consider $f(X)=X+a X^{1+(p-1) / d}$. Choose a, if possible, such that $((1+a) /(1+\zeta a))^{(p-1) / d}=\zeta$ for all ζ with $\zeta^{d}=1$. Then, if $x_{1}^{(p-1) / d}=1$ and $x_{\zeta}=(1+a) x_{1} /(1+\zeta a)$, then $x_{\zeta}^{(p-1) / d}=\zeta$ and $f\left(x_{\zeta}\right)=f\left(x_{1}\right)$ and it follows that $V(f)=1+(p-1) / d$.

To see when we can find such a, let c_{ζ} be such that $c_{\zeta}^{(p-1) / d}=\zeta$ with $\zeta^{d}=1$. Consider the curve given by the system of equations $(1+u) /(1+\zeta u)=c_{\zeta} v_{\zeta}^{d}$ in variables u and v_{ζ}, indexed by $\zeta \neq 1$ with $\zeta^{d}=1$. A rational point with $u=a \neq 0$ provides the necessary a. The genus of this curve is at most $d^{d} / 2$ so by the Weil bound on the number of \mathbb{F}_{p}-rational points on curves (see [L96]), there is such a point if $p>d^{2 d}$. This construction succeeds if $d \ll \log p /(\log \log p)$.

We also conclude with posing an question about estimating the image size of polynomials of the form

$$
F(X)=\prod_{i=1}^{t}\left(X^{n_{i}}+a_{i}\right)
$$

Although most of our technique applies in this case as well, investigating linear factors of $F\left(c X^{s}\right)-F\left(c Y^{s}\right)$ seems to be more complicated.

Acknowledgements

The authors like to thank Domingo Gómez-Pérez for several useful comments.

During the preparation of this work the first author was supported by the ARC Grants DP170100786 and DP180100201

References

[BCR16] J. Bi, Q. Cheng and J. M. Rojas, Sub-linear root detection, and new hardness results, for sparse polynomials over finite fields, SIAM J. Comput. 45 (2016), 1433-1447. (p. 1)
[CGRW17] Q. Cheng, S. Gao, J. M. Rojas and D. Wan, Sparse univariate polynomials with many roots over finite fields, Finite Fields Appl. 46 (2017), 235-246. (p. 1)
[CFKLLS00] R. Canetti, J. B. Friedlander, S. V. Konyagin, M. Larsen, D. Lieman and I. E. Shparlinski, On the statistical properties of Diffie-Hellman distributions, Israel J. Math., 120 (2000), 23-46. (pp. 1 and 3)
[L96] D. Lorenzini, An invitation to arithmetic geometry, Amer. Math. Soc., 1996. (pp. 6 and 8)
[SV86] K. O. Stöhr and J. F. Voloch, Weierstrass points and curves over finite fields. Proc. London Math. Soc., 52 (1986), 1-19. (p.3)
[V85] J. F. Voloch, Diagonal equations over function fields, Boletim da Sociedade Brasileira de Matematica, 16 (1985), 29-39. (p. 3)
[V89] J. F. Voloch, On the number of values taken by a polynomial over a finite field. Acta Arith., 52 (1989), 197-201. (pp. 1, 4, and 6)
[Z07] U. Zannier, On the number of terms of a composite polynomial Acta Arith., 127 (2007), 157-168. (pp. 1 and 2)

School of Mathematics and Statistics, University of New South Wales, Sydney NSW 2052, Australia

E-mail address: igor.shparlinski@unsw.edu.au
School of Mathematics and Statistics, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand

E-mail address: felipe.voloch@canterbury.ac.nz

[^0]: 2010 Mathematics Subject Classification. 11T06, 14G15.
 Key words and phrases. sparse polynomials, value set, rational points on curves.

