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MOTIVATION AND OBJECTIVES

e Base-1solation and other seismic protective systems mitigate a building’s response to seismic input
while also ensuring the safety of the building’s occupants and contents.

e Full-scale testing of buildings and structures that incorporate these systems is expensive but offers
valuable insight into their dynamics and mechanical behavior.

e These systems often behave nonlinearly, creating a notable challenge for modeling and predicting the
responses induced by other hazardous natural excitations outside of the testing regime, responses in
retrofit design studies, or probabilistic response modeling.

e This study uses experimental response data, model identification, and optimization to update a finite
element model to accurately simulate the dynamic response of the base-i1solated building.

EXPERIMENTAL SET-UP

e A base-isolated test structure at Japan’s E-Defense lab underwent initial testing in March 2013 [4]
and subsequent testing in August 2013; this study focuses on the first day of testing (8 Aug. 2013)

e The structure was mounted on E-Defense’s 6-DOF shake table, the world’s largest.

e The structure consists of a four-story, asymmetric, moment frame with a setback and coupled
transverse-torsional motion. The 690-ton superstructure 1s roughly 14m X 10m X 15m.

e The building rested on a passive base-isolation layer composed (on 8 Aug. 2013) of:

— two rubber bearings (denoted RB1 and RB2 below),
—two elastic sliding bearings (SB1 and SB2), and

—two passive U-shaped steel yielding damper pairs (each of which, SDP1 or SDP2, has one steel
yielding element 1n the x-direction and the other in the y-direction).
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e The building was subjected to random excitations along differ- 371
ent table axes — i.e., in the x-, y- and z-directions — and scaled
versions of historical and synthetic earthquake ground motions. 5._ 1
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e Tri-directional accelerometers were at three corners on each !f >y
floor, and two corners on the roof (the top story is different), X
for a total of 14 locations and 42 superstructure accelerations. . gersor | Sensor -1

e 4 tri-directional accelerometers were on the shake table, provid-
ing a total of 12 base acceleration channels. A
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SYSTEM IDENTIFICATION

e The building linear dynamic characteristics were i1dentified [2] using the 12 table acceleration re-
sponses as inputs and the 42 building acceleration responses as outputs.

Isolation-Layer Plan View Isolation Devices

e The system was 1dentified using Subspace State Space System Identification (N4SID) [3].

e Acceleration responses from Test 010 (random excitation commanded to table in all three directions)
were detrended, 30-Hz low-pass filtered, and decimated to 100 Hz.
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FINITE ELEMENT MODEL AND UPDATING

e Stabilization diagrams, over 10-90 states, indicated the true modes — i.e., with (1) <1% frequency
change, (2) <5% damping ratio change , and (3) mode shapes nearly identical as indicated by modal

assurance criterion (MAC) values of at least 0.98. Note: MAC(¢, %) = ¢pLop//dpLTprpTap.

N4SID Identified Original FEM Updated FEM
Mode # Freq. [Hz] Freq. [Hz] (% Error) Freq. [Hz] (% Error)
1 0.685 0.684 (—0.146) 0.691 ( 0.876)
2 0.698 0.697 (-0.143) 0.692 (—0.856)
3 0.710 0.721 ( 1.549) 0.712 ( 0.282)
4 4.781 5.526 (15.583) 4.582 (—4.162)
5 5.175 6.892 (33.179) 5.223 ( 0.928)
6 7.293 8.706 (19.375) 7.478 ( 2.537)

e A finite element model (FEM) was developed in
ABAQUS® based on the structure design drawings.

— The beams, columns, and shear walls were modeled by
solid concrete elements and embedded reinforcing steel
bars modeled by truss elements; initial material proper-
ties are taken from design code.

— The floor slabs and the nonstructural walls (autoclaved
lightweight concrete [ALC] plates) were modeled with
shell elements; initial nominal Young’s moduli were
chosen as typical for these elements.

— The 1solation-layer devices were modeled with spring
elements; 1nitial values are from a linear force-
displacement regression analysis [1].

e The mass matrix M, the nominal stiffness matrix Kg, and stiffness matrices K; with unit changes to
the ¢t to-be-optimized parameter 8;, 1 = 1, ..., ng, are exported from ABAQUS for further analysis

in MATLAB, where modified stiffness K = Ko + > [K; — Ko](0; — H?‘)minal).
e The parameter vector @ has ng = 26 elements, including:

— the Young’s moduli of: the x- and y-direction beams on floor 1, floors 2—3 and floor 4; the columns
in floors 1-3 and floor 4; the nonstructural walls; the shear walls; the floor slabs; and the stairs
— the x- and y-direction stiffnesses of: the rubber bearings, rubber sliders, and steel dampers pairs.

e Define an error metric of the differences between the 1dentified frequencies fiID and the correspond-
ing FEM frequencies fiF EM(9) and between the corresponding mode shapes ¢£D and ¢ZFEM (0):

J(6) = 26: FFPM@9) - fIP]" 4 262 1 - MAC(¢!P, 6" (0))] (1)
1=1

1=1

e A genetic algorithm optimization is used to find parameter values that minimize the error metric.
(A Nelder-Mead Simplex method has also been studied, but tended to get stuck at local minima.)
The GA uses a population of 200 for 30 generations, with defaults for other GA parameters in
MATLAB’s Global Optimization Toolbox (5% EliteCount, 80% crossover fraction, 1% mutation rate).

e The parameters are allowed to vary within bounds that are about ==10% from the nominal values to
eliminate solutions that are clearly nonphysical.

e Among the 200 samples in the first generation, the error metric ranges from about 100 up to almost
1500; the minimum error decreases gradually and converges, such that most of the population has an
error metric of about 46 in the 30t generation.

e The first six frequencies (and their percent errors) of the original and updated FEMs are shown in the
table above; the maximum frequency error drops by nearly an order of magnitude. The improvement
in the mode shape correlation is shown in the MAC graphic.
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e Summary of parameters changed by the updating:

— largest change 1n Young’s Modulus: 11.6% (x-direction beams in floors 2-3);
— largest change 1n the stiffness of rubber bearings: 4.7% (k?I}B2: 1119 kN/m — 1193 kN/m);

— largest change in the stiffness of rubber sliders: 15.2% (kSBlz 1464 kKN/m — 1727 kKN/m);
— largest change in the stiffness of steel dampers: 9.1% (kiDPlz 3859 kN/m — 4045 kN/m).

CONCLUSIONS

e The FEM has been updated to much more closely match the natural frequencies and mode shapes
identified from the experimental response data.

e The genetic algorithm does not get stuck at local minima like conventional hill-climbing optimizers.

e Including reinforcing bars, offset beams and the nonstructural walls resulted in reasonable parameter
changes (preliminary updates to a stmpler model without these features resulted in large non-physical
changes in many parameters) with a significantly better match in identified modal characteristics.

ONGOING RESEARCH

e The updated MATLAB model is being merged with a set of bidirectionally-coupled Bouc-Wen mod-
els already developed [1] to simulate the nonlinear behavior of the isolation-layer devices.
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e Controllable damping devices will be added to the 1solation layer, and new control strategies will be
developed to mitigate the response of this building.
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