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Abstract. Because tropospheric ozone is both a greenhouse

gas and harmful air pollutant, it is important to understand

how anthropogenic activities may influence its abundance

and distribution through the 21st century. Here, we present

model simulations performed with the chemistry–climate

model SOCOL, in which spatially disaggregated chemistry

and transport tracers have been implemented in order to bet-

ter understand the distribution and projected changes in tro-

pospheric ozone. We examine the influences of ozone pre-

cursor emissions (nitrogen oxides (NOx), carbon monox-

ide (CO) and volatile organic compounds (VOCs)), climate

change (including methane effects) and stratospheric ozone

recovery on the tropospheric ozone budget, in a simulation

following the climate scenario Representative Concentration

Pathway (RCP) 6.0 (a medium-high, and reasonably real-

istic climate scenario). Changes in ozone precursor emis-

sions have the largest effect, leading to a global-mean in-

crease in tropospheric ozone which maximizes in the early

21st century at 23 % compared to 1960. The increase is

most pronounced at northern midlatitudes, due to regional

emission patterns: between 1990 and 2060, northern midlat-

itude tropospheric ozone remains at constantly large abun-

dances: 31 % larger than in 1960. Over this 70-year period,

attempts to reduce emissions in Europe and North America

do not have an effect on zonally averaged northern midlat-

itude ozone because of increasing emissions from Asia, to-

gether with the long lifetime of ozone in the troposphere. A

simulation with fixed anthropogenic ozone precursor emis-

sions of NOx , CO and non-methane VOCs at 1960 conditions

shows a 6 % increase in global-mean tropospheric ozone by

the end of the 21st century, with an 11 % increase at north-

ern midlatitudes. This increase maximizes in the 2080s and

is mostly caused by methane, which maximizes in the 2080s

following RCP 6.0, and plays an important role in control-

ling ozone directly, and indirectly through its influence on

other VOCs and CO. Enhanced flux of ozone from the strato-

sphere to the troposphere as well as climate change-induced

enhancements in lightning NOx emissions also increase the

tropospheric ozone burden, although their impacts are rela-

tively small. Overall, the results show that under this climate

scenario, ozone in the future is governed largely by changes

in methane and NOx ; methane induces an increase in tropo-

spheric ozone that is approximately one-third of that caused

by NOx . Climate impacts on ozone through changes in tro-

pospheric temperature, humidity and lightning NOx remain

secondary compared with emission strategies relating to an-

thropogenic emissions of NOx , such as fossil fuel burning.

Therefore, emission policies globally have a critical role to

play in determining tropospheric ozone evolution through the

21st century.

1 Introduction

Ozone is a key trace gas in the atmosphere, with approxi-

mately 90 % residing in the stratosphere and 10 % in the tro-

posphere. While stratospheric ozone is essential for shield-

ing life on Earth from harmful ultraviolet (UV-B) radia-
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tion, tropospheric ozone has harmful effects because it is

an air pollutant, with adverse effects on crop yields (and

therefore food security), visibility (affecting, for example,

all forms of traffic) and human health (West et al., 2007).

Indeed, a recent study by Silva et al. (2013) found that

anthropogenic ozone contributes towards 470 000 respira-

tory deaths globally each year. Simultaneously, tropospheric

ozone is a greenhouse gas that has contributed significantly

to climate change; it has the third-highest pre-industrial to

present-day radiative forcing after carbon dioxide (CO2) and

methane (CH4) (Myhre et al., 2013; Stevenson et al., 2013).

In addition to its roles in air pollution and climate change,

tropospheric ozone is important in determining the oxida-

tion capacity of the troposphere; the hydroxyl (OH) radical is

principally produced from ozone, and controls the lifetime of

many atmospheric species such as CH4, CO and NMVOCs

(non-methane volatile organic compounds), including some

halocarbons (Thompson, 1992).

Ozone exists in the troposphere as a result of in situ chem-

ical production and transport from the stratosphere. Approx-

imately 90 % is produced via chemical reactions between

nitrogen oxides (NOx = NO + NO2), hydrocarbons and

carbon monoxide (CO) during daylight hours (Denman et

al., 2007); therefore air pollution policy can be expected to

play a significant role in the evolution of tropospheric ozone

through the 21st century and beyond. Depending on the sen-

sitivity of ozone budget reactions to humidity and temper-

ature, the distribution and abundance of tropospheric ozone

may also be affected by climate change and changes in trans-

port and convection through the 21st century. Ozone can also

be transported, either from the stratosphere (stratosphere-

troposphere exchange, abbreviated to STE), or within the

troposphere on long-range scales. Long-range ozone trans-

port within the troposphere is modulated by decadal climate

variability (Lin et al., 2014). Transport of ozone from the

stratosphere is expected to increase through the 21st century

as: (1) stratospheric ozone abundances will increase, due to

the phase-out of ozone-depleting halogenated substances un-

der the Montreal Protocol, and due to stratospheric cooling

slowing the ozone destruction cycles (Bekki et al., 2011);

(2) stratosphere-to-troposphere transport of air will acceler-

ate due to a strengthening of the Brewer–Dobson circulation

as projected by climate models, resulting from enhanced tro-

pospheric warming and convection, and subsequent wave ac-

tivity (Butchart et al., 2010; Kawase et al., 2011). Both ef-

fects will lead to enhanced down-welling of ozone at mid-

and polar latitudes. Stratospheric ozone recovery may further

affect the evolution of tropospheric ozone through decreased

solar actinic flux to the troposphere, which slows photolysis

rates in the troposphere (Zhang et al., 2014).

In recent years as computational cost has declined, mod-

els which couple chemistry and climate (chemistry–climate

models, or CCMs) have become increasingly complex, with

many now including detailed tropospheric chemistry and

other tropospheric processes. Morgenstern et al. (2013) used

the UM-UKCA CCM to look at how climate change, strato-

spheric ozone recovery and methane affect ozone, although

they did not consider future changes in non-methane ozone

precursors. They found that climate change and stratospheric

ozone recovery have approximately equal and opposite ef-

fects on surface ozone by 2050, resulting in an increase in

tropospheric ozone driven by methane. Doherty et al. (2013)

also investigated climate change-related effects on tropo-

spheric ozone with an ensemble of three CCMs, and found

that increased temperature and water vapour influenced sur-

face ozone more strongly than climate change-induced en-

hancements in STE. Furthermore, several studies examining

tropospheric ozone budgets and changes over time from the

ACCMIP (Atmospheric Chemistry and Climate Model In-

tercomparison Project) ensemble of models have been pub-

lished recently (e.g. Bowman et al., 2013; Stevenson et al.,

2013; Young et al. 2013). The ensemble mean of results ob-

tained from ACCMIP provides a useful point of reference

for the results obtained in this study, and as such we refer to

ACCMIP results later on.

To gain a clear insight into projected tropospheric ozone

changes through the 21st century, we have implemented a

suite of chemistry and transport tracers into the SOCOL (So-

lar Climate Ozone Links) CCM, and used them to disentan-

gle the various factors influencing the ozone budget in the

free troposphere. Here we compare projected ozone changes

in a future reference simulation, which assumes emissions of

NOx , CO, CH4 and NMVOCs according to Representative

Concentration Pathway (RCP) 6.0, with those in simulations

with ozone precursor emissions fixed at 1960 levels. Climate

change and stratospheric ozone recovery are fully simulated

in both scenarios, and the chemistry and transport tracers al-

low us to analyse their effects, for example by quantifying

STE fluxes and tracking reaction rates for key ozone budget

reactions.

2 Computational methods

2.1 The SOCOL chemistry–climate model

In order to understand the influences of ozone precursor

emissions and climate change on the free tropospheric ozone

budget (we focus mostly on the 500 hPa level), simulations

were performed with the SOCOL v.3 CCM. Its forerun-

ner, SOCOL v.2, was extensively evaluated in the SPARC

CCMVal-2 activity (SPARC CCMVal, 2010) in two vari-

ants; SOCOL operated by the ETH-Zurich group and NIWA-

SOCOL operated by NIWA (National Institute of Water and

Atmospheric Research, New Zealand). Both compared rea-

sonably with other CCMs, obtaining performance grades in

the midrange. Since then SOCOL has undergone some sig-

nificant improvements from version 2 to 3 (notably, the core

general circulation model has been updated, and the trans-

port of chemical trace species is calculated with the advec-
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tion scheme of Lin and Rood (1996), rather than the hybrid

scheme of Zubov et al. (1999), which was used in SOCOL

v.2). As a result, SOCOL v.3 shows more realistic distribu-

tions of chemical trace species compared with its predeces-

sors (both in the mean state and also with respect to annual

and interannual variability), and slower tropical upwelling in

the lower stratosphere; these changes, along with their effect

on model performance, have been documented in detail by

Stenke et al. (2013).

SOCOL v.3 consists of the MEZON chemistry trans-

port model (Egorova et al., 2003) and MA-ECHAM5, the

middle atmosphere version of the ECHAM general circu-

lation model (Roeckner et al., 2003), with 39 vertical lev-

els between Earth’s surface and 0.01 hPa (∼ 80 km). For the

present study, SOCOL was run with T42 horizontal resolu-

tion, which corresponds approximately to 2.8◦× 2.8◦. Dy-

namical processes in SOCOL are calculated every 15 min

within the model, while radiative and chemical calculations

are performed every 2 hours.

Chemical constituents are advected by a flux-form semi-

Lagrangian scheme (Lin and Rood, 1996), and the chemical

solver algorithm uses a Newton–Raphson iterative method

taking into account 41 chemical species, 140 gas-phase reac-

tions, 46 photolysis reactions, and 16 (stratospheric) hetero-

geneous reactions. Isoprene (C5H8) oxidation is accounted

for with the inclusion of the Mainz Isoprene Mechanism

(MIM-1), which comprises 16 organic species (degradation

products of isoprene) and a further 44 chemical reactions

(Poeschl et al., 2000). Aside from isoprene and formalde-

hyde, we consider only the contribution to CO from other

NMVOCs; that is, a certain fraction of the NMVOC emis-

sion is directly added to CO. For anthropogenic NMVOC

emissions, the conversion factor to CO is 1.0, for biomass

burning it is 0.31, and for biogenic NMVOC emissions it is

0.83; these conversion factors were derived from Ehhalt et

al. (2001). Biogenic emissions are not interactive, but follow

a climatology (described in Sect. 2.2).

Photolysis rates are calculated at every chemical time step

using a look-up-table approach (Rozanov et al., 1999), in-

cluding effects of the solar irradiance variability. The look-

up tables provide photolysis rates as a function of O2 and O3

columns, meaning that the photolysis scheme sees interac-

tive ozone. The impact of clouds on photolysis rates is ac-

counted for by including a cloud modification factor, follow-

ing Chang et al. (1987). Interactive lightning NOx is calcu-

lated via a parametrization based on cloud top height (Price

and Rind, 1992) with local scaling factors calculated from

the Lightning Imaging Sensor (LIS) and Optical Transient

Detector (OTD) satellite observations (Christian et al., 2003).

Although the scaling approach is widely used to improve the

representation of the global distribution of lightning, it car-

ries some uncertainty as the future regions of lightning oc-

currence may differ from those currently observed (Murray

et al., 2012). Furthermore, the scaling approach may pre-

vent future changes in convective activity from modifying

the magnitude of lightning NOx production.

The treatment of stratospheric aerosols in SOCOL is de-

scribed by Stenke et al. (2013). Tropospheric aerosols in SO-

COL include sulfate, dust, sea salt, black carbon, organic

carbon and methane sulfonate. For the simulations presented

here, we used a tropospheric aerosol data set, as described by

Anet et al. (2013). Tropospheric aerosols are used to calcu-

late local heating rates and shortwave backscatter, however

aerosol–cloud interactions and tropospheric heterogeneous

chemistry are not considered.

Key reaction rates for the ozone budget were saved in ev-

ery model grid cell, enabling chemistry to be analysed as

a function of latitude, longitude, pressure and time. This

approach was successfully used by Revell et al. (2012) to

study stratospheric ozone chemistry. To better understand

ozone transport, ozone tracers were implemented into SO-

COL, based on the work of Grewe (2006) and Garny et

al. (2011). Following this approach, the global ozone mixing

ratio is disaggregated into 21 separate fields, according to in

which of 21 predefined regions (defined by latitude and pres-

sure) of the atmosphere the ozone originated; this approach

is discussed further in Sect. 3.3.

To evaluate how realistically SOCOL simulates the dis-

tribution of tropospheric species, we compared ozone, CO

and NO2 (three key components of the tropospheric ozone

budget) with satellite measurements over the period 2005–

2009. Level 3 ozone and CO profile data were taken from

TES (Tropospheric Emission Spectrometer), a Fourier trans-

form infrared spectrometer onboard NASA’s Aura satellite

(e.g. Ho et al., 2009; Richards et al., 2008). Tropospheric

NO2 columns were compared with those measured by OMI

(Ozone Monitoring Instrument) (Boersma et al., 2007).

2.2 Emission scenarios

SOCOL simulations were performed in support of the

IGAC/SPARC Chemistry-Climate Model Initiative (CCMI;

Eyring et al., 2013a), and therefore the boundary condi-

tions used here adhere to the specifications of CCMI simula-

tions, namely the REF-C2 and SEN-C2-fEmis simulations

(hereafter fEmis, for brevity). These transient simulations

are described in depth by Eyring et al. (2013a), but salient

details are reproduced in Table 1. The REF-C2 simulation

(1960–2100) was developed as a future reference simula-

tion, to understand how the atmosphere would evolve un-

der “best guess” estimates of future greenhouse gas con-

centrations, ozone-depleting substances (ODSs), ozone pre-

cursor emissions and sea-surface temperatures (SSTs). REF-

C2 is based on RCP 6.0, a medium-high climate change

scenario. Prescribed mixing ratios of greenhouse gases and

long-lived chlorine, as well as emission fluxes of surface

NOx , NMVOCs and CO for the REF-C2 simulation are

shown in Fig. 1. For biogenic isoprene, formaldehyde and

other NMVOC emissions we use a climatology for the year
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Table 1. Summary of boundary conditions used for the SOCOL CCM simulations.

REF-C2

(1960–2100)

fEmis

(1960–2100)

fCH4 (1960–2100)

Greenhouse gases

(CO2, N2O, CH4)

Observations until 2005 then RCP 6.0

(Masui et al., 2011).

Same as REF-C2. CO2 and N2O same as REF-

C2; CH4 fixed at 1960 levels.

Ozone precursor

emissions

Historical emissions until 2000

(Lamarque et al., 2010), then RCP 6.0.

Fixed at 1960 levels. Fixed at 1960 levels.

SSTs Observations until 2005 (Rayner et al.,

2003), then RCP 6.0 (Meehl et al.,

2013).

Same as REF-C2. Same as REF-C2.

ODSs The A1 scenario from WMO (2011),

which includes observations until 2009.

Same as REF-C2. Same as REF-C2.
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Figure 1. Boundary conditions used in the REF-C2 simulation

(global-mean concentrations/emission fluxes). (a) CO2, CH4, N2O

mixing ratios following RCP 6.0, and long-lived chlorine mixing

ratios following the WMO A1 scenario for ODSs. (b) Surface NOx
emission fluxes, following RCP 6.0. (c) Surface CO and NMVOC

emission fluxes, following RCP 6.0.

2000 (based on a MEGAN (Model of Emissions of Gases and

Aerosols from Nature; Guenther et al., 2006) run), while the

biomass burning emissions follow those described by Lamar-

que et al. (2010) until 2000, and RCP 6.0 thereafter. Sim-

ilarly, anthropogenic emissions of formaldehyde and other

anthropogenic NMVOCs follow Lamarque et al. (2010) until

2000, then RCP 6.0.

The fEmis “fixed emissions” simulation (1960–2100) is

identical to REF-C2, except that non-methane ozone precur-

sor emissions are held constant at 1960 levels. For the present

study, this simulation allowed us to explore the question of

how global tropospheric ozone would evolve if air pollution

remained at continuously low (1960) levels throughout the

21st century. Because methane is also an air pollutant but not

fixed at 1960 levels in the fEmis simulation (as we are inter-

ested in its climate impact), we ran a fCH4 “fixed methane”

simulation for 1960–2100. The fCH4 simulation used identi-

cal boundary conditions to the fEmis simulation, except that

methane concentrations were held constant at 1960 levels

(thus impacting both chemistry and radiation directly).

Simulations were started in 1950 to allow 10 years for the

model to reach a steady state; this spin-up period was subse-

quently discarded and not used in our analyses.

3 Results and discussion

3.1 Evaluation of model performance

Model simulated ozone, CO and NO2 fields from the SO-

COL REF-C2 simulation were compared to satellite obser-

vations over the period 2005–2009 (Fig. 2). Ozone and CO

profiles were taken from TES and NO2 columns from OMI.

The WMO-defined tropopause was used to calculate SOCOL

NO2 columns. SOCOL data were not processed with satel-

lite operators (such as averaging kernels). While this results

in a less meaningful comparison, it has been shown that only

minor differences result from the application of satellite op-

erators (Huijnen et al., 2010). We chose the period 2005–

2009 over which to compare data as it is representative of

the present day and because of good data availability for this

period. Relative to TES, SOCOL has a large positive ozone

bias at 500 hPa of up to 30 ppb in the Northern Hemisphere

and tropics, and a smaller negative bias (∼ 5–10 ppb) in the

Southern Hemisphere (Fig. 2a–c). Surface ozone in SOCOL

is biased on a similar order of magnitude in the Northern

Hemisphere compared with the mid-troposphere, with ozone

over Europe, the US and Asia up to 20 ppb higher in 2000

compared with the ACCMIP ensemble mean (Young et al.,

2013).

One possibility for the large Northern Hemisphere bias

might be a too-weak removal of NOx from the troposphere,

which is described by the HNO3 washout process. In the

model setup for the present study, a constant removal value

was applied to the HNO3 gas phase at each time step (2.5 %

of gas-phase HNO3 was removed everywhere up to 160 hPa,

Atmos. Chem. Phys., 15, 5887–5902, 2015 www.atmos-chem-phys.net/15/5887/2015/
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Figure 2. Comparisons of SOCOL model results (from the REF-C2 simulation) with observations, averaged over 2005–2009, for: (a) SOCOL

ozone, 500 hPa; (b) TES ozone, 464 hPa; (c) ozone difference (panel (a) minus (b)); (d) SOCOL CO, 500 hPa; (e) TES CO, 464 hPa; (f) CO

difference (panel d minus e); (g) SOCOL tropospheric column NO2; (h) OMI tropospheric column NO2; (i) NO2 difference (panel g minus

h).

independent of clouds or rainfall). Because HNO3 can lead

to ozone production when it is photolyzed to form NO2, re-

cently obtained results suggest that a more realistic removal

process for HNO3 (based on in-cloud and below-cloud pre-

cipitation, and aerosol interaction; Chang, 1984; Seinfeld and

Pandis, 2006) indeed reduces SOCOL’s overly large ozone

burden in the Northern Hemisphere. However, the effect is

not systematic, and this is not pursued in the present study.

We note also that SOCOL is not alone among the cur-

rent generation of models in overestimating northern mid-

latitude ozone. Small systematic high biases in the North-

ern Hemisphere and low biases in the Southern Hemisphere

were also observed in the ACCMIP models (Bowman et

al., 2013; Young et al., 2013). ACCMIP included a range

of models, from coupled CCMs with comprehensive tropo-

spheric and stratospheric chemistry, to chemistry transport

models (CTMs) which do not calculate meteorology online,

and CCMs with very simple tropospheric chemistry (Lamar-

que et al., 2013). Because the models used the same emis-

sions (as each other, and as in the present study), it was con-

cluded that “the prevalence of this bias could suggest they

[the emissions] are deficient in some way, in either their

amount or distribution, or both” (Young et al., 2013). It is

not clear whether SOCOL’s high ozone bias is a source is-

sue (that is, emissions), a sink issue (HNO3 washout), or

a combination of the two, and this requires further investi-

gation. However, similar to the ACCMIP models, SOCOL

correlates spatially very well with observations, despite bi-

ases in absolute ozone values; ozone concentrations are ele-

vated in the Northern Hemisphere and over Africa compared

with the Southern Hemisphere, and low ozone concentrations

are seen over the tropical Pacific Ocean (discussed further in

Sect. 3.2).

SOCOL simulates higher CO over regions where biomass

burning is prevalent, namely South America, Africa and In-

donesia, than observed by TES (Fig. 2d–f). Southern Hemi-

sphere CO in SOCOL is in good agreement with TES; how-

ever, in the Northern Hemisphere, CO is biased low by 20–

40 ppb. The low Northern Hemisphere CO bias is linked

with the high ozone bias in the same region, as ozone is

the primary source of the OH radical, which in turn oxi-

dizes CO. Similar biases in CO were observed in the AC-

CMIP models; at 500 hPa, the multi-model mean is bi-

ased high compared with satellite observations over South

America, Africa and Indonesia, and thought to be linked

to biomass burning emissions (Naik et al., 2013). Further-

more, as seen in SOCOL, the multi-model mean is in good

agreement with observations in the Southern Hemisphere.

The OH abundance is also in agreement with the multi-

model mean of the ACCMIP models; in the year 2000, the

global tropospheric air mass-weighted OH concentration is

11.5× 105 molecules cm−3, compared with the multi-model

mean of 11.7± 1.0 molecules cm−3 in the ACCMIP models

(Voulgarakis et al., 2013).

SOCOL reproduces the elevated tropospheric NO2

columns observed by OMI over North America, Europe and

www.atmos-chem-phys.net/15/5887/2015/ Atmos. Chem. Phys., 15, 5887–5902, 2015
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Asia, but overestimates their magnitude (Fig. 2g–i); this is

linked in part to HNO3 washout from the troposphere (as de-

scribed above), and also leads to the general high ozone bias

in SOCOL throughout the Northern Hemisphere, which is

likely related to emissions. We note that potential discrep-

ancies in emissions are a major source of uncertainty in our

analyses. Indeed, Parrish et al. (2014) identify emissions as

an issue in need of attention, given that CCMs consistently

overestimate tropospheric ozone mixing ratios, and underes-

timate the magnitude of tropospheric ozone changes over the

past 50–60 years.

As discussed in Sect. 2.1, tropospheric aerosols are consid-

ered in SOCOL’s radiation scheme but not in the photolysis

or heterogeneous chemistry schemes, which may be a fur-

ther reason for the tropospheric ozone biases. Dentener and

Crutzen (1993) showed that N2O5 hydrolysis on tropospheric

aerosols reduces the tropospheric ozone burden by 10–25 %,

although the reaction probabilities they used were likely too

large. Recent sensitivity simulations with the SOCOL model

show that tropospheric ozone is reduced by a maximum of

10 % when N2O5 hydrolysis is included in the model (fol-

lowing the parametrization of Evans and Jacob, 2005), al-

though some regions show a slight increase in tropospheric

ozone. Improving the treatment of tropospheric aerosols in

SOCOL is the subject of ongoing research, and is not further

addressed here.

Although SOCOL is subject to several biases in terms

of absolute species concentrations, it captures the latitudi-

nal and longitudinal distributions of ozone, CO and NO2

convincingly. Furthermore, given that the changes in ozone,

NOx , NMVOCs and CO over the period 2010–2100 are of

the same order of magnitude as past changes between 1960–

2010 (shown later in Fig. 5), we do not expect non-linear

feedbacks caused by the processes contributing to the biases

to severely compromise our results for the future. We now

proceed to discuss the distribution of ozone in the 1960s, and

the model-simulated changes until 2100.

3.2 Tropospheric ozone chemistry

Although tropospheric ozone chemistry is comprehensive

and complex, we outline below some fundamental reaction

cycles, as they are useful in discussing SOCOL’s spatial

ozone distribution later in this section. In the troposphere,

ozone is produced via reaction cycles that begin with oxida-

tion of a NMVOC or CO, as shown below:

CO+OH→ CO2+H

H+O2+M→ HO2+M

HO2+NO→ NO2+OH (R1)

NO2+hν→ NO+O

O+O2+M→ O3+M

CO+ 2O2→ CO2+O3.

The reaction HO2+ NO is the rate-limiting step in ozone

production and determines that the net effect of this cycle is

ozone production with a gross production rate Reaction (R1).

Other ozone producing cycles follow the oxidation of VOCs,

such as methane, formaldehyde, or isoprene and its degrada-

tion products, leading to

RO2+NO→ NO2+RO, (R2)

where R represents the organic chain of the molecules RO2

and RO.

In contrast, when air is NOx-poor, rather than reacting

with NO, as in the ozone production cycle (R1) above, the

generated peroxy radicals HO2 (and generally RO2), will in-

stead react with ozone, as in the cycles below, which are cat-

alytic in HOx , with ozone net loss rates Reactions (R3) and

(R4):

CO+OH→ CO2+H

H+O2+M→ HO2+M

HO2+O3→ OH+ 2O2 (R3)

CO+O3→ CO2+O2

OH+O3→ HO2+O2 (R4)

HO2+O3→ OH+ 2O2

2O3→ 3O2.

In the tropics, where humidity and solar actinic fluxes are

high, the following reaction mechanism (R5) can become the

leading ozone loss reaction, even though it is not catalytic:

O3+hν→ O(1D)+O2 (λ<320 nm)

O(1D)+H2O→ 2OH (R5)

O3+H2O+hv→ O2+ 2OH.

In extremely NOx-poor environments, ozone loss by Re-

action (R5) can occur to such a large extent that minima in

tropospheric ozone ensue, as in over the Amazon Basin and

tropical Pacific Ocean in Fig. 3a. Minima in tropical West-

ern Pacific ozone have been observed in a number of mea-

surement campaigns (Kley et al., 1996; Singh et al., 1996;

Tsutsumi et al., 2003; Rex et al., 2014). Furthermore, Rex

et al. (2014) showed, using ozone and OH measurements

in combination with the GEOS-Chem CTM, that very low

tropospheric ozone and OH abundances exist in the tropi-

cal Western Pacific. Rex et al. (2014) explained that low OH

abundances are concomitant with low ozone abundances in

the tropical Western Pacific because ozone is the principal

source of OH, and ozone loss via Reaction (R5) is so pro-

nounced in this region. They also noted that low NOx abun-

dances further reduce OH because production of OH via

HO2+ NO → OH + NO2 becomes very slow (Gao et al.,

2014). Results obtained from SOCOL largely support this
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hypothesis, except that the OH and ozone minima are lo-

cated in slightly different places (over Indonesia and over the

Western Pacific Ocean, respectively, which was also found

by Voulgarakis et al., 2013). We suggest, therefore, that rela-

tively high abundances of CO and VOCs from biomass burn-

ing are important for OH depletion, in combination with low

NOx abundances. The combination of high CO+VOCs and

low NOx drives ozone loss via Reaction (R3), and suppresses

ozone production via Reaction (R1). In addition, ozone loss

by Reaction (R5) is fast because of high humidity and so-

lar actinic fluxes in this region. Because ozone and NOx
abundances are so low over Indonesia, the HOx partition-

ing from HO2 into OH (via reaction of HO2 with ozone in

Reaction (R3), and via reaction of HO2 with NO in Reac-

tion R1) becomes very slow, resulting in low modelled OH

abundances (Fig. 3b).

Figure 3c and d show the ratios of ozone produc-

tion : loss, defined here as (R1 + R2) / (R3 + R4 + R5) and

NOx :NMVOCs+CO, respectively. We consider CO and

NMVOCs together as they both undergo oxidation to initi-

ate ozone production and destruction cycles. Here, NMVOCs

are C2–C5 species that are related to isoprene, belonging

to the reduced mechanism (MIM-1) outlined by Poeschl

et al. (2000). One limitation of SOCOL is that the set of

NMVOCs included is very small – namely formaldehyde,

isoprene and the 15 other isoprene degradation products in-

cluded in the MIM-1 isoprene oxidation mechanism. How-

ever, this subset of NMVOCs makes the mechanism detailed

enough to accurately reproduce the diurnal cycle of impor-

tant intermediate species like carbonyls, hydroperoxides and

alkyl and peroxyl acyl nitrates, thus enabling the most rel-

evant chemical processes for the tropospheric ozone budget

to be represented (Poeschl et al., 2000). As shown in Fig. 3c

and d, regions with high NOx and low NMVOC+CO con-

centrations generally have high ozone production rates rela-

tive to ozone loss.

3.3 Projections for the 21st century

Given the projected changes in ozone precursor emissions,

greenhouse gases and stratospheric ozone in the REF-C2 and

fEmis simulations, how is tropospheric ozone projected to

evolve through the 21st century? Further, are the projected

changes dominated by changes in precursor emissions or by

changes in climate? We focus our tropospheric analysis in the

mid-troposphere, at 500 hPa. At this pressure the regional to

hemispheric background ozone concentration is established,

and the signal is broadly consistent with the surface, as seen

when comparing Fig. 3a (ozone at 500 hPa) with Fig. 4 (sur-

face ozone). Furthermore, as shown later in Fig. 7, most of

the tropospheric ozone transport between low, middle and

high latitudes happens in the mid-troposphere. 500 hPa is

also high enough in the atmosphere to be able to compare

model output with satellite observations, as here the satellite

instruments have better sensitivity compared with closer to

the surface (Fig. 2).

Figure 5 shows the model-simulated free tropospheric

concentrations of NOx and NMVOCs+CO, as well as tro-

pospheric and stratospheric ozone for the tropics and north-

ern and southern midlatitudes. For the stratosphere, Fig. 5d

shows that extratropical stratospheric column ozone is pro-

jected to increase through the 21st century in both the REF-

C2 and fEmis simulations, owing to the phase-out of halo-

carbon gases under the Montreal Protocol on Substances that

Deplete the Ozone Layer. Because of CO2-induced cooling

of the stratosphere (Bekki et al., 2011) and the increased

rate of tropical upwelling (Avallone and Prather, 1996),

the Northern and Southern Hemisphere stratospheric ozone

columns increase to values slightly higher than those in 1980

by the end of the 21st century. Projected accelerated tropi-

cal upwelling is also expected to lead to slight decreases in

tropical stratospheric ozone through the 21st century, as seen

here.

In the troposphere, the REF-C2 simulation shows that con-

centrations of NOx , NMVOCs and CO increase dramatically

through the late 20th century (Fig. 5a–b), but eventually start

to decrease towards the end of the 21st century. Although

anthropogenic NMVOC and CO emissions are fixed at 1960

levels in the fEmis simulation, an increase of CO still occurs

as it is an oxidation product of CH4, and CH4 itself is not

fixed at 1960 levels, but rather follows RCP 6.0 (Masui et al.,

2011).

Global-mean tropospheric ozone increases substantially

through the 20th century in the REF-C2 simulation, by

23 % until the 2020s, stays at these high values for about

40 years, and then decreases in the late 21st century (lead-

ing to an overall global-mean increase of 8 % between

1960 and 2100). The global-mean tropospheric ozone bur-

den decreases by 1 % between 2000–2030, and 10 % be-

tween 2000–2100. These decreases are similar to the en-

semble mean of the ACCMIP models which performed the

RCP 6.0 simulation, of 1 % and 9 % between 2000–2030 and

2000–2100, respectively (Young et al., 2013).

One seemingly inconsistent feature of Fig. 5 is that at

northern midlatitudes, NOx and NMVOC+CO concentra-

tions decrease in the early 21st century, yet ozone concen-

trations in the REF-C2 simulation remain constant. To ex-

plain this feature, one must examine the spatial changes in

ozone and its precursor emissions. Figure 6a–b show that

NOx and NMVOC+CO both decrease in the Northern Hemi-

sphere over Europe (and North America, in the case of NOx).

Therefore, ozone decreases by up to 4 % between the 2000s

and 2020s over Europe (Fig. 6c). However, the decrease in

NOx of approximately 20 % over Europe and North Amer-

ica is compensated for by up to a 40 % increase in NOx over

Asia. In turn, this incurs an increase in ozone of up to 6 %

in the same region, and, because of ozone’s long lifetime in

the troposphere, the increase extends as far as the west coast

of North America. The decreases in ozone and its precursor

www.atmos-chem-phys.net/15/5887/2015/ Atmos. Chem. Phys., 15, 5887–5902, 2015
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Figure 3. Results from the REF-C2 simulation, 1960–1969 average, 500 hPa. (a) Ozone; (b) OH; (c) ratio of ozone production over loss; (d)

ratio of NOx : NMVOCs+CO.

Figure 4. As for Fig. 3a, but for the surface instead of 500 hPa.

emissions over Europe and North America and the increases

over Asia are statistically significant at the 95 % level of con-

fidence.

As shown in Fig. 6, changing regional emission patterns

explain the substantial effect on northern midlatitude tropo-

spheric ozone (Fig. 5c): by 1990, tropospheric ozone is 31 %

higher than in 1960, and such high abundances are sustained

until 2060. Attempts by Europe and North America to re-

duce emissions are offset by increases from Asia. It is well

known that ozone formed from precursor emissions in Asia

can be transported across the Pacific Ocean to the US, and

this has previously been shown by, amongst others, Auvray

et al. (2007), Derwent et al. (2008) and Zhang et al. (2010).

Europe may also expect to be affected by increased emissions

from other Northern Hemisphere sources in the early to mid-

21st century; Auvray and Bey (2005) showed that Asian and

North American sources of ozone contribute 8 % and 11 %

of the European annual ozone budget, respectively.

We further show decadal-mean ozone fluxes around the

lower stratosphere and troposphere in Fig. 7 – 15 of the

21 tracer regions are shown, with the remaining six regions

located in the upper stratosphere above 30 hPa. Figure 7a

quantifies ozone fluxes (Tg yr−1) around the boundary layer

(850–1000 hPa) and free troposphere (100–850 hPa between

30◦ N–30◦ S and 200–850 hPa elsewhere), ascent of air from

the tropics into the stratosphere, and downwelling from the

stratosphere at extratropical latitudes, for the 1960s. Fig-

ure 7b shows the same plot for the 2050s, with increases of

more than 20 % since the 1960s marked in red; this serves

to highlight the increased export of ozone from tropical and

northern midlatitude regions in the troposphere and bound-

ary layer to surrounding regions (such as northern high lat-

itudes), due to increased ozone production from precursor

emissions in these regions between 1960–2050.

Decadal variability will also influence long-range trans-

port of ozone within the troposphere through the 21st cen-

tury. Under RCP 6.0, there is an increased tendency towards

more El Niño conditions (consistent with the findings of e.g.

Cai et al. (2014), although they examined RCP 8.5), which is

linked with a strengthening of the flow of ozone-rich air from

Europe and Asia across the Pacific Ocean towards Hawaii

in Northern Hemisphere autumn (Lin et al., 2014). As El

Niño conditions become increasingly prevalent, more east-

ward transport of ozone across the Pacific Ocean may be ex-

pected to occur.

3.4 Ozone change with fixed precursor emissions

As shown in Fig. 5b, holding CO and NMVOC emissions

constant at 1960 levels does not equate to constant concen-

trations of those species in the troposphere through the 21st

century, because methane is an important source of CO and

an ozone precursor in its own right (e.g., Seinfeld and Pan-

dis, 2006), and methane is not held constant in the fEmis

simulation. Figure 5c shows that in the absence of NOx , the

tropospheric ozone concentration maximizes in the 2080s in
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Figure 5. Time series of northern midlatitude (30–60◦ N, red lines), tropical (20◦ N–20◦ S, black lines) and southern midlatitude (30–60◦ S,

blue lines): (a) NOx (500 hPa); (b) NMVOCs+ CO (500 hPa); (c) tropospheric ozone (500 hPa); (d) stratospheric column ozone. Solid lines:

for the REF-C2 simulation. Dashed lines: fEmis simulation. Dotted lines: fCH4 simulation.

the fEmis simulation, which is approximately when methane

concentrations maximize following RCP 6.0 (Fig. 1a).

To understand the effect on tropospheric ozone abun-

dances if all ozone precursors, including methane, were held

constant at 1960 levels, we ran an fEmis simulation with

fixed methane (referred to as the fCH4 simulation) for 1960–

2100. Figure 5a shows that fixing methane does not signif-

icantly impact NOx concentrations. This demonstrates that

modelled NOx is driven by chemistry, rather than climate-

induced changes in meteorology. As noted in Sect. 2.1, the

scaling approach used to calculate lightning NOx may not

modify the magnitude of future lightning NOx production

which might be expected to result from changes in convec-

tive activity.

Figure 5b shows that compared with 1960, NMVOC+CO

concentrations in the fCH4 simulation are 5–10 ppb lower by

the end of the 21st century at northern midlatitudes and in

the tropics, and decrease slightly at southern midlatitudes. In

the 2080s, when methane concentrations maximize follow-

ing RCP 6.0, NMVOC+CO concentrations in the fCH4 sim-

ulation are significantly lower than in the fEmis and REF-

C2 simulations: in the global average, NMVOC+CO con-

centrations are 4 % lower in the fEmis simulation compared

with the REF-C2, and 22 % lower in the fCH4 simulation

compared with the REF-C2. This corroborates the finding of

Wang and Prinn (1999), that controlling methane emissions

is more effective in controlling NMVOC+CO concentrations

in the troposphere, than controlling NMVOC+CO emissions

themselves.

Figure 5c shows that tropospheric ozone concentrations

in the 2080s of the fCH4 simulation are approximately the

same as in the 1960s. In the global mean, ozone in the fCH4

simulation is 16 % lower than in the REF-C2 simulation and

10 % lower than in the fEmis simulation. Methane has been

shown to be an important ozone precursor historically, with

both Shindell et al. (2009) and Lang et al. (2012) finding it

to be responsible for most of the tropospheric ozone increase

from pre-industrial to present times. Studies that have mod-

elled projected tropospheric ozone under the different RCPs

find methane to be the largest factor defining differences be-

tween the projections, because the RCPs assume huge reduc-

tions in NOx and NMVOCs, but project growth in methane,

especially in RCP 8.5 (Wild et al., 2012; Eyring et al., 2013b;

Young et al., 2013).

3.5 Impacts of climate change and stratospheric ozone

recovery

Although the fEmis simulation was designed to assess the

impacts of climate change on the atmosphere (Eyring et al.,

2013a), there is a discrepancy with respect to methane’s dual

roles as a greenhouse gas and ozone precursor when it comes

to analysing tropospheric ozone, as discussed in the preced-
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Figure 6. Changes between the 2000s and 2020s decades (2020s

minus 2000s) in the REF-C2 simulation at 500 hPa for: (a) NOx ;

(b) NMVOCs+CO; (c) ozone. Shading indicates that the differ-

ence is statistically significant at the 95 % level of confidence.

ing section. However, given that ozone in the fCH4 simula-

tion is the same in the 1960s and 2090s (Fig. 5c), this implies

that the effects of climate change and stratospheric ozone re-

covery on ozone in the mid-troposphere are either negligible,

or offset one another.

Climate change is thought to lead to tropospheric ozone

decreases, due to increasing temperature and humidity,

which accelerates the ozone destruction reactions (e.g.

Toumi et al., 1996; Grewe et al., 2001; Doherty et al., 2013;

Morgenstern et al., 2013). Figure 8a shows the ozone change

at 500 hPa in the fEmis simulation between the 1960s and

2090s. The change is statistically significant at the 95 % con-

fidence level almost everywhere. Here, with NOx , NMVOCs

and CO fixed in the fEmis simulation, ozone increases up

to 6 ppb (a global-mean increase of 6 %). The only excep-

tions are south of 50◦ S, where it remains unchanged and

over the equatorial Pacific, where decreases of up to 2 ppb

are seen. As discussed in Sect. 3.2, the H2O + O(1D) Re-

action (R5) is very important for ozone loss over the remote

tropical Pacific Ocean, and this reaction becomes faster over

the period 1960–2100 as the troposphere becomes increas-

ingly warm and humid (e.g. Zeng et al., 2010; Stevenson et
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al., 2013). Figure 8b shows the change in the ozone pro-

duction:loss ratio (R1+R2) / (R3+R4+R5) between the

1960s and 2090s. This ratio decreases everywhere due to the

increased rate of ozone loss reactions, particularly at north-

ern midlatitudes. Clearly temperature and humidity play an

important role for ozone in the tropical Pacific (leading to

less ozone), however ozone production resulting from the in-

crease in methane is more important elsewhere, despite the

increased rate of the ozone destruction reactions.

Alongside methane, two further factors contribute to the

ozone increase in the fEmis simulation, although their in-

fluence is small: NOx emissions from lightning, and STE.

STE is projected to increase through the 21st century, be-

cause (a) as lower stratospheric ozone abundances increase,

there is more ozone in the stratosphere available to be trans-

ported to the troposphere, and (b) the overall meridional

circulation, the Brewer–Dobson circulation, is projected to

strengthen (thus transporting more ozone from the strato-

sphere to the troposphere) (Hegglin and Shepherd, 2009;

Zeng et al., 2010). Figure 8c shows the contribution of strato-

spheric ozone to the ozone budget at 500 hPa in the 1960s,

calculated using the lower-stratospheric ozone tracers. The
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tracers define the lower stratosphere as the region between

30–200 hPa for 30–90◦ N and 30-90◦ S, and between 30–

100 hPa for 30◦ N–30◦ S (Fig. 7), given that the tropopause

sits at a lower pressure level in the tropics. In the 1960s, STE

contributes between 0.1–5 % of ozone present at 500 hPa. We

calculate a total flux from the lower stratosphere to the tro-

posphere of 462 Tg yr−1 in the 1960s. This is lower than the

mean value from the model studies reviewed by Wild (2007)

of 636 Tg yr−1, but still within one standard deviation from

their mean. Figure 8d shows the change in the contribution

of stratospheric ozone to ozone at 500 hPa between the 1960s

and 2090s in the fEmis simulation. STE contributes up to one

additional ppb at southern midlatitudes, and this is statisti-

cally significant at the 95 % confidence level.

As discussed in Sect. 3.2, methane leads to ozone pro-

duction in the presence of NOx . Along with humidity and

STE, lightning NOx emissions may increase in a warmer

climate, either due to increased frequency of thunderclouds

(and therefore lightning), or more intense thunderstorms

(Schumann and Huntrieser, 2007; Price 2013). Figure 9a

shows lightning NOx emissions from SOCOL averaged over

the 1960s, and shows that most lightning is produced over

Africa and South America. Lightning NOx emissions in-

crease over the continents by 61 % between 1960 and 2100

(Fig. 9b), and by 48 % between 2000 and 2100. Smyshlyaev

et al. (2010) found that ozone increased between 10 and 20 %

when lightning NOx emissions increased by 2 Tg(N) year−1

(depending on latitude and season), and up to 90 % with

a 20 Tg(N) year−1 increase in lightning NOx . Banerjee et

al. (2014) calculated increases in lightning NOx emissions

of 33 % (2 Tg(N) year−1) and 78 % (4.7 Tg(N) year−1) be-

tween 2000–2100 in simulations using RCP 4.5 and RCP
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Figure 9. (a) Lightning NOx emissions in the fEmis simulation,

averaged over the 1960s; (b) change in lightning NOx emissions in

the fEmis simulation, 2090s minus 1960s. Shading indicates that the

difference is statistically significant at the 95 % level of confidence.

8.5, respectively. In our fEmis simulation (which used RCP

6.0, a scenario of intermediate severity compared to RCP 4.5

and RCP 8.5), we calculate a 48 % increase in lightning NOx
emissions over the same period, which is broadly consistent

with their findings. Banerjee et al. (2014) also showed that

under RCP 8.5, the increase in lightning NOx emissions of

78 % caused ozone increases of up to 30 % in the troposphere

(maximizing between the equator and 30◦ S). Although we
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cannot quantify ozone increases induced by lightning NOx
emissions in our simulations, the studies referred to here in-

dicate the likely magnitude of increase (20–30 %). Together

with STE, ozone increases induced by lightning NOx emis-

sions are largely offset by the temperature-induced increased

rates of ozone destruction in the troposphere. Finally, we

note that the results also depend on the chosen lightning

parametrization, which is coupled to the cloud top heights;

Grewe (2009) showed that lightning NOx emissions might

also slightly decrease, when stronger but fewer convective

events occur in a future climate.

4 Conclusions

We have presented three CCM simulations covering the pe-

riod 1960–2100, where the only factors differing in the

model setup were the ozone precursor emissions (NOx ,

NMVOCs, CO and CH4). The tropospheric extension to the

SOCOL CCM is still new and with 17 NMVOCs only moder-

ately sophisticated relative to some of the better-established

tropospheric chemistry models. However, the results pre-

sented here compare favourably with previous work.

In the REF-C2 simulation, which used RCP 6.0 green-

house gases and ozone precursors, the maximum impact

of ozone precursors on tropospheric ozone occurs between

1990 and 2060, when global-mean ozone in the free tropo-

sphere increases by 23 % from 1960 levels. Although de-

creasing emissions of ozone precursor gases over Europe and

North America lead to local reductions in ozone in the early

21st century, large increases in precursor gas emissions from

Asia, combined with ozone’s ability to be transported on

inter-continental scales within the troposphere, lead to a 70-

year period between 1990–2060 in which ozone abundances

at northern midlatitudes are constantly elevated. In the late

21st century, reductions in ozone precursor gases, especially

NOx , lead to decreases in tropospheric ozone globally. How-

ever, global-mean concentrations are still 8 % higher in the

2090s compared with the 1960s.

In the fEmis (fixed ozone precursor emissions) simula-

tion, global-mean ozone increases by 6 % between 1960 and

2100, mostly because methane concentrations were not held

constant. A fCH4 sensitivity simulation with all ozone pre-

cursors (including methane) held constant shows that tropo-

spheric ozone concentrations are the same in 2100 as in 1960.

Increased flux of ozone from the stratosphere to the tropo-

sphere, and increased emissions of NOx from lightning in a

warmer climate contribute to increases in tropospheric ozone

through the 21st century, although their effects are largely

offset by temperature-induced increased rates of ozone de-

struction in the troposphere. Other climate-change related

factors we have not examined include biogenic emissions,

which are thought to increase with temperature, but are not

considered in our simulations because SOCOL does not in-

clude an interactive scheme for biogenic emissions. Notably,

we have considered only a single climate change scenario

(RCP 6.0), and the impacts of climate change will differ

under different climate scenarios. We furthermore reiterate

that emissions of ozone precursor gases are also a significant

source of uncertainty in our results.

Overall, and given the assumptions inherent in the climate

and ozone precursor emissions scenarios we used, anthro-

pogenic NOx emissions have the largest influence on tropo-

spheric ozone in our simulations. Methane has the second

largest influence, which is approximately one-third that of

anthropogenic NOx emissions. We therefore conclude that

emission policies globally have the largest role to play in

determining tropospheric ozone evolution through the 21st

century.
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