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MOTIVATION AND OBJECTIVES

• Base-isolation and other seismic protective systems mitigate a building’s response to seismic input
while also ensuring the safety of the building’s occupants and contents.

• Full-scale testing of buildings and structures that incorporate these systems is expensive but offers
valuable insight into their dynamics and mechanical behavior.

• These systems often behave nonlinearly, creating a notable challenge for modeling and predicting the
responses induced by other hazardous natural excitations outside of the testing regime, responses in
retrofit design studies, or probabilistic response modeling.

• This study uses experimental response data, model identification, and optimization to update a finite
element model to accurately simulate the dynamic response of the base-isolated building.

EXPERIMENTAL SET-UP

• A base-isolated test structure at Japan’s E-Defense lab underwent initial testing in March 2013 [4]
and subsequent testing in August 2013; this study focuses on the first day of testing (8 Aug. 2013)

• The structure was mounted on E-Defense’s 6-DOF shake table, the world’s largest.

• The structure consists of a four-story, asymmetric, moment frame with a setback and coupled
transverse-torsional motion. The 690-ton superstructure is roughly 14 m× 10 m× 15 m.

• The building rested on a passive base-isolation layer composed (on 8 Aug. 2013) of:

– two rubber bearings (denoted RB1 and RB2 below),
– two elastic sliding bearings (SB1 and SB2), and
– two passive U-shaped steel yielding damper pairs (each of which, SDP1 or SDP2, has one steel

yielding element in the x-direction and the other in the y-direction).

• The building was subjected to random excitations along differ-
ent table axes — i.e., in the x-, y- and z-directions — and scaled
versions of historical and synthetic earthquake ground motions.

• Tri-directional accelerometers were at three corners on each
floor, and two corners on the roof (the top story is different),
for a total of 14 locations and 42 superstructure accelerations.

• 4 tri-directional accelerometers were on the shake table, provid-
ing a total of 12 base acceleration channels.
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SYSTEM IDENTIFICATION

• The building linear dynamic characteristics were identified [2] using the 12 table acceleration re-
sponses as inputs and the 42 building acceleration responses as outputs.

• The system was identified using Subspace State Space System Identification (N4SID) [3].

• Acceleration responses from Test 010 (random excitation commanded to table in all three directions)
were detrended, 30-Hz low-pass filtered, and decimated to 100 Hz.

• Stabilization diagrams, over 10–90 states, indicated the true modes — i.e., with (1) <1% frequency
change, (2)<5% damping ratio change , and (3) mode shapes nearly identical as indicated by modal
assurance criterion (MAC) values of at least 0.98. Note: MAC(φφφ,ψψψ) = φφφTψψψ/

√
φφφTφφφψψψTψψψ.

N4SID Identified Original FEM Updated FEM
Mode # Freq. [Hz] Freq. [Hz] (% Error) Freq. [Hz] (% Error)

1 0.685 0.684 (–0.146) 0.691 ( 0.876)
2 0.698 0.697 (–0.143) 0.692 (–0.856)
3 0.710 0.721 ( 1.549) 0.712 ( 0.282)
4 4.781 5.526 (15.583) 4.582 (–4.162)
5 5.175 6.892 (33.179) 5.223 ( 0.928)
6 7.293 8.706 (19.375) 7.478 ( 2.537)

FINITE ELEMENT MODEL AND UPDATING

• A finite element model (FEM) was developed in
ABAQUS R© based on the structure design drawings.

– The beams, columns, and shear walls were modeled by
solid concrete elements and embedded reinforcing steel
bars modeled by truss elements; initial material proper-
ties are taken from design code.

– The floor slabs and the nonstructural walls (autoclaved
lightweight concrete [ALC] plates) were modeled with
shell elements; initial nominal Young’s moduli were
chosen as typical for these elements.

– The isolation-layer devices were modeled with spring
elements; initial values are from a linear force-
displacement regression analysis [1].

• The mass matrix M, the nominal stiffness matrix K0, and stiffness matrices Ki with unit changes to
the ith to-be-optimized parameter θi, i = 1, ..., nθθθ, are exported from ABAQUS for further analysis
in MATLAB, where modified stiffness K = K0 +

∑nθθθ
i=1[Ki −K0](θi − θnominal

i ).
• The parameter vector θθθ has nθθθ = 26 elements, including:

– the Young’s moduli of: the x- and y-direction beams on floor 1, floors 2–3 and floor 4; the columns
in floors 1–3 and floor 4; the nonstructural walls; the shear walls; the floor slabs; and the stairs

– the x- and y-direction stiffnesses of: the rubber bearings, rubber sliders, and steel dampers pairs.
• Define an error metric of the differences between the identified frequencies f IDi and the correspond-

ing FEM frequencies fFEMi (θθθ) and between the corresponding mode shapes φφφID
i and φφφFEM

i (θθθ):

J(θθθ) =
6∑
i=1

[
fFEMi (θθθ)− f IDi

]2
+

6∑
i=1

[
1−MAC

(
φφφID
i ,φφφ

FEM
i (θθθ)

)]2
(1)

• A genetic algorithm optimization is used to find parameter values that minimize the error metric.
(A Nelder-Mead Simplex method has also been studied, but tended to get stuck at local minima.)
The GA uses a population of 200 for 30 generations, with defaults for other GA parameters in
MATLAB’s Global Optimization Toolbox (5% EliteCount, 80% crossover fraction, 1% mutation rate).

• The parameters are allowed to vary within bounds that are about ±10% from the nominal values to
eliminate solutions that are clearly nonphysical.

RESULTS

• Among the 200 samples in the first generation, the error metric ranges from about 100 up to almost
1500; the minimum error decreases gradually and converges, such that most of the population has an
error metric of about 46 in the 30th generation.

• The first six frequencies (and their percent errors) of the original and updated FEMs are shown in the
table above; the maximum frequency error drops by nearly an order of magnitude. The improvement
in the mode shape correlation is shown in the MAC graphic.
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• Summary of parameters changed by the updating:

– largest change in Young’s Modulus: 11.6% (x-direction beams in floors 2–3);
– largest change in the stiffness of rubber bearings: 4.7% (kRB2

y : 1119 kN/m→ 1193 kN/m);

– largest change in the stiffness of rubber sliders: 15.2% (kSB1
y : 1464 kN/m→ 1727 kN/m);

– largest change in the stiffness of steel dampers: 9.1% (kSDP1
x : 3859 kN/m→ 4045 kN/m).

CONCLUSIONS

• The FEM has been updated to much more closely match the natural frequencies and mode shapes
identified from the experimental response data.

• The genetic algorithm does not get stuck at local minima like conventional hill-climbing optimizers.

• Including reinforcing bars, offset beams and the nonstructural walls resulted in reasonable parameter
changes (preliminary updates to a simpler model without these features resulted in large non-physical
changes in many parameters) with a significantly better match in identified modal characteristics.

ONGOING RESEARCH

• The updated MATLAB model is being merged with a set of bidirectionally-coupled Bouc-Wen mod-
els already developed [1] to simulate the nonlinear behavior of the isolation-layer devices.
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• Controllable damping devices will be added to the isolation layer, and new control strategies will be
developed to mitigate the response of this building.
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