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Abstract

Ensuring life safety is the primary design and maintenance requirement for civil structures de-

signed to be serviceable for a specific lifetime. However, structures subjected to a number

of factors may experience quicker or more gradual deterioration than anticipated, or even a

premature loss of function. Scheduled visual inspection is the oldest and most commonly used

damage monitoring technique, but has significant disadvantages when quick damage assessment

and certainty are needed, such as after a major seismic event. Quick, accurate and quantitative

determination of the damage state is vital following an earthquake, to estimate damage, remain-

ing life-time, and ensure safe re-occupancy, if possible.

Rapid development of sensor technology and increasing computing power has enabled con-

tinuous structural monitoring using various sensing techniques. The measured data can be an-

alyzed using structural health monitoring (SHM) methods. SHM refers to all elements of the

process of identifying mechanical properties of a structural system, comparing it with previ-

ous states, detecting changes/abnormalities, and relating these to damage. A successful SHM

method should be able to automatically identify and locate damage after large, non-linear re-

sponse events.

The majority of existing, primarily vibration based, SHM techniques have serious limita-

tions in situations where a quick, accurate, and quantitative assessment is needed. More specif-

ically, many SHM techniques perform well when structures behave linearly and are subjected

to ambient loads, but this does not apply to earthquake events. Moreover, some methods can

only work off-line, involve significant computational effort and/or human input, and/or do not

provide any indication of damage location and/or severity.
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To address these limitations, this thesis explores the application of a novel SHM implemen-

tation strategy composed of a novel modal parameter identification and its subsequent applica-

tion to a proven hysteresis loop analysis (HLA) method. The study demonstrates the proposed

strategy can be readily used to track the performance of non-linear degrading structures sub-

jected to strong ground motion, essentially in real-time and without human input. Thus, the

proposed tools can be used to support/replace visual inspection results, reduce downtime, min-

imize business disruptions and, most importantly, maximize life safety.

More specifically, this thesis proposes and analyses the application of a novel modal param-

eter identification technique, which performs in near real-time and, most importantly, is efficient

when approximating non-linear structures subjected to relatively short duration ground motion

inputs. The technique operates in modal space and is based on a pre-defined optimization pro-

cess, which decouples frequency response spectra of interfering, generally higher frequency,

modes. Optimization can be realized over relatively short time windows to provide continuous

monitoring of highly non-linear, degrading structures.

In particular, identified modal parameters can be readily used to identify damage. How-

ever, modal parameters can have very poor sensitivity to damage and are often difficult to in-

terpret. Thus, it is challenging to infer the location and severity of damage based on detected

changes/variation in modal parameters alone. In this research, the identified time-varying modal

parameters are used to decompose the structural response and reconstruct single mode domi-

nant restoring force-deformation hysteresis loops, which can be readily analyzed using recently

developed hysteresis loops analysis (HLA). The versatility and robustness of HLA has been

explored in a number of studies. However, the analyzed case structures employed in these vali-

dation cases exhibited very small contribution from the higher modes, which typically can cause

significant irregularities, and make effective implementation of HLA more problematic. Hence,

this thesis aims to improve the robustness of HLA, using mode segregation and reconstruction

of single mode dominant, regular shape hysteresis loops from non-linear structural response.
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First, this research develops a modal parameter output-only identification technique, which

is validated for a simple time-invariant linear structure. Second, the output-only method is ex-

tended to an input-output method enabling operators to carry out near-real time identification of

non-linear structures, which is validated for a simple time-varying non-linear structure. Third,

the input-output method is validated using the simulation results of a more complex non-linear

multi-degree-of-freedom structure, formulated using fiber elements. Finally, the proposed SHM

strategy, consisting of continuous modal parameter identification and subsequent application of

HLA is validated for two experimental non-linear structures.

Overall, this thesis proposes a novel system identification technique, which performs output-

only identification of linear structures and, more importantly, provides input-output real-time

modal parameter tracking of highly non-linear structures. Thus, the method extends the appli-

cation of modal SHM methods to non-linear cases. The proposed technique performs success-

fully without operator input and can be easily automated to provide continuous modal tracking

and damage detection. The technique performs both as stand-alone for damage detection and in

combination with HLA for damage quantification as demonstrated for highly non-linear cases.
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CHAPTER 1

Introduction

1.1 Background

Earthquakes are one of the most costly natural disasters worldwide. Strong ground motions

damage infrastructure and buildings, and, most importantly, can lead to loss of life, all of which

have an enormous economic and impact cost. The Canterbury earthquakes resulted in signif-

icant damage across Christchurch, where the rebuild is estimated to cost the equivalent of ap-

proximately 20 percent of New Zealand’s gross domestic product (GDP). In March 2011, Japan

was hit by a devastating earthquake and tsunami, which caused damage equivalent to 4 percent

of Japan’s GDP [1]. Even more devastating consequences were seen in Haiti (2010), Guatemala

(1976), Nicaragua (1972), and El Salvador (1986), where the economic losses of approximately

120, 98, 82, and 40% of GDP were estimated for each country, respectively [2, 3].

Ensuring life safety is the primary requirement for structural engineers when designing

structures. Most structures are designed to last a specific lifetime, meaning they are expected to

resist the effects caused by various hazards without losing integrity. However, unpredictable and

infrequent natural disasters, increasing load demands, poor design and maintenance, overuse,

fatigue, harsh environments, and ageing effects can shorten the anticipated structural life-time.

In addition, for economic reasons, structures in seismically active areas are designed to sustain

a certain amount of sacrificial damage, which typically appears in the form of concrete member

cracking or spalling, and/or yielding of steel reinforcement. A number of studies demonstrated
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sudden loss of a structure’s functionality can have a significant economic, social and environ-

mental impacts [4–6]. Thus, timely maintenance and retrofit/upgrade of structures is essential

in ensuring long-term safety and functionality.

Life-cycle management (LCM) provides tools for efficient maintenance strategies, which

allows owners to maximize the lifetime, safety, and functionality of structures. Typically, the

maintenance strategy consists of periodic damage identification, maintenance and retrofit. Dam-

age identification, to date, is most often carried out based on visual inspection. However, this

type of assessment is very much dependent on the qualifications and experience of the engineer.

This visual inspection method is also relatively slow and time consuming, and it is sometimes

impossible or impractical to inspect all potential damage areas due to non-structural components

and building services. Thus, damage associated to low-cycle fatigue effects [7,8] or yielding of

reinforcement can easily be underestimated.

To achieve better insight into structural system performance, structural health monitoring

(SHM) can be employed. SHM is a non-destructive process of capturing the mechanical prop-

erties of a structural system, comparing it with previous states, detecting changes/abnormalities,

which in turn can be related to damage. Hence, reliable SHM can be used to support/validate

or replace visual inspection results, and could be implemented into LCM to improve decision

making processes.

Continuous SHM opens possibilities to provide up-to-date structural status and predictions

of future performance, which would allow scheduling of inspection, maintenance and repair

works as needed [9]. Such smart management would ensure cost effective LCM and, most

importantly, maximize structural safety. A typical example of maintenance plan implemented

using smart management is illustrated in Figure 1.1. The benefits of an integrated framework of

LCM coupled with SHM have been demonstrated for wind turbines [10,11], which allowed op-

erators to optimize the operational performance of the wind turbines and to precisely schedule

maintenance work at minimum associated life-cycle costs. SHM and optimization of mainte-
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nance strategies has also been analyzed for bridge structures [12–14], ship structures [15], and

aerospace systems [16].
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Figure 1.1: Maintenance plan and structural performance under unexpected failures. Figure reproduced
from [4]

The need for reliable SHM and LCM tools was emphasized after the series of Canterbury

earthquakes. Structures subjected to a series of strong ground motion events might potentially

suffer from low-cycle fatigue, which is described as a failure mode of steel members. It is

caused by a small number of high level tension and compression strains [7], which are well be-

yond the elastic strain limit. Christchurch city was subjected to a large number of strong ground

motions, potentially imposing such cumulative cyclic damage to RC structures [8, 17], which

might have contributed to the complete loss of integrity in some cases.

The majority of well-established vibration based SHM techniques have been developed for

linear systems, meaning these methods can be used to track the performance of slowly degrad-

ing structures, where degradation is seen in modal frequencies. However, strong ground motion

is often destructive in the short term, triggering a non-linear response. Thus these methods will

fail to provide the true state of structure.

A reliable and quick damage identification allows responsible authorities to prioritize re-

pairs, ensure safe re-occupancy, and minimize business disruptions, all of which are crucial

when re-establishing the normal operation of communities. However, as noted, many current
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SHM methods do not easily or accurately offer this potential, especially not without human

intervention. In response, a new vibration based, non-parametric SHM strategy is proposed in

this thesis. The proposed strategy consists of a novel modal parameter identification technique

and its application to reconstruction of single mode dominant hysteresis loops, which can be

readily analysed using hysteresis loops analysis [18–20]. The proposed modal parameter iden-

tification technique is simple, intuitive, can be implemented nearly-real time. Most importantly,

it is effective when identifying non-linear structures and could be automated for use without

human input.

1.2 Review of SHM methods

Structural health monitoring covers a broad range of techniques and methods, tailored to mon-

itor different structural systems and provide different levels or types of damage identifica-

tion [21]. These levels of damage identification are:

• Level 1: Identifying the presence of damage

• Level 2: Localizing the damage

• Level 3: Quantifying the damage

• Level 4: Predicting the remaining life-time

SHM techniques can also be distinguished into two major categories, as shown in Figure

1.2, based on the underlying approaches used and outcomes achieved. The first group, non-

destructive evaluation (NDE), covers a large number of different techniques, including ultra-

sonic guided waves [22, 23], lamb waves [24, 25], X-ray [26, 27], acoustic emission [28, 29],

and electromagnetic testing [30]. They are used to detect the presence of discontinuities, which

would affect the service-life of a structural element [31]. NDE has found applications in many

fields [32] and all NDE methods offer a good sensitivity to damage at the element level, but are

onerous and highly complex at the global, full structure scale. For these reasons, NDE is often

used as an additional tool to quantify the severity of damage (Level 3 identification), when the

location of the damage has been localized [33].
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Figure 1.2: Classification of different SHM methods

The second group, vibration based SHM, relies on data collected from an array of sensors,

typically accelerometer, strain gages or GPS, and different computational algorithms. Together,

the goal is to detect abnormalities or changes in monitored linear response parameters, such as

frequency, damping, stiffness and damage index. One of the main features of vibration based

SHM is the ability to perform structural screening on-line or nearly on-line, thus enabling oper-

ators to make quick decisions, maximize life-safety, and potentially minimize downtime costs.

The availability of data immediately following a large earthquake can be extremely valuable to

first responders and regulatory bodies such as civil defence.

Vibration based SHM methods are typically regarded as global methods due to limited num-

ber of sensors used to monitor the structure and the level of information extracted using these

methods [33]. Hence, in some cases, determination of damage location and severity is still

a challenging task. Vibration based SHM can thus be further divided into two groups, based

on the underlying concepts and outcomes of the algorithms adopted: 1) non-parametric and 2)

parametric.

Non-parametric methods, also known as data-driven or model free methods, are not re-

strained by any of assumptions in terms of the geometry, materials and overall behaviour of

the structure. They thus have very versatile applications. In contrast, parametric methods are

typically more complex, require more operator input and expertise since they are bound to un-

5



derlying model assumptions. However, their typical use of underlying models enables damage

localization if the assumptions are correct [18].

1.2.1 Parametric methods

Finite element updating

A typical dynamic system can be represented by a set of modal parameters, which are expected

to vary with damage. However, often the identified changes in modal parameters are difficult to

interpret and a spatial distribution of the structural damage is hard to extract [34]. To circum-

vent this problem, SHM using finite element (FE) updating was introduced, which is based on

replicating the dynamic properties of the structure by modification or identification of the mass,

stiffness and/or damping matrices of a structural model [35]. System parameters are updated

based on the discrepancies captured between the mathematical model and the physical structure

itself. Once a reliable FE model is established, which is available to represent the monitored

structure, it can be used to predict the response to future earthquakes and the remaining life time.

However, obtaining a reliable reference model is a challenging task as there is number of

factors that influence the effective FE model [34, 36]. For example, systematic errors can be

observed due to simplified assumptions adopted in the FE model. Uncertainty in boundary

conditions, measurement errors, incomplete and/or imprecise modal data, sensor noise, and un-

certainty of damage, all add further potential errors. Finally, these methods require significant

human input and judgement, as a result. FE updating methods can be further distinguished into

two categories [37]: direct and indirect methods.

Direct methods are based on altering the stiffness and/or mass matrices directly using sim-

ple and fast non-iterative calculations [37]. The main drawback of these methods is they may

provide results with no physical meaning and often require a complete set of mode shape vec-

tors [38], which is difficult to obtain for a real structure. Indirect FE updating methods offer

more physically meaningful results at the expense of higher computational efforts as they often

adopt highly sophisticated iterative computations. However, indirect FE updating methods are
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more widely used for SHM implementation due to easier interpretation when inferring dam-

age [38].

Frequency response functions (FRFs) obtained directly from the acceleration measurements

were used to update the FE model in [39], which minimized the errors associated with modal pa-

rameter identification. However, this method requires incorporating a reliable damping model,

which complicates the optimization process [38]. To reduce the number of variables and to

obtain more physically meaningful damage patterns, [40, 41] used a set of damage functions

for determination of the bending stiffness of an experimental beam structure. Modal frequen-

cies can be used to formulate multiple objective functions, which were weighted based on

modal participation factors to determine the most likely damage pattern for an experimental

beam structure [42]. FE updating methods were used to identify the damage for a full-scale

composite beam structure based on the identified modal parameters [43]. The modal param-

eters (frequency, damping, mode shapes and macro-strain mode shapes) were extracted from

low intensity impulse response data after each sequence of increasingly destructive pseudo-

static testing. Moaveni et al. [44] identified progressive damage for a full-scale 3-story infilled

reinforced concrete (RC) frame induced by a number of different intensity ground motions.

The modal parameters used for the objective function were determined using deterministic-

stochastic subspace identification method based on white noise excitation response data. The

identified damage factors demonstrated good consistency with the secant stiffness calculated

from the hysteresis loops and indicated that the damage was concentrated in the infill walls.

Adaptive filtering techniques

A large number of various real-time or near real-time adaptive filtering techniques have been

proposed for damage identification of non-linear structures. For example, adaptive least mean

squares (LMS) filtering provides an efficient algorithm for real time or near real time moni-

toring of structures subjected to dynamic loads. As opposed to the least squares optimization

technique, the LMS filtering is an adaptive filtering that uses the approximation of gradient op-
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timization and convergence from sample to sample. Chase et al. [45,46] used LMS methods for

a benchmark problem and non-linear rocking structure to detect changes in structural stiffness.

In another example, a modified LMS-based SHM was used to identify the parameters of hys-

teretic SDOF structure by [47]. Overall, the main drawback of this method was found to be that

it requires a full response measurement, which is hard to obtain. The velocity and displacement

responses obtained through the single and double integration of measured acceleration response

might contain a significant drift, which is difficult to eliminate in real time without additional

data. LMS methods are also susceptible to error when the assumed model does not match ob-

served response [18].

The performance of an on-line recursive least-squares (RLS) identification technique with

constant forgetting factor using input and output accelerations was assessed on a three-floor

shake table benchmark model at NCREE in Taiwan by [48]. The proposed method was capa-

ble of identifying time-varying modal properties. RLS was also used for non-linear structures

in [49]. However, again, it requires an underlying assumed model.

An adaptive tracking technique, based on least-square estimation (LSE) has been proposed

for identification of non-linear hysteretic structures [50]. For a general linear or non-linear sys-

tem identification, full response measurements are needed, which is highly impractical. An

improved non-linear structural identification approach, known as a sequential non-linear least-

square estimation (SNLSE) [51], was proposed, which is capable of tracking structural changes

on-line using only the measurements of acceleration responses. It had significant advantages

compared to the extended Kalman filter (EKF) technique in terms of the stability and conver-

gence of the model, and computational effort.

To reduce the number of sensors required in the SHM, the SNLSE method was extended

to cover the general case with unknown inputs and unknown outputs, known as SNLSE-UI-

UO [52]. However, the numerical damage identification example presented relied on horizontal

inter-story drifts, which is not practical in real life situations based on currently available sensor
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technology. A more simple method requiring less computational effort was proposed using an

adaptive quadratic sum-squares error approach (QSSE) [53].

A comparative study was carried out between different methods [54]. Three SHM tech-

niques, referred to as the adaptive extended Kalman filter (AEKF), adaptive sequential non-

linear least-square estimation (ASNLSE) and adaptive quadratic sum-squares error (AQSSE),

were compared using experimental data. The authors concluded AQSSE technique was the

most accurate, efficient and practical method for structural damage identification for the as-

sessed study. An adaptive quadratic sum-square error with unknown inputs (AQSSE-UI) has

been proposed and tested on experimental data [55]. The method proved capable of tracking

time-varying parameters, such as stiffness and strength degradation and the identified hysteresis

loops exhibited a good correlation with the experimental ones.

A Kalman filter [56], known as a state estimator, used in many scientific fields has also been

employed in SHM to overcome limitations in sensor availability [57–60]. The original Kalman

filtering tool is limited to linear dynamic systems, but its variations in the form of extended

Kalman filter (ExKF), unscented Kalman filter (UKF), and ensemble Kalman filter (EnKF)

make it applicable to the analysis of non-linear dynamic systems. A number of studies demon-

strated the efficiency of these filters for damage identification of non-linear systems [61–66].

These studies found the significant advantage of UKF is the ability to identify non-Gaussian

and highly non-linear systems. It is worth noting that the UKF was successfully implemented

for identification of hysteresis parameters and recovery of residual displacement [67]. How-

ever, again, it requires the response to match an assumed underlying model, which may not be

practical or accurate.

1.2.2 Non-parametric methods

Empirical mode decomposition

Empirical mode decomposition (EMD) is a time domain method, involving the extraction of a

finite number of underlying basis functions, also called intrinsic mode functions, representing
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the response of a system [68]. The extracted basis functions are transformed into frequency

domain using Hilbert transformation (HT), which allows for estimation of instantaneous fre-

quencies. The special feature of this method is that it can handle non-linear and non-stationary

systems. The performance of EMD has been demonstrated for an experimental 3 DOF sys-

tem [69]. The authors used the extracted IMFs to estimate the time-frequency distributions and

the relative phase angle between the successive DOFs, which enabled inference the damage

location.

EMD has been adopted as a pre-processing tool to decompose the response into several

modal response functions. These function are then processed by stochastic subspace identifi-

cation (SSI) to identify the modal parameters [70]. The combination of EMD and SSI allowed

extraction of stable poles, eliminating the contribution from noise and other interfering modes

when identifying the modal parameters for a bridge structure.

Rezaei et al. [71] used an EMD damage index, based on the energy of the first IMF extracted

from free response data, to detect the presence and location of the damage for a cantilever steel

pipe. A similar SHM implementation strategy has been implemented by [72], who utilized two

damage sensitive parameters to detect the damage occurrence in the pipeline girth welds. EMD

has also been used to determine the frequency and location of the damage for a simulated bridge

structure subjected to moving load [73].

For buildings, Xu et al. [74] used EMD to detect the damage for an experimental three-

story shear-type structure caused by a sudden change of structural stiffness. The damage was

located by analysing the first IMF component of each floor and detecting the spatial distribution

of the spikes. Lin et al. [75] applied EMD and HT to extract the modal frequencies, damping

ratios and mode shapes from noise free response data for a simulated IASC-ASCE four-story

benchmark problem. The estimated modal parameters allowed reconstruction of the stiffness

and damping matrices, which identified the damage with a high accuracy.
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The main issue with EMD, is the need for operator input and interpretation. Each mode

must be evaluated for its structural relevance. Changes in modes may be due to damage or

small non-linearities or sensor failure. Hence, it is not operator independent or able to be fully

automated.

Application of Wavelets

Wavelet transformation (WT) has attracted significant attention in many diverse research areas,

such as speech recognition [76], meteorology [77], biomedicine [78] and many other fields. The

method is a generalized form of Fourier transformation (FT) and windowed Fourier transforma-

tion (WFT) [79]. The main difference between the WT and FT lies in the basis functions used

to represent other functions. The WT technique is superior to the FT in the analysis of non-

stationary signals due to is ability to transform the signal from time series into time-frequency

space, which enables tracking of dominant modes in time [80]. In addition, WT allows for de-

composing the signal into a set of basis function of various resolutions [81]. The functionality

of the WT technique for SHM has been demonstrated in a number of studies.

For example, [82] used the WT to detect discontinuities in decomposed signal components,

which indicated the structural damage. Jiang et al. [83] used wavelet packets together with

Bayesian hypothesis testing to denoise the measured response and improve accuracy when us-

ing other SHM methods. Kim et al. [84] utilized a wavelet low-pass filter to find the optimal

control parameters for a tuned liquid column damper. [85] used a discretized synchrosqueezed

wavelet and Hilbert transformations to identify the modal frequencies and equivalent damping

ratios based on ambient vibration measurements obtained from a super-high rise building.

Sun et al. [81] proposed the wavelet packet transformation (WPT) in conjunction with neu-

ral network (NN) to determine the level of structural damage. In particular, they used trained

NN model to detect the abnormalities based on wavelet component energies. The study was

conducted for a simulated structure demonstrated promising results. However, as the authors

emphasized, the NN model needs training and the excitation must be repeatable to enable the
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comparison of damage states.

Sun et al. [86] used statistical analysis to analyse the extracted wavelet energies and infer the

damage of an experimental test structure. Further, Amezquita et al. [87] proposed a methodol-

ogy based synchrosqueezed wavelet transform (SWT) combined with the chaos theory, namely

fractality dimension, to detect, locate and quantify the damage. The method was validated using

experimental data of a scaled model.

Curadelli et al. [88] used WT to determine the instantaneous damping coefficients to infer

the damage for the experimental concrete beam and experimental scaled six-story frame struc-

ture. The authors concluded that the identified damping is more sensitive to structural damage

compared to the modal frequency. This difference makes it a more suitable measure for SHM

implementations.

Artificial neural networks

Artificial neural network (ANN), inspired by biological nervous systems, are a mathematical

model, which can learn and solve problems through pattern recognition. This model can be

seen as a non-linear adaptive function, which can transform a set of inputs into a set of out-

puts [89]. A typical neural network consists of a large number of nodes, which, depending

on the type of ANN, can be arranged and interconnected in a number of different ways by

forming so called layers. The nodes are interconnected using links, which represent adaptive

weighting coefficients. Thus, depending on the architecture of the ANN, the outputs of one

node are weighted and passed as an input to another node [35]. The weighting coefficients are

determined through the process of learning and training, by minimizing the error between the

predicted and measured outputs. Hence, once the optimal ANN model is set up to represent the

healthy, undamaged structure, it can be used for SHM purposes to detect abnormalities occur-

ring due to damage.

Mangal et al. [90] studied two ANN structures, namely back-propagation and adaptive res-
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onance theory (ART), for application of on-line SHM for offshore platforms . The trained ANN

models were tested for detecting different patterns of structural damage. The study concluded

that both methods combined provided a good results for damage detection.

Masri et al. [91] used the ANN to identify structural changes for a 5 DOF experimental

structure. The authors used two ANN setups with different inputs and outputs to replicate the

dynamics of the analysed model. A reference ANN was established through the process of

learning to approximate the healthy structure, which was then used to predict the response. The

presence of damage was detected by estimating the error between the measured and predicted

outputs.

Gonzalez et al. [92] used a multi-layer feed-forward ANN to detect damage in a simply sup-

ported bridge structure. The ANN model was trained for a large number of damage scenarios

based on the inputs of the first mode modal strain energy difference and the outputs of element

flexural stiffness. The method demonstrated very good potential in locating and quantifying

damage. However, the authors used rather dramatic damage scenarios, with large reductions in

member stiffness, which may not be realistic.

Finally, Osornio et al. [93] used a multiple signal classification method in conjunction with

ANN. The goal was to automate the damage identification, location and quantification for a

truss-type structure. The presented method was able to locate and quantify even low levels of

damage caused by corrosion.

Overall, the ANN method is suitable for situations where a significant database is available.

However it is difficult to specify an explicit algorithm due to structural complexity and non-

linear behaviour [94]. Therefore, the effectiveness of ANN is highly reliant on the scale of

training, where poorly trained models can lead to failure to generalize and inaccurate results

[95]. However, ANN methods are easy to set-up as they require no a-priori knowledge, thus are

highly practical for complex structures with complex behaviour.
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System identification methods

The majority of SHM techniques implemented to date are based on system identification (SID)

methods. These methods aim to construct mathematical models using measured structural re-

sponses and inputs. They typically describe the structure in terms of the modal properties.

These properties can be re-evaluated at selected time intervals to track/detect the damage and

account for non-linear behaviour using one of well established techniques [96–98]. Since all

SID methods presented herein suffer from the same or similar weaknesses, concluding state-

ments are provided at the end of this section and not separately for each method.

ERA based methods

The eigensystem realization algorithm (ERA) proposed by [99] is one of the most commonly

used output only modal parameter identification methods based on the impulse response of a

system. The algorithm utilizes a Hankel matrix decomposition and identification of control and

output matrices. The modal frequencies and mode shape vectors are determined by solving the

eigenvalue problem [100].

This method, combined with the natural excitation technique (NExT), became a powerful

tool in analysing modal characteristics based on ambient vibrations [43,101,102]. However, the

method is based on assuming the structure behaves within a linear range. It also requires a full

response measurement under white noise or ambient data, which is not available immediately

after infrequent and unpredictable seismic events.

Oberserver-Kalman Filter Identification (OKID) is an extension of ERA and was developed

for the cases where the impulse response is not measured directly. The method is based on con-

struction of state-space models for linear time-invariant systems from observation data. Frarac-

cio et al. [103] applied ERA/OKID to identify the damage in an experimental steel frame. Two

damage scenarios were considered by altering the steel member sizes. Although the method

yielded an accurate identification of modal frequencies, as the authors stated, the frequency

changes were not sensitive to damage, thus making it impractical to detect the damage. How-
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ever, the method was able to identify the stiffness matrix representing the damaged structure,

which indicated the damage precisely.

Lus et al. [104] investigated the application of OKID for identification of state space mod-

els. These identified models can subsequently be used for reconstruction of second-order (finite

element) models to obtain physical parameters and detect any damage occurring in the structure

by analyzing the changes in these parameters. The method was tested for a simulated ASCE

benchmark problem for reconstruction of stiffness matrices, which identified the damage accu-

rately.

Moaveni et al. [105] used OKID-ERA among other methods to identify the modal frequen-

cies and equivalent damping ratios of a 7-story full-scale building slice based on white noise

excitation data. Similarly, [106] employed ERA/DC complemented by the OKID method to

determine the system parameters of a 2 story building structure. To circumvent the limitations

of OKID, when identifying the system parameters based on earthquake response, the authors

refined the identified state-space models using the non-linear optimization algorithms proposed

by [107]. The reconstructed models allowed for the analysis of the soil-structure interaction

effects and prediction of the system’s response to future earthquakes.

Benedetti et al. [108] applied a two step algorithm to identify the modal parameters of

real and simulated structures using only two response measurements retrieved from earthquake

events. Similarly, Siringoringo et al. [109] performed a continuous SHM of an asymmetric

base-isolated building, which was subjected to strong ground motion events. The authors em-

ployed two system identification methods to quantify the modal parameters of time-variant

systems. The first method, based on multi-input-multi-output, assumed time-invariant system

for selected time windows. The authors used relatively long time windows (50s) to identify

the modal parameters, which were assumed to be constant for the analysed time segment. For

the second method, the authors used the time-variant recursive least-square (RLS) method and

an autoregressive with exogenous inputs model to identify time varying modal frequencies and
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equivalent damping ratios.

Stochastic subspace identification

Stochastic subspace identification (SSI) proposed by [110] is a widely used output-only state-

space model identification technique used for linear structures excited by long duration broad-

band white noise excitation. SSI can be implemented based on two different approaches. In

the first variation, covariance driven stochastic subspace identification (SSI-cov) assumes the

covariances can be decomposed [111]. Thus, the estimated covariances are assembled into a

Toeplitz matrix, which is then processed using singular value decomposition to obtain the sys-

tem state matrices.

The second variation, a data-driven stochastic subspace identification (SSI-DATA), is known

as a more robust, but slower method, based on constructing a block Hankel matrix consisting of

past and future output data blocks. Data reduction is performed for the projected Hankel matrix

using QR-factorization, which simplifies to the product of observability matrix and the Kalman

states [112]. The system state matrices obtained are then used to calculate the modal parameters.

Both methods result in a comparable accuracy in terms of modal parameter identifica-

tion [111]. However, SSI-DATA appeared to be more robust and allowed for predicting the

response of separate modes. In situations where a large amount of sensors are needed to moni-

tor the structure, [112] proposed to use reference based SSI, where only the selected past output

are used to construct forward innovation forms. Reynders et al. [113] applied a combined

deterministic-stochastic subspace identification to account for artificial excitation used for ex-

perimental test structures.

In contrast, Peeters et al. [114] identified the modal properties of a stadium structure dur-

ing a game using SSI-COV and concluded that the modal frequencies are decreasing and the

damping is increasing with increasing number of people present. Mevel et al. [115] identified

two-floor steel structure using SSI-COV based on vibrations recorded during impact testing.
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Similarly, Astroza et al. [116] used SSI-Data to identify the modal parameters of a 5-storey

concrete structure using ambient vibrations. Yu et al. [70] used SSI in conjunction with EMD

to identify the modal parameters of a real-scale bridge structure subjected to operational condi-

tions. In a similar study, Wu et al. [117,118] used a hierarchical sifting process to extract stable

poles, and consequently improve the reliability of modal parameter identification. SSI has also

been successfully implemented for other bridge structures [119, 120].

Enhanced frequency domain decomposition

Enhanced frequency domain decomposition (EFDD) [121–125] decomposes the response into

a set of single-degree-of-freedom (SDOF) spectral density functions using singular value de-

composition (SVD). The technique extracts the approximate mode shapes, modal frequencies

and damping ratios. It assumes the input excitation is a broadband white noise and the spectral

contribution from the adjacent modes is small.

The performance of EFDD was compared with other techniques when identifying the modal

parameters for a seven-story full-scale building [105]. The authors reported EFDD provided

consistently lower modal damping ratios for the modes with low spectral energy. Similar find-

ings were reported in [126,127], where different SID methods were employed for modal param-

eter identification of a five-story test structure. Yang et al. [128, 129] used EFDD to investigate

the influence of soil frosts effects on the modal properties of a 20-story building and bridge

structure.

Autoregressive models

Autoregressive models (AR) and their different variations of it (ARMA, ARX, ARMAX) are

used to obtain a data-based mathematical representation of a healthy undamaged system, which

can predict the response under different types of inputs. In the case of damage or a change in

structural properties, the established autoregressive functions will not be capable of predicting

the response accurately. Hence, it will result in an increase in the residual error, which can be

captured using different statistical analysis tools.
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Silva et al. [130] proposed to track the probability density function of the ARMA residual,

defined as the difference between the predicted and the actual response. Fuzzy clustering is

adopted to define the threshold values that characterize the presence of damage. Similarly, Loh

et al. [131] used ARX and ARMAX models to identify modal frequencies and damping ratios

for linear time-invariant systems. To identify time-varying modal parameters, the authors used

recursive identification methods with adaptive forgetting factors.

In a different approach, Beskhyroun et al. [132] proposed to divide the structure into a num-

ber of substructures and use ARX and ARMAX methods to obtain a modal information for each

substructure. A similar approach was adopted by [133], where the approximated parameters of

ARX models were directly used to locate the damage. ARMA models were also used by [134]

to model the response of the ASCE benchmark structure. To detect and localize the damage,

the authors introduced a new damage-sensitive feature, based on the first three auto regressive

components. Finally, Yao et al. [135] used two different statistical pattern recognition methods

to infer the damage for experimental test structures based on estimated autoregressive models.

PolyMAX

PolyMAX or p-LSCF, known as poly-reference least-squares complex frequency domain method,

is a non-iterative output-only modal parameter identification technique, which uses frequency

response functions (FRF) as the main input data [136]. The method is based on weighted

least-squares approach and estimates frequency transfer functions, assuming they can be ap-

proximated using the common-denominator approach. PolyMAX has been proven to result

in significantly more robust system identification (stable poles) [137, 138] compared to other

well known methods, which allows for establishing an automated SHM. However, the method

demonstrates systematic errors when identifying modal parameters [139].

Brownjohn et al. [120] compared the performance of PolyMAX with NExT/ERA and SSI-

COV when identifying the modal parameters of a suspension bridge. The authors concluded
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that SSI-COV performed the best, thus decided to use it for continuous implementation of

SHM. Magalhaes et al. [140] implemented on-line automatic modal parameter identification

for a bridge structure using PolyMAX. The identification results were compared with SSI-COV.

The authors concluded both methods provided very comparable overall results. However, the

detailed analysis revealed that PolyMAX can provide clearer variation of the modal damping

ratios. Finally, Hu et al. [141] used PolyMAX for automated modal parameter identification of

a wind turbine.

Time domain methods

Kim et al. [142] proposed a novel modal parameter identification technique operating in the

time domain. The method can extract high resolution mode shapes and modal frequencies us-

ing output-only measurements and is based on single-degree-of-freedom analogy. The method

assumes that the modes are not closely spaced and can be isolated using regular filtering tech-

niques. The mode shapes are estimated using singular value decomposition of the output energy

correlation matrix. In another study, Kim et al. [143] used FE model updating method to obtain

a baseline FE model of damaged structure. The baseline model was then utilized to estimate

modal parameters and subsequently to detect damage in offshore jacket structures.

Overview of SID methods

A number of system identification studies have been carried out for real or test structures, where

the performance of several different SID methods was compared. For example, Astroza et

at. [116, 126, 127] used three SID methods, namely SSI, NExT and DSI to characterise five-

story test structure subjected to ambient and white noise excitations. Babek et al. [105] used

six different SID methods to identify the modal properties of a seven-story full-scale building.

The employed methods were: 1) multiple-reference natural excitation technique combined with

eigensystem realization algorithm (MNExT-ERA); 2) SSI-Data; 3) EFDD; 4) deterministic-

stochastic subspace identification (DSI); 5) OKID-ERA; and 6) general realization algorithm

(GRA). In both studies the authors concluded that modal frequencies identified using different

SID methods were consistent. In contrast, the identified equivalent damping ratios demonstrated

significantly larger variability across different SID methods.
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However, most of SID methods discussed herein suffer from similar limitations which were

discussed by Reynders [144]. The majority of stochastic SID methods perform well when the

structure is excited purely by broadband white noise excitation, which is rarely available in real

life situations. In addition, SID methods often require long duration response data for which

a time-invariant system behaviour is assumed. This means that for especially long duration

measurements changes in environmental conditions, such as temperature and humidity might

not be accounted for. Moreover, some methods require tuning and careful selection of system

order, which requires a considerable operator input and expertise. Finally, SID methods assume

a linear system throughout the analysed time window. Hence, the methods are not capable of

taking into account the non-linear behaviour.

Hysteresis loop analysis

Path dependent hysteresis loops represent the structure’s restoring force at different deforma-

tion levels and are reconstructed using a dense array of accelerometers installed in the structure.

Strong ground motions often causes structural damage, resulting in yielding, pinching, stiffness

and strength degradation, which can typically be well captured by reconstruction of hysteresis

loops. One of the first attempts to utilize hysteresis loops for real-time SHM purposes was

carried out by Iwan et al. [145]. The authors used real vibration data from a 9-story library to

reconstruct hysteresis loops and demonstrate the potential benefits of the proposed SHM tech-

nique. In a different approach, Xu et al. [146] used non-linear regression analysis to identify

the hysteresis loops reconstructed using acceleration data and infrequently measured displace-

ments. However, the proposed method was limited to simple bilinear hysteresis loops. Thus,

more complex hysteretic models could not be identified.

Zhou et al. [147] proposed a more robust hysteresis loop analysis (HLA), capable of iden-

tifying complex hysteretic models exhibiting yielding, pinching and stiffness degradation to

address this issue. The reconstructed loops are subdivided into loading and unloading sub-half

cycles, which are then approximated by a series of piecewise linear segments using regression
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analysis and F-type hypothesis testing. The performance of the method has been demonstrated

in a number of studies [18–20].

1.3 Summary outcomes of prior art

The vast majority of SID techniques are limited to linear time-invariant systems and they per-

form best when the long duration response data is available and the input loads meet specific

characteristics. For example, ERA/OKID has been shown to be limited to ambient vibration

data [61, 105–107]. The authors in the former studies concluded that OKID performs well in

situations when the measured response data is long, polluted with white and zero-mean noise,

and the input excitation is rich in frequency content. Most of the methods can only identify

modes, excited at a high energy. Thus, the methods perform well when the input excitation is

broad band white noise with a constant frequency distribution across the frequency spectrum.

However, earthquake excitations are usually relatively short and have much more specific and

limited frequency content, which can be localized in specific frequency ranges. In addition,

structures subjected to strong ground motion events often respond in a non-linear manner, thus

making successful SID even more difficult.

In contrast, adaptive filtering methods provide real-time tracking of non-linear systems.

However, all these methods rely on some inherent model assumptions, which sometimes do

not represent the reality accurately enough [148]. Thus, they can encounter serious limitations

when identifying real-life structures and data when the assumed model does not match observed

response [18].

SHM based on hysteresis loop analysis (HLA) [147] offers a simple, effective and intuitive

SHM tool for damage identification of non-linear hysteretic structures. The method performs

well when the structural response is single mode dominant, thus producing regular shape hys-

teresis loops. However, strong ground motion can trigger higher modes in taller structures which

can have a significant contribution to the total response. The presence of higher modes typically
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results in irregular hysteresis loops, which are hard to identify as accurately when using HLA.

Alternatively, the influence of higher modes can be alleviated by applying nth order Butterworth

low-pass filters. However, it requires a careful selection of cut-off frequencies, which might be

a challenging task in case of highly non-linear response and/or close proximity of modes.

1.4 Thesis objective

The primary objective of this study is to develop a method to enable nearly real-time tracking

of modal parameters (mode shape, frequency and damping) over relatively short time windows.

The identified time-varying modal parameters can directly be used to infer the presence of dam-

age and/or non-linearities occurring during the response of unpredictable strong ground motion

events. Moreover, the approximated mode shape coefficients can be used to decompose the re-

sponse into separate modes. Mode decomposed responses allow reconstruction of single mode

dominant, ”smooth” hysteresis loops for the governing modes, free of the interfering modes.

Subsequently, the reconstructed regular shaped hysteresis loops can be easily analysed using

HLA to identify the location and severity of damage.

To address these objectives, this thesis aims to develop a novel modal parameter identifica-

tion technique, which can provide continuous tracking of modes participating in the response

with significant contribution. As mentioned in the literature review, the majority of SID methods

developed to date can operate under free response data or long duration linear response, which

is excited by white noise broadband ambient loads. Consequently, the main goal of this study

is to develop a technique, which can track the relevant modes of linear and non-linear systems

excited by relatively short duration strong ground motion. The study develops the methods,

which account for different response data acquisition situations: a) when no input excitation

force measurements are available; and b) when input excitation is known.

The proposed modal parameter identification tools are developed on simulated data of MDOF

time-variant systems. To analyse its robustness, the method is tested for different levels of added

noise. Finally, the proposed SHM strategy, consisting of modal parameter identification and ap-
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plication of HLA, is implemented to analyse data from full-scale test structures.

1.5 Preface

Chapter 2 presents a novel output-only modal parameter identification technique, which allows

identification of linear time-invariant systems using long duration response data. The major fea-

ture of this method is the ability to perform identification of structures excited by both, broad-

band white noise and non-stationary earthquake inputs. The performance of the proposed tool is

validated on a simulated 4 DOF RC structure where all the true values of modal parameters are

known. It is thus a true numerical validation. A parameter study is carried out to demonstrate

the robustness of the proposed technique when identifying the structure superimposed with dif-

ferent levels of noise.

Chapter 3 presents an extended version of modal parameter identification technique, which

enables tracking of relevant modes over relatively short time windows. The method takes ad-

vantage of measured input excitation, and is thus considered an input-output identification tech-

nique. The proposed tool can perform real-time monitoring of structures subjected to any type

of relatively long input excitation. The performance of the proposed input-output modal param-

eter identification technique is validated on a simulated 4 DOF structure for different ground

motion inputs. A parameter study is carried out to investigate the influence of different param-

eters on the identification accuracy.

Chapter 4 explores the application of novel input-output modal parameter identification

technique simulated structure, assembled using fiber elements.

Chapter 5 explores the application of novel input-output modal parameter identification

technique in conjunction to hysteresis loop analysis (HLA) on a full-scale experimental bridge

prier structure. Real-time tracking of the mode shapes is achieved, allowing for mode decompo-

sition and reconstruction of ”smooth” single mode dominant hysteresis loops. Damage severity
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is subsequently quantified using HLA.

Chapter 6 presents the results of real-time modal parameter identification carried out for a

full-scale 5-story reinforced concrete test structure. The identification algorithm was applied to

experimental data from both base isolated and fixed base structural configurations. The identi-

fied modal parameters are then used to detect the presence of damage and to provide a basis for

modal decomposition.

Chapter 7 presents the results from a further SHM implemented for a 5-story test structure.

The identified evolution of the modal parameters from Chapter 6 is used to decompose the

response into separate modes and reconstruct single mode dominant hysteresis loops, which

are analysed using a constrained HLA. A brief introduction to constrained HLA method is also

provided.

Chapter 8 concludes the presented research and Chapter 9 discusses future work.
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CHAPTER 2

Output-only modal parameter identification

2.1 Introduction

A number of different structural health monitoring (SHM) methods have been developed to

identify damage. Many are vibration-based SHM methods developed to capture changes in

modal parameters [105, 120, 126, 127, 149–151] . These changes can be represented as a dam-

age index [35, 87, 152, 153] or used for reconstruction of second order models [104, 106, 107].

They are popular because of their use with measured, small ambient vibrations to identify linear

responses and systems.

The eigensystem realization algorithm (ERA) [99] and its combination with natural exci-

tation techniques (NExT/ERA) [43, 100, 101, 154] or the Observer/Kalman Filter Identification

(OKID) [103, 155, 156] are two of the most commonly used modal parameter identification

techniques for linear time-invariant systems subjected to white noise excitations. A number

of studies [105, 120, 126] used a stochastic subspace identification (SSI) [156] technique to

identify the modal parameters of simulated and real life structures. Successful SHM in these

conditions has also been implemented using different variations of autoregressive moving av-

erage (ARMA) [130, 157–159] and enhanced frequency domain decomposition (EFDD) meth-

ods [105, 123, 126, 160].

All these techniques are limited to linear time-invariant systems. Moreover, most perform
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best when the input loads meet specific characteristics, such as broad band white noise, which is

not a natural or typical condition. The ability to easily use ambient vibrations without constraint

would be more ideal for regular monitoring using an output-only SHM method.

This chapter presents a new modal parameter identification technique based on mode de-

composition to perform as an output only identification technique for linear time-invariant sys-

tems using relatively long duration response measurements extracted from ambient load or even

larger, shorter duration earthquake induced vibrations. The method presented is not limited to

any characteristics of the input load and is capable of identifying modal parameters with a

good accuracy even for high signal noise levels. For longer, non-linear seismic responses these

parameters can be identified over short windows over the event. Finally, the approximated con-

stant mode shapes can be used to decompose the modes, which can be used for reconstruction

of single mode dominant hysteresis loops that can be readily analyzed using hysteresis loop

analysis (HLA) [18, 147].

2.2 Method

2.2.1 Mode decoupling

The equation of motion of a linear multi-degree-of-freedom (MDOF) system is described:

M{Ẍ}+C{Ẋ}+K{X}= Mr{Ẍg} (2.1)

where M, C, K are the mass, damping and stiffness matrices, r is the excitation influence vector,

{Ẍ}, {Ẋ} and {X} are the acceleration, velocity and displacement vectors of MDOF system,

respectively, and {Ẍg} is the ground motion acceleration.

The linear MDOF system response can be represented as the weighted, linear sum of indi-
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vidual vibration modes:

X(t) =
n

∑
i=1

φi · xi(t) = ΦX(t) =



φ1,1 · x1(t)+ · · ·+φ1,n · xn(t)
...

φi,1 · x1(t)+ · · ·+φi,n · xn(t)
...

φn,1 · x1(t)+ · · ·+φn,n · xn(t)


(2.2)

where n is the number of modes, X(t) =
[

x1(t) x2(t) · · · xi(t) · · · xn(t)

]T

is modal re-

sponse vector of n modes at time instant t, where each row of X(t) represents each mode,

xi(t), Φ =

[
φ1 φ2 · · · φi · · · φn

]
is the n× n mode shape matrix calculated by solving an

eigenvalue problem, where φi =

[
φ1,i φ2,i · · · φi,i · · · φn,i

]T

is n×1 mode shape vector of

the ith mode.

Φ, can be identified using one of many existing SHM methods [35, 43, 87, 99–101, 103–

107, 120, 123, 126, 127, 130, 149–160]. In this study, a relatively simple tool is proposed to

approximate Φ̂ using the principle of mode superposition. The modal response of a linear

structure can be described, per Equation (2.2), from which:

X = Φ̂
−1 ·X =


φ̂1,1 · · · φ̂1,n

... . . . ...

φ̂n,1 · · · φ̂n,n


−1

·


φ1,1 · x1 + · · ·+φ1,n · xn

...

φn,1 · x1 + · · ·+φn,n · xn

 (2.3)

where n is the number of DOFs, and Φ̂ is an approximate mode shape matrix, where ideally

Φ̂ = Φ. The hat symbol here is used to denote the identified/approximated parameters in this

study.

In real structures, the exact number of modes contributing to the structure’s response is often

unknown and can be very large, as with suspension bridges [161]. For practical reasons only a

limited number of DOFs are monitored, making full mode decomposition infeasible. However,
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partial decomposition can be carried out using limited DOFs, which is still practical for real

structures, because higher modes often have negligible response energy. In addition, most civil

structure design codes neglect the influence of higher modes, as they contribute less than 10%

to the total effective modal mass [162].

For a structure modeled with m = 2 DOFs of n total DOFs using Equation (2.2) for X , the

estimated modal response X p,m, where p in the subscript refers to partial decoupling, can be

written:

X p,2 =Φ̂
−1 ·X =

φ̂1,1 φ̂1,2

φ̂2,1 φ̂2,2


−1

·

φ1,1 · x1 +φ1,2 · x2 + · · ·+φ1,n · xn

φ2,1 · x1 +φ2,2 · x2 + · · ·+φ2,n · xn

=

=
1

det(Φ̂)

[
(φ̂2,2 ·φ1,1− φ̂1,2 ·φ2,1)x1 +(φ̂2,2 ·φ1,2− φ̂1,2 ·φ2,2)x2

(−φ̂2,1 ·φ1,1 + φ̂1,1 ·φ2,1)x1 +(−φ̂2,1 ·φ1,2 + φ̂1,1 ·φ2,2)x2

+ · · ·+(φ̂2,2 ·φ1,n− φ̂1,2 ·φ2,n)xn

+ · · ·+(−φ̂2,1 ·φ1,n + φ̂1,1 ·φ2,n)xn

]
(2.4)

where φ j,i and φ̂ j,i represent the true and identified mode shape coefficients, respectively. If φ̂ j,i

can be identified exactly, then φ̂1,1 = φ1,1, φ̂2,1 = φ2,1, φ̂1,2 = φ1,2 and φ̂2,2 = φ2,2. From the

assumed perfect identification, the result of the decomposition is defined:

X p,2 =

 1 · x1 +0 · x2 + · · ·+
(φ̂2,2·φ1,i−φ̂1,2·φ2,i)

det(Φ̂)
xi + · · ·+

(φ̂2,2·φ1,n−φ̂1,2·φ2,n)

det(Φ̂)
xn

0 · x1 +1 · x2 + · · ·+
(−φ̂2,1·φ1,i+φ̂1,1·φ2,i)

det(Φ̂)
xi + · · ·+

(−φ̂2,1·φ1,n+φ̂1,1·φ2,n)

det(Φ̂)
xn

=

=

1 · x1 +0 · x2 + · · ·+α1,i · xi + · · ·+α1,n · xn

0 · x1 +1 · x2 + · · ·+α2,i · xi + · · ·+α2,n · xn


(2.5)

where α1,i and α2,i are scaling factors that result for each mode, i.

More generally, for a system with m modeled DOFs of n total DOFs, the estimated modal
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response X p can be written:

X p,m =



1 · x1 +0 · x2 + · · ·+0 · xm +α1,m+1xm+1 + · · ·+α1,nxn

0 · x1 +1 · x2 + · · ·+0 · xm +α2,m+1xm+1 + · · ·+α2,nxn

· · ·

0 · x1 +0 · x2 + · · ·+1 · xm +αm,m+1xm+1 + · · ·+αm,nxn


=

=



1 0 · · · 0 α1,m+1 · · · α1,n

0 1 · · · 0 α2,m+1 · · · α2,n

...
... . . . ...

... . . . ...

0 0 · · · 1 αm,m+1 · · · αm,n


·X = A ·X

(2.6)

where αm,n is the nth mode scaling factor and A is a mode scaling matrix defining contribution

of omitted modes, m+ 1 . . .n. Thus, the ith modal response will consist of the ith mode itself

and scaled modes that are omitted by a perfectly approximated (Φ̂ =Φ) mode shape matrix (Φ̂).

The contribution of other modes is thus, ideally, equal to zero.

It can also be shown for the approximated mode shape matrix, Φ̂, where modal coefficients

are optimized only for the ith mode (with a goal Φ̂(:, i) = Φ(:, i)) using Equation (2.3), the

following mode decomposition and mode scaling matrix, A, is obtained:

X p,m = Φ̂
−1X =



α1,1 α1,2 · · · 0 α1,m+1 · · · α1,n

α2,1 α2,2 · · · 0 α2,m+1 · · · α2,n

...
...

. . .
...

...
. . .

...

αi,1 αi,2 · · · 1 αi,m+1 · · · αi,n

...
...

. . .
...

...
. . .

...

αm,1 αm,2 · · · 0 αm,m+1 · · · αm,n


·



x1

x2

· · ·

xi

· · ·

xn


(2.7)

Thus, the modal response of the ith mode, xi, is removed from the modal responses of all

other modes due to the zeros in the ith column. This result means the full/partial decomposi-

tion per Equation (2.6) can be achieved by approximating each mode shape individually, thus

applying mode-by-mode identification.
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2.2.2 Mode shape approximation using output-only data

Mode contribution/coupling can be quantified by calculating it’s energy content in the frequency

domain. Ideally, the ith mode would have very small spectral energy in the other modes if Φ̂(:, i)

is perfectly identified as in Equation (2.7). Assuming the absolute acceleration is monitored,

thus Ẍabs = Ẍ− rẌg, the decomposed modal absolute acceleration, Ẍ , can be represented in the

frequency domain by carrying out an FFT analysis:

Y (Φ̂) =
∣∣FFT (Ẍ p,m)

∣∣= ∣∣Ẍ p,m ·WFFT
∣∣= ∣∣Φ̂−1 · Ẍabs ·WFFT

∣∣ (2.8)

where WFFT is the Fourier transformation matrix defined as WFFT (n,k) = W (n−1)(k−1)
N where

WN = e(−2πi)/N , (n= 1. . .N), N is the discrete length of the monitored signal X , and k = 1. . .K,

where K is the number of frequency bins in the analysis.

As a result Y (Φ̂) =

[
y1 y2 · · · ym

]T

is m×K, where each row of Y (Φ̂) represents the

frequency response spectrum (FRS) of each mode. In case of perfect identification, Φ̂ = Φ, the

FRS of each mode, yi, will represent a Single-Degree-of-Freedom (SDOF) linear time-invariant

(LTI) mechanical system, which for the ith mode response can be described:

yi(ω) = F(ω) ·Hi(ω) (2.9)

where F(ω) is the Fourier transform of an input and Hi(ω) is the frequency response function

for the ith mode.

For perfect identification, Φ̂(:, i) = Φ(:, i) per Equation (2.7), the ith mode response will

have zero contribution from other modes. This contribution can be quantified in the frequency

domain by calculating the cross correlation of the ith mode’s frequency response spectrum with

respect to the frequency response spectrum of the other modes:

corri(Φ̂) = yn
i (Φ̂) ·Y n(Φ̂)T (2.10)
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where yn
i is the normalized FRS of the ith mode and Y n(Φ̂) =

[
yn

1 yn
2 · · · yn

m

]T

where is yn
i

the normalized FRS of ith mode, defined:

yn
i =

yi√
yT

i yi

(2.11)

As a result corri(Φ̂) is 1×m correlation matrix, where the ith column is equal to 1 since it is

FRS correlation of the response with itself. Again, ideally, ith mode’s correlation will be equal

to zero with respect to other modes ( j 6= i). However due to noise, residual effects from the

other FRS, close proximity of the modal FRS peaks, and high modal damping, the correlation

coefficient may result in non-zero values with other modes.

In addition, during the initial modal parameter identification, when no a priori knowledge

about the mode shape matrix is known, the FRS of the ith mode will contain significant contri-

butions from other modes due to mode coupling (non-zero values in Equation (2.6)). To isolate

the ith mode FRS from the other modes ( j 6= i), the following step is introduced:

yiso
i (Φ̂) = yi(Φ̂) ·diag(Ni) (2.12)

where Ni is a K× 1 shape vector used to segregate a given mode’s FRS to calculate its energy

without other modes contributing, where K, again, is the number of frequency bins used for FFT

analysis as defined in Equation (2.8). The term diag refers to transformation of a column vector

into a diagonal matrix. Shape vector, N, can be formulated using any windowing function, as

shown in Figure 2.1. A more detailed description on shape function selection is provided in

Section 2.2.3.

Again, correlation of the ith mode’s isolated FRS with respect to the full FRS can be ex-

pressed as a function of optimized mode shape Φ̂(:, i) =
[

φ̂1,i φ̂2,i · · · φ̂m,i

]T

:

corriso,i(Φ̂(:, i)) = yn,iso
i (Φ̂(:, i)) ·Y n(Φ̂(:, i))T (2.13)
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Figure 2.1: (a) FRF fitting, frequency bandwidth and shape function estimation (b) Shape function, Ni,
overlapped with receptance, yabs

i (ω) to obtain isolated FRS, yiso
i

where corriso,i(Φ̂) is 1×m vector of the ith mode cross correlation and yn,iso
i is the normalized

segregated FRS of the ith mode normalized using Equation (2.11).

The efficiency of the partial decoupling for mode i can thus be estimated by summing all

the weighted correlation coefficients ( j = 1..m, j 6= i), excluding correlation of the mode with

itself:

Corriso,i(Φ̂(:, i)) =
m

∑
j=1, j 6=i

wi
j · corriso,i

j (Φ̂(:, i)) (2.14)

where wi
j is the weighting coefficient that enforces mode orthogonality or scales the correlation

coefficients based on Modal Assurance Criteria (MAC) [163]. As a result, the method enables

the identification of modes with very close proximity or even overlapping modes by assigning

larger weight coefficients to the modes that demonstrate poorer orthogonality or higher MAC

values. A more detailed description of weighting coefficient calculation is provided in Section

2.2.3.

Finally, the solution to the optimal ith mode shape coefficients can be written as the solution

to the following optimization problem:

(Φ̂(:, i)) = argmin
Φ̂(:,i)

(Corriso,i(Φ̂(:, i))) (2.15)
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Figure 2.2: Mode-by-mode optimization example for a 3 DOF system. The term abs in the subscript of
corriso,abs,i

j and yabs
i refers to the calculations based on the absolute measurements.

Once the optimal approximated mode shape coefficients Φ̂(:, i) for mode i are found, the

optimization can proceed for the next mode, as shown in Figure 2.2. When mode-by-mode

identification is carried out, detection of new modal frequencies or poles becomes an easy task,

because the modes with high spectral energy are already removed from the FRS of unidentified

modes due to the zeros in Equation (2.7). The optimization problem can be readily solved using

the constrained non-linear multivariable solver available in MATLAB. A more detailed mode

identification routine is shown in the flow chart of Figure 2.4.
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2.2.3 Methodology details

Mode proximity and mode orthogonality

When initial modal identification is carried out for structures with overlapping or very closely

spaced modes, the first iteration of optimization may not yield very low cross-correlation values,

indicating inaccurate mode shape identification. Higher cross-correlation values occur due the

presence of another unidentified mode contributing to another mode FRS’s with a high energy

and thus non zero scaling factors in Equation (2.7). When identifying the second mode, which

is adjacent or overlapping with the already identified mode, the optimization might result in

coupled modes with poor orthogonality or a high degree of consistency. To enforce mode

orthogonality, a weighting factor, wi
j, is introduced when calculating the total correlation in

Equation (2.14), defined [163]:

wi
j = 1+(MACi, j)

0.5

MACi, j =

∣∣∣φ̂i
T · M̂ · φ̂ j

∣∣∣2(
φ̂i

T · M̂ · φ̂i

)
·
(

φ̂ j
T · M̂ · φ̂ j

) (2.16)

where MACi, j is the modal assurance criteria coefficient expressing the degree of consistency or

orthogonality between the optimized ith modal vector, φ̂i, and the jth modal vector, φ̂ j. The term,

M̂, is the assumed/approximated mass matrix of the system, which acts as a scaling matrix. If

no priori knowledge is known about the structure to estimate this mass, an identity matrix can

be taken.

Equation (2.16) implies greater weights will be applied to the correlation coefficients result-

ing from the highly consistent modes and, more importantly, the greater total weight, wi
j ·corriso

j

(from Equation (2.14)), will be put on the modes with high proximity, due to their higher cross-

correlation values. The added weighting coefficient will encourage the optimization process to

seek an orthogonal mode shape set that results in effective mode decoupling.

Structures having symmetric stiffness around two axes, may posses repeated roots or over-
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lapping modes with the same natural frequency. In such cases, multiple linear combinations

of orthogonal mode shape sets can exist, which will represent the same motion exhibited by

two modes with the same frequency [37]. A simple example is shown in Figure 2.3, where a

cantilever bar with symmetric stiffness around both axes is represented as a 2 DOF system. Two

modes shapes, φ1 and φ2 can be represented by an equivalent single mode shape, φsum, as shown

in Figure 2.3b. Equally, the same equivalent mode shape, φsum, can also be represented by any

set of two orthogonal vectors as shown in Figure 2.3c.

xy

z

(a)

f =[0.3, 0]
1

f =[0,1]
2

f     =[0.3, 1]
sum

x

y

(b)

f     =[0.3, 1]
sum

x

y

(c)

Figure 2.3: Example structure with double modes: a) Cantilever structure b) Two orthogonal modes
aligned with the principal axes x and y c) Multiple sets of orthogonal vectors

Hence, a linear combination of any set of orthogonal vectors will result in the same equiv-

alent mode shape, φsum, or deformation pattern. However, when the mode shapes are approx-

imated for each time window or even iteration, different mode shape sets may be obtained,

which may be misleading when interpreting the modes. To ensure more stable mode shape op-

timization for cases with double modes, a modified weighting factor is introduced, to enforce

mode shape optimization around the principal axes :

wi
j =

1+

√
MACi, j +

√
MACmirr

i, j

2

2

MACmirr
i, j =

∣∣∣∣(φ̂i
mirr
)T
· M̂ · φ̂ j

∣∣∣∣2((
φ̂i

mirr
)T
· M̂ · φ̂i

mirr
)
·
(

φ̂ j
T · M̂ · φ̂ j

)
(2.17)

where MACi, j is defined in Equation (2.16) and MACmirr
i, j is the coefficient expressing the degree
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of similarity between optimized mirrored mode shape, φ̂i
mirr, and the jth mode shape ,φ̂ j. The

mirrored mode shape vector, φ̂i
mirr is the mode shape vector φ̂i mirrored around either of the

principal axes, x or y:

φ̂i
mirr

= φ̂i
mirr,x

=

 φ̂i,x

−φ̂i,y

 or φ̂i
mirr

= φ̂i
mirr,y

=

−φ̂i,x

φ̂i,y

 (2.18)

where φ̂i,x and φ̂i,y are the ith mode shape vector components in x and y direction respectively.

Thus, the correlation scaling factor provided in Equation (2.17) will enforce mode shape opti-

mization orthogonalized around the principal axes in case of overlapping or very closely spaces

modes. It can be noted that the orthogonality criteria can be enforced at different degree by

varying the power coefficient values in Equation (2.17). Hence, the orthogonality criteria can

be relaxed by assigning greater power coefficients in Equations (2.16) and (2.17).

Modified Gram-Schmidt orthogonalization

As the mode shape coefficients go through the optimization process of Equation (2.15), it is

important to ensure mode orthogonality with respect to the other modes, to allow for the solver

to converge optimal values. Mode orthogonality can be obtained using the modified Gram-

Schmidt orthogonalization process, which generates a set of mode shape coefficients that is

orthogonal to all the subsequent mode shapes. The jth mode shape can be mass orthogonalized

with respect to the ith mode [164]:

φ̂
orth
j = φ̂ j− φ̂i ·

φ̂ T
j · M̂ · φ̂i

φ̂ T
i · M̂ · φ̂i

(2.19)

where M̂ is the assumed/approximated mass matrix. If no a priori knowledge about the structure

is known, an identity matrix can be used.

Mode orthogonalization can be implemented as a part of the objective function or as an

additional step, which would then require an additional convergence loop. Although the mode

shape optimization is carried out for the ith mode, meaning only the Φ̂(:, i)orth terms are being

varied, in fact due to the orthogonalization process of Equation (2.19), all the terms of Φ̂orth are
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being varied in the optimization loop, as shown in flowchart of Figure 2.4. However, after each

optimization iteration, only the ith mode and the rest of unidentified modes will be updated, as

defined in Step 8 in Section 2.2.4. This approach ensures that the previously identified modes

are not being altered.

Damping and frequency estimation

A successful mode shape identification allows decomposing the response into separate modes.

In the frequency domain this outcome results in a set of single transfer functions, each repre-

senting SDOF system without any residuals from adjacent modes, per Equation (2.6). However,

in real life situations, structures often have an infinitely large number of modes with very low

energy that are difficult to identify. As a result, the modal transfer functions will often contain

some contribution from residuals due to unidentified or poorly identified modes [37].

Assuming the contribution from the other modes is negligible, the frequency response spec-

trum, yi(ω), of ith mode can be approximated, per Equation (2.9):

yi(ω) = Ĥi(ω) ·F(ω) =
Qi

ω̂2
i −ω2 +2iξ̂ ωω̂i

·F(ω) (2.20)

where Ĥi(ω) is the fitted FRF function for mode i, ω̂i is the identified natural frequency and ξ̂i

is the identified modal damping ratio. Thus, the modal parameters (ω̂i and ξ̂i) can be identified

using curve fitting methods [160] given the modal parameters do not vary throughout the ana-

lyzed time window and assuming the input excitation, F(ω), is known or is constant in case of

broadband white noise excitation, F(ω) = const.

Peak segregation

Successful mode shape approximation requires careful peak isolation, which is carried out using

shape functions, Ni, per Equation (2.12). A simple example of peak isolation is shown in Figure

2.1. The main idea behind the peak isolation lies in sensitivity of cross-correlation values,

corriso,i(Φ̂). Very spiky isolated peaks result in noise sensitive mode cross-correlation values.
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In contrast, very flat peaks may cause mode insensitive cross-correlation or, in the case of mode

proximity, result in modal energy coupling, as shown in Figure 2.1 .

Peak isolation function, Ni, can be defined using any data windowing technique. In this

study, a peak segregation function, Ni, is formulated using a Hanning windowing technique.

Effective window length is taken as a factor of the estimated frequency bandwidth ∆ω deter-

mined from the fitted FRF, Ĥi(ω), (from Equation (2.20)) at the response level of
∣∣Ĥi
∣∣/√2 as

shown in Figure 2.1. Hence, the shape function can be written:

Nmode
i (ω) = 0 ω < ωi−

W
2
·∆ω

= 0.5 ·
(

1− cos
(

2π
n
N

))
ωi−

W
2
·∆ω ≤ ω ≤ ωi +

W
2
·∆ω

= 0 ω > ωi +
W
2
·∆ω

(2.21)

where n = ω− (ωi− W
2 ·ω), N =W ·∆ω where ∆ω is the frequency bandwidth at the response

level of
∣∣Ĥi
∣∣/√2, and W is the assumed effective peak isolation width.

Thus, the mode segregation function, Nmode
i , is re-evaluated for each time window after FRF

fitting is performed.

2.2.4 Mode identification summary

Initial modal parameter identification

The initial mode shape identification, when no prior knowledge about the structure is known,

can be described as a step process and is shown in the flowchart of Figure 2.4:

Step 1. Analysis initialization: Choose the time segment, collect m× s data matrix, X =[
x1 x2 · · · xm

]T

, where m is the number of measured DOFs and s = (t1− t0) · fs is the

number of samples, t0 is the start and t1 the end of the time window, and fs is the sampling

frequency. Assign a random orthogonal mode shape matrix, Φ̂init , where init refers to initial

identification guess. Initialize mode number i = 1.
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Step 2. Selecting the strongest mode: Transform the data into the modal space using Equation

(2.3), and obtain the FRS of each modal response, Y (Φ̂init) =

[
y1 y2 · · · ym

]T

, by trans-

forming it into the frequency domain using Equation (2.8). Analyse all FRS for unidentified

modes, (from i to m modes), and find the mode, yemax
, with the strongest energy, where emax

is the mode index number. Rearrange the approximated mode shape matrix, Φ̂init (:, [i emax]) =

Φ̂init (:, [emax i]) and redo the transformation for Y (Φ̂init) using Equation (2.8).

Step 3. Mode/ peak identification: Identify the modal frequency with the strongest energy

from the ith modes’s FRS, yabs
i (ω), and create shape function, Nmode

i , using Equation (2.21) for

the ith mode, which will segregate the FRS around the selected modal frequency. Calculate the

isolated FRS for mode i, yiso
i (Φ̂init) using Equation (2.12). Use Equations (2.13) and (2.14) to

calculate the initial correlation coefficient Riter=0 =Corriso,i (Φ̂init(:, i)
)
.

Step 4. Setting up an optimization problem / objective function: Create optimization ma-

trix, Φ̂orth = Φ̂k. Define the optimization matrix ith column as a function of Φ̂orth(:, i) =[
φ̂ orth

1,i φ̂ orth
2,i · · · φ̂ orth

m,i

]T

. Mode shape coefficients for the other modes will be subjected

to Gram-Schmidt orthogonalization. Define the correlation coefficient, calculated per Equation

(2.14), as a function of Φ̂orth(:, i) =
[

φ̂ orth
1,i φ̂ orth

2,i · · · φ̂ orth
m,i

]T

:

Corriso,i
(

Φ̂
orth(:, i)

)
=Corriso,i

([
φ̂ orth

1,i φ̂ orth
2,i · · · φ̂ orth

m,i

]T
)

Step 5. Solving optimization problem: Solve linear unconstrained optimization problem using

Equation (2.15) and obtain the optimized mode shape coefficients for the ith mode, Φ̂orth(:, i).

Step 6. Performing orthogonalization: Orthogonalize all mode shape coefficients with respect

to identified mode shape coefficients, Φ̂orth(:, i), using the modified Gram-Schmidt method, of

Equation (2.19). Mode orthogonalization can be implemented inside the objective function or

after optimization, by creating an additional convergence loop.

Step 7. Checking the convergence: Calculate the total correlation coefficient, Riter =Corriso,i (Φ̂init(:, i)
)
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per Equation (2.14), and check the convergence:

Conviter =
Riter−1−Riter

Riter−1
(2.22)

Step 8. Updating the mode shape matrix: Update the approximated mode shape matrix’s ith

mode shape and the rest of unidentified modes (uidm) Φ̂init(:, [i uidm]) = Φ̂orth(:, [i uidm]). If

the convergence value is greater than Conviter > 1e−6, return to Step 4.

Step 9. Mode shape verification: Verify the newly identified mode by evaluating it’s FRS. In

case of successful identification, the pole will be clearly visible, whereas the same peak will be

removed from other mode’s FRS, yi(Φ̂
init), or in other words the rest of the modes will contain

no residuals from the newly identified mode, which acts as a noise. This result means if the

whole identification loop process is re-iterated from Step 3, by setting i = 1, thus starting from

mode 1, the identification will yield more accurate mode shapes.

Step 10. Stepping back to look for new modes / poles: Step to the next mode, i = i+1, and

return to Step 2.
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Step 1: Collect acceleration data X =
[
x1 x2 · · · xm

]T , create a random or-
thogonal mode shape matrix, Φ̂init , transform the data into the frequency domain,
Y , using Equation (2.3). Initialize mode number i = 1.

Step 2: Pick the mode, ye,max, with the strongest energy, where emax is
the mode index number. Rearrange the approximated mode shape matrix,
Φ̂init (:, [i emax]) = Φ̂init (:, [emax i])

Step 3: Identify the peak from the ith mode FRS, yi , and create shape func-
tion, Nmode

i , using Equation (2.21) for the ith mode. Calculate yiso
i (Φ̂init) ,

using Equation (2.13). Calculate the initial correlation coefficient Riter=0 =

Corriso,i
(
Φ̂init(:, i)

)
per Equation (2.14).

Step 4: Create optimization matrix, Φ̂orth = ˆΦinit . Define the optimization matrix
ith column as a function of φ̂ orth

j,i : Φ̂orth(:, i) =
[
φ̂ orth

1,i φ̂ orth
2,i · · · φ̂ orth

m,i
]T

. Define
the correlation coefficient as a function of φ̂ orth

j,i

Corriso,i
(
Φ̂orth(:, i)

)
=Corriso,i

([
φ̂ orth

1,i φ̂ orth
2,i · · · φ̂ orth

m,i
]T)

.

Step 5: Solve linear unconstrained optimization problem using Equation (2.15)
and obtain the optimized mode shape coefficients for the ith mode, Φ̂orth(:, i)

Step 6: Orthogonalize the remaining mode shape coefficients ( j = 1...m, j 6=
i) with respect to identified mode shape coefficients, Φ̂orth(:, i), using modified
Gram-Schmidt method, per Equation (2.19).

Step 7: Calculate the total correlation coefficient, Riter = Corriso,i
(
Φ̂init(:, i)

)
as

per Equation (2.14), and check the convergence, Conviter, using Equation (2.22).

Step 8: Update the approximated mode shape matrix’s ith mode and the rest of
unidentified modes (uidm), Φ̂init(:, [i uidm]) = Φ̂orth(:, [i uidm]).

Riter < 1e−6

Is the ith mode the
newly identified?

Step 9: Verify the
newly identified mode
and re-evaluate all the
identified modes .

Step 10: Step to next mode.

iter = 1
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Figure 2.4: Flow chart for initial mode-by-mode optimization for any given time window
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2.3 Method validation and analyses

2.3.1 Test structure

The proposed method is validated analytically using a 3D FE model representing a simplified

model of a bridge pier structure, as shown in Figure 2.5. The structure consists of a 7.3m long

circular 1.2m diameter reinforced concrete column rigidly connected to the footing. Concrete

blocks are attached to the top of the cantilever column, which represents the mass of the bridge

deck. The structure is simplified into a 4 degrees-of-freedom (DOF) system, with 2 DOFs

in each direction, as shown in Figure 2.5. More details on the test structure are provided in

[165]. The estimated effective second moment of area around both axis is Ix = Iy = 0.1m4, the

modulus of elasticity of the concrete is E = 22.9GPa. The estimated translational mass in x and

y directions is Mx = My = 2.7 ·105kg, whereas the rotational masses around x and y directions

are different resulting in Mφx = 0.68 · 106kg and Mφy = 1.16 · 106kg. The following stiffness

matrix and diagonal mass matrix are obtained for a linear 4 DOF system:

K =



0.088 0.322 0 0

0.322 1.565 0 0

0 0 0.088 −0.322

0 0 −0.322 1.565


·109 M =



0.24 0 0 0

0 1.16 0 0

0 0 0.24 0

0 0 0 0.68


·106 (2.23)

Rayleigh proportional damping C = α0M +α1K is assumed acting in the structure with esti-

mated proportionality constants α0 = 0.24 and α1 = 0.002, which provide ξ1 = 3% and ξ3 = 4%

critical damping for the first and the third modes, respectively. Calculated modal frequencies

and equivalent damping ratios for all modes are shown in Table 2.1

Table 2.1: Calculated modal parameters of a 4 DOF system

Mode 1 2 3 4

Modal frequency, f (Hz) 1.39 1.45 6.46 8.1
Modal damping, ξ (%) 3.00 2.94 4.00 4.80
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Figure 2.5: a) Bridge pier test structure [165] and b) a simplified 4 DOF model used for simulation

2.3.2 Initial modal parameter identification

The initial modal parameter identification is carried out assuming no a priori knowledge about

the structure is known. The identification is implemented assuming the input ground excitation

is not known (output only). Thus, the objective function is formulated using Equation (2.14).

Two different input ground motions are selected to simulate the response of a linear structure:

a) 2 minutes long broadband 2.5%g RMS white noise excitation with constant frequency dis-

tribution and b) earthquake excitation with peak ground acceleration (PGA) of 0.17g . Time

histories of the selected ground input motions are shown in Figure 2.6. The identification is

based on the recorded time series of the whole response (120s for WN and 50s for EQ event).

The mass matrix is assumed to be calculated with 30% error, thus Mident = Z ·M, where the

assumed scaling matrix is Z = diag
([

1 0.7 1.3 0.7

])
. The effective peak isolation width

used in Equation (2.21) is W = 5.
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Figure 2.6: Input ground motion time histories and frequency spectra for (a) white noise 2.5%g RMS
and (b) selected earthquake ground motions

2.4 Results and Discussion

2.4.1 Initial modal parameter identification

Identification based on white noise excitation

The initial modal parameter identification is carried out using 30 of 120 seconds white noise

excitation response data. It is assumed no input ground acceleration is recorded. Thus, identi-

fication is based only on the measured acceleration response data. Identification is carried out

for 3 different signal noise levels (0%, 5% and 20%) and the results are shown in Tables 2.2 to

2.4.

The identified modal frequencies presented in Table 2.2 demonstrate very good agreement

for all the noise levels and the discrepancies, ∆ f , are lower than 1%. The identified equivalent

modal damping ratios, presented Table 2.3 demonstrate poorer consistency compared to identi-

fied modal frequencies. The maximum captured error is ∆ξ1 = 16.3%, for the largest 20% RMS

noise. Large discrepancies can be associated to the relatively short 30 seconds window chosen.
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Table 2.2: Identified modal frequencies for different signal noise levels

Mode fmodel,Hz f̂id,0,Hz ∆ f ,% f̂id,5%,Hz ∆ f ,% f̂id,20%,Hz ∆ f ,%

Mode 1 1.392 1.396 0.29 1.396 0.27 1.394 0.14
Mode 2 1.449 1.459 0.68 1.459 0.68 1.459 0.67
Mode 3 6.457 6.440 -0.27 6.439 -0.29 6.448 -0.14
Mode 4 8.103 8.074 -0.36 8.074 -0.37 8.061 -0.52

Table 2.3: Identified equivalent modal damping for different signal noise levels

Mode ξmodel ξ̂id,0 ∆ξ ,% ξ̂id,5% ∆ξ ,% ξ̂id,20% ∆ξ ,%

Mode 1 0.030 0.035 15.7 0.034 14.3 0.035 16.33
Mode 2 0.029 0.026 -10.2 0.026 -10.2 0.026 -10.88
Mode 3 0.040 0.042 6.0 0.042 5.7 0.041 3.25
Mode 4 0.048 0.049 1.7 0.049 1.5 0.049 2.08

Table 2.4: Identified mode shape coefficients for different levels of signal noise

Mode φmodel φ̂id,0 ∆φ ,% φ̂id,5% ∆φ ,% φ̂id,20% ∆φ ,%

Mode 1

φ̂1,1 1.00 1.00 0.00 1.00 0.00 1.00 0.00
φ̂2,1 -0.22 -0.22 2.62 -0.23 3.31 -0.22 2.02
φ̂3,1 0.00 0.00 -0.33 0.00 -0.35 0.00 -0.34
φ̂4,1 0.00 0.01 1.03 0.01 1.06 0.01 1.04

Mode 2

φ̂1,2 0.00 0.01 0.60 0.01 0.61 0.01 0.58
φ̂2,2 0.00 0.01 0.80 0.01 0.80 0.01 0.77
φ̂3,2 1.00 1.00 0.00 1.00 0.00 1.00 0.00
φ̂4,2 0.21 0.21 -0.14 0.21 -0.09 0.21 0.00

Mode 3

φ̂1,3 1.00 1.00 0.00 1.00 0.00 1.00 0.00
φ̂2,3 0.93 0.93 -0.44 0.93 -0.57 0.92 -1.08
φ̂3,3 0.00 0.02 2.11 0.02 1.99 0.02 2.42
φ̂4,3 0.00 -0.04 -4.44 -0.04 -4.45 -0.05 -4.52

Mode 4

φ̂1,4 0.00 0.00 -0.09 0.00 -0.13 0.00 0.02
φ̂2,4 0.00 0.00 0.03 0.00 0.04 0.00 0.00
φ̂3,4 -0.61 -0.62 0.23 -0.62 0.41 -0.61 -0.65
φ̂4,4 1.00 1.00 0.00 1.00 0.00 1.00 0.00

Table 2.4 shows the identified mode shape coefficients , φ̂ . The method yields accurate

mode shape coefficient identification even for high signal noise levels. The maximum captured

relative error is ∆ξ = 4.52%, for the 20% added RMS noise case.
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Identification based on earthquake excitation

Initial modal parameter identification based on the earthquake response is carried out using 50

seconds of recorded absolute acceleration response data. It is assumed no input ground acceler-

ation is recorded. Thus, identification is based only on the measured response data. As for the

white noise excitation data, the identification is carried out for 3 different added signal noise

levels. The identified modal frequencies, shown in Table 2.5, demonstrate very good agreement

for all the noise levels and the discrepancies, ∆ f , are lower than 1%.

The identified equivalent damping ratios, ξ̂ , shown in Table 2.6, demonstrate smaller er-

rors compared to identification results based on WN excitation. More accurate values can

be explained by longer analysed response time history used for identification. The maximum

recorded error is ∆ξ = 7.0% corresponding to 20% added RMS noise.

Table 2.5: Identified modal frequencies for different signal noise levels based on earthquake response
data

Mode fmodel,Hz f̂id,0,Hz ∆ f ,% f̂id,5%,Hz ∆ f ,% f̂id,20%,Hz ∆ f ,%

Mode 1 1.392 1.397 0.32 1.396 0.31 1.397 0.34
Mode 2 1.449 1.451 0.11 1.451 0.11 1.451 0.12
Mode 3 6.457 6.433 -0.37 6.434 -0.37 6.435 -0.35
Mode 4 8.103 8.032 -0.88 8.033 -0.87 8.033 -0.87

Table 2.6: Equivalent modal damping for different signal noise levels identified from response to earth-
quake excitation

Mode ξmodel ξ̂id,0 ∆ξ ,% ξ̂id,5% ∆ξ ,% ξ̂id,20% ∆ξ ,%

Mode 1 0.030 0.028 -6.7 0.028 -7.0 0.028 -7.00
Mode 2 0.029 0.028 -3.4 0.028 -3.7 0.028 -3.40
Mode 3 0.040 0.039 -1.8 0.039 -1.8 0.039 -1.75
Mode 4 0.048 0.046 -4.6 0.046 -5.0 0.046 -4.79

Table 2.7 shows the identified mode shape coefficients , φ̂ . The method yields accurate

mode shape coefficient identification for all the noise levels. The maximum captured relative

error is ∆φ = 6.85%, for the 5% signal noise levels.

The results show the proposed method is capable of accurate identification of modal pa-

rameters. The initial parameter identification for a 4 DOF system is carried out using only
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Table 2.7: Identified mode shape coefficients for different levels of signal noise based on the response to
earthquake excitation

Mode φmodel φ̂id,0 ∆φ ,% φ̂id,5% ∆φ ,% φ̂id,20% ∆φ ,%

Mode 1

φ̂1,1 1.00 1.00 0.00 1.00 0.00 1.00 0.00
φ̂2,1 -0.22 -0.21 -2.07 -0.21 -1.88 -0.21 -2.25
φ̂3,1 0.00 0.00 -0.04 0.00 -0.03 0.00 -0.03
φ̂4,1 0.00 0.00 0.13 0.00 0.11 0.00 0.09

Mode 2

φ̂1,2 0.00 0.00 0.05 0.00 0.08 0.00 0.07
φ̂2,2 0.00 0.00 0.07 0.00 0.11 0.00 0.09
φ̂3,2 1.00 1.00 0.00 1.00 0.00 1.00 0.00
φ̂4,2 0.21 0.20 -4.13 0.20 -4.17 0.20 -4.13

Mode 3

φ̂1,3 1.00 1.00 0.00 1.00 0.00 1.00 0.00
φ̂2,3 0.93 0.93 -0.10 0.93 0.04 0.94 0.58
φ̂3,3 0.00 0.05 4.50 0.05 4.53 0.04 3.89
φ̂4,3 0.00 -0.07 -6.79 -0.07 -6.85 -0.07 -6.83

Mode 4

φ̂1,4 0.00 0.00 -0.15 0.00 -0.17 0.00 -0.01
φ̂2,4 0.00 0.00 0.05 0.00 0.06 0.00 0.00
φ̂3,4 -0.61 -0.62 0.39 -0.61 -0.21 -0.61 0.10
φ̂4,4 1.00 1.00 0.00 1.00 0.00 1.00 0.00

the measured response assuming the system is time-invariant. The identified modal frequencies

and mode shape coefficients demonstrate very good consistency with the simulated model for all

the noise levels. In contrast, identification of the equivalent modal damping ratios tend to yield

lower accuracy. Similar findings have been obtained in a number of studies [105–107], where

the identified damping ratios demonstrated larger deviations than the frequencies. The method

yields equally accurate identification for both white noise and earthquake induced ground mo-

tion.

2.4.2 Limitations

The proposed method operates in the modal space and is based on mode decomposition, thus a

linear time-invariant system (LTI) is assumed throughout the analyzed time window. However,

strong ground motion will often trigger inelastic behavior, meaning the principle of mode su-

perposition will no longer be valid. However, most of structures exhibit a non-linear behavior

only for a very short time period and the non-linear part comprises a relatively small part of

the whole hysteresis loop. In such cases, the method can be applied to shorter time windows,

meaning the time windows containing inelastic structure’s response will be approximated by an
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average mode shape coefficient values that provide the best mode decoupling. Tracking their

evolution over time can provide a measure of non-linear monitoring. However, the results pre-

sented here provide excellent robustness to noise and accuracy for ambient or more common

smaller seismic input.

2.5 Summary

This study presents a novel modal parameter estimation technique, which is capable of identi-

fication of modal parameters. The method is based on the principle of mode superposition and

assumes that the system is linear time-invariant. The method performs as output-only modal

parameter identification technique and is not limited to any type of input loading. This is an

important feature, since most of the other system identification methods rely on assumption

that the input loading is a broad band white noise. Thus, the presented approach can provide a

better insight into structures subjected to strong ground motion events, assuming the structure

does not exhibit strong non-linearities.

The method is validated using a simulated data for a 4 DOF time-invariant system, which

represents a simplified version of a bridge pier. The results show that the method is capable

of identifying modal parameters within reasonable accuracy. The identified constant modal pa-

rameters can be readily used for reconstruction of second-order models (FE models) or mode

decomposition and reconstruction of single-mode dominant hysteresis loops.

Finally, the presented general mode identification procedure can be easily implemented into

more complex MDOF systems as it does not need to rely on any of physical parameters.
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CHAPTER 3

Input-output modal parameter identification

3.1 Introduction

Structural health monitoring (SHM) based on modal parameter identification is a well estab-

lished and commonly used technique used for monitoring of civil structures [105, 106, 120,

149, 161, 166]. Structural stiffness variations occurring due to material degradation, crack for-

mation or change in boundary conditions is represented by the change in modal properties,

which can be identified using one of several well developed methods. The eigensystem realiza-

tion algorithm (ERA) [99] and its combination with natural excitation technique (NExT/ERA)

[43,100,101,154], the Observer/Kalman Filter Identification (OKID) [103,155,156], and auto-

regressive functions [130, 157–159] are some of the more commonly used modal parameter

identification techniques for linear time-invariant systems.

Most modal parameter identification techniques are developed for stationary, broadband

white noise excitations. However, earthquake excitations are relatively short, non-stationary

and have a specific frequency content, and large events load to non-linear response, limiting

successful implementation of these approaches. However, only a few studies have been carried

out to identify modal parameters of non-linear time-variant systems [106, 108, 109, 167–170].

This chapter presents a new modal parameter identification approach based on mode de-

composition over short windows, enabling non-linear system parameters to be tracked. It tracks
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modal frequencies and mode shapes within relatively short time windows by re-evaluating the

relevant mode shapes. Approximated time-varying mode shapes can also be obtained and used

to decompose the modes, to separate and reconstruct individual single mode hysteresis loops

for SHM using hysteresis loop analysis (HLA) [18, 147].

3.2 Method

3.2.1 Mode decoupling

Section 2.2.1 demonstrated if identification of the jth mode (Φ̂(:, j) = Φ(:, j)) is possible and

the modes j = 1...m contribute to the total response with significant energy, the following partial

decomposition can be achieved:

X p,m =



1 0 · · · 0 · · · α1,n

0 1 · · · 0 · · · α2,n

· · · · · · · · · · · · · · · · · ·

0 0 · · · 1 · · · αm,n


·X =

[
Im×m A

]
·X = A ·X (3.1)

where A =

[
Im×m A

]
is a m×n mode scaling matrix. Thus, the ith modal response will consist

of the ith mode itself and scaled modes (m < j≤ n) that are omitted by a perfectly approximated

(Φ̂ = Φ) mode shape matrix (Φ̂). The contribution of these other (m < j ≤ n) modes is thus,

ideally, equal to zero or their contribution of energy to the response can be assumed negligible.

A previous chapter introduced a novel method, which performed robustly in identifying the

modal parameters of a linear time-invariant systems using long duration output-only measure-

ments. In this chapter, an innovation is introduced, which allows for identification of non-linear

time-variant systems by analysing the response over relatively short time windows using the

knowledge of the input excitation measurements to enable accurate identification.
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3.2.2 Input-output identification

Assuming the absolute acceleration is measured, Ẍabs = Ẍ−rẌg, where Ẍ is the relative acceler-

ation, r is the influence vector and Ẍg is the input excitation, the decomposed modal acceleration

response of Equation (3.1), Ẍ p,m, can be transformed into the frequency domain and expressed

as a function of the approximated mode shape matrix, Φ̂:

Y abs(Φ̂) =
∣∣FFT (Ẍ p,m)

∣∣= ∣∣Ẍ p,m ·WFFT
∣∣= ∣∣Φ̂−1 · Ẍabs ·WFFT

∣∣ (3.2)

where WFFT is the Fourier transformation matrix defined WFFT (n,k) = W (n−1)(k−1)
N where

WN = e(−2πi)/N , (n= 1. . .N), N is the discrete length of the monitored signal X , and k = 1. . .K,

where K is the number of frequency bins in the analysis, and is a function of N and sampling

rate.

Similarly, the same decomposition can be applied to the relative modal response, which can

then be transformed into the frequency domain:

Y rel(Φ̂) =
∣∣Φ̂−1 · Ẍ ·WFFT

∣∣ (3.3)

As a result Y abs(Φ̂) =

[
yabs

1 yabs
2 · · · yabs

m

]T

and Y rel(Φ̂) =

[
yrel

1 yrel
2 · · · yrel

m

]T

are

m×K matrices, where each row of Y abs(Φ̂) and Y rel(Φ̂) represents the receptance and iner-

tance frequency response spectrum (FRS) of each mode, respectively. Notation used in the

superscript, abs and rel, refer to FRS extracted from the absolute and relative response data.

Hence, in the case of a perfect identification, Φ̂=Φ, the FRS of each mode, yi, will represent

a Single-Degree-of-Freedom (SDOF) linear time-invariant (LTI) mechanical system, which will

contain no poles/residuals from the other modes. Receptance and inertance FRS of the ith mode

can be analytically defined [37]:

yabs
i (ω) = F(ω) ·Hi(ω) = F(ω) · Qi

ω2
i −ω2 +2iξ ωωi

yrel
i (ω) = F(ω) ·Ai(ω) = F(ω) · −Qi ·ω2

ω2
i −ω2 +2iξ ωωi

(3.4)
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where F(ω) is the Fourier transformation of an input excitation, Hi(ω) and Ai(ω) are the re-

ceptance and inertance frequency response functions (FRF) for the ith mode, respectively, ωi is

the natural frequency and ξi is the ith modal damping ratio and finally Qi is the scaling constant.

Again, according to Equation (2.7), in the case of a perfect identification of the ith mode,

Φ̂(:, i) = Φ(:, i), the FRS of all the other modes ( j = 1...m, j 6= i) will contain no residuals/poles

from the ith mode. The residual energy can typically be quantified by analysing the receptance

FRS, Y abs, which is obtained using Equation (3.2) based on output-only measurements. How-

ever, the receptance FRS has a considerable amount of residual spectral energy in the frequency

range below the natural frequency (ω < ωi), which represents a pseudo-static part of the modal

response. This residual spectral energy might be relatively small for lightly damped structures

subjected to broadband white-noise ground excitation, which has a constant frequency distribu-

tion in the frequency domain, F(ω) =Const.

However, input excitations, such as earthquake, or even imperfect white noise excitation,

will often contain a specific frequency spectrum with variable energy distribution across the

frequency spectrum. As a result, the modes will be excited at different intensity, resulting in a

unique modal receptance FRS, yabs
i (ω). The higher modes may thus contain considerable resid-

ual energy in the frequency range ω < ωi, which can make the detection of coupling modes a

challenging task using only the receptance FRS, Y abs.

Better pole detection can be achieved using the inertance FRS, Y rel , where appropriate,

obtained using Equation (3.3). Spectral amplification factors below the natural frequency,

ω < ωi, are significantly smaller in the inertance FRF, Ai(ω), compared to receptance FRF,

Hi(ω), as shown in Figure 3.1. The opposite holds above the natural frequency, ω > ωi , where

Ai(ω)> Hi(ω).

Hence, more accurate mode shape identification can be implemented when applying these

two different FRS. For example, the ith mode modal identification can be carried out when using
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Figure 3.1: Receptance (left) and inertance (right) FRS and FRF for a 3DOF system

absolute acceleration FRS of j = 1. . . i−1 modes and relative acceleration FRS of j = i+1. . .m

modes. Figure 3.2 shows an example of a complete identification procedure for a 3 DOF system.

Thus, providing the ith mode shape coefficients can be identified exactly, Φ̂(:, i) = Φ(:

, i), per Equation (2.7), the FRS from the other modes will contain no pole/residuals from

the ith mode. Hence, the approximated mode shape coefficients for the ith mode, Φ̂(:, i) =[
φ̂1,i φ̂2,i · · · φ̂m,i

]T

, can be found by solving the following optimization problem:

(Φ̂(:, i)) = argmin
Φ̂(:,i)

(Corriso,i(Φ̂(:, i))) (3.5)

where the objective function is defined:

Corriso,i(Φ̂(:, i)) =
i−1

∑
j=1

wi
j · corriso,abs,i

j (Φ̂)+
m

∑
j=i+1

wi
j · corriso,rel,i

j (Φ̂) (3.6)

where corriso,abs,i
j (Φ̂) and corriso,rel,i

j (Φ̂) are the cross-correlation coefficients between the ith

and the jth mode FRS, where the terms in the subscript abs and rel refer to FRS of absolute and

relative modal responses respectively, and wi
j is the jth mode scaling factor calculated using

Equation (2.17) from Chapter 2. Ideally, perfect identification of Φ̂ = Φ would lead to correla-

tions equal to zero (corriso,abs,i
j = corriso,rel,i

j = 0), however, due to noise, mode proximity and

system non-linearities the correlation coefficients will result in some small values.
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Cross correlation vectors are calculated:

corriso,abs,i(Φ̂) = yiso,env
i (Φ̂) ·Y n,abs(Φ̂)T

corriso,rel,i(Φ̂) = yiso,env
i (Φ̂) ·Y n,rel(Φ̂)T

(3.7)

where yiso,env
i is the lower envelope of ith mode isolated inertance and receptance FRS, calcu-

lated:

yiso,env
i (ω) = min

(
yn,iso,loc

i (ω); yn,iso,abs
i (ω)

)
(3.8)

where yn,iso,loc and yn,iso,abs are the ith mode unit normalized isolated receptance and inertance

FRS calculated:

yiso
i (Φ̂) = yi(Φ̂) ·diag(Ni)

yn,iso
i (Φ̂) =

yiso
i (Φ̂)

max(yiso
i (Φ̂))

(3.9)

where Ni is K× 1 shape vector used to segregate a given mode’s FRS to calculate its energy

without other modes contributing calculated using Equation (2.21) presented in Chapter 2.

The extended objective function defined in Equation (3.6) can be adopted in situations where

the input excitation, Xg, is known and can be regarded as a general equation for the objective

function. If only the output measurements are available, the second term, corriso,loc,i
j , can be

replaced by the first term, corriso,abs,i
j , to account for output-only measurements.

Overall, the method allows for tracking the relevant mode shapes throughout the whole ex-

citation, thus eliminating the need of ambient vibration data, which is sometimes not available

shortly after the event or is not suitably broadband white noise. In addition, identification based

on ambient vibrations might not reveal the real state of the structure, as the response to ambient

loads might be too low to engage the full structural response.
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3.2.3 Initial mode identification and mode evolution

Initial modal parameter identification, when no prior knowledge about the structure is known,

can be described as a step process shown in Figure 3.3. For real structures, the modal parame-

ters can be initialized by analysing long duration ambient response data, which will a provide

an good approximation of the modes shapes and frequencies. The identified parameters will be

a good basis/starting point for analysing the response to strong ground motion, which usually

triggers a non-linear time-variant behaviour within relatively short time segment. In such cases,

the modal parameters can be re-evaluated by analysing short time windows of the response.

Identification of modal parameter evolution is a step process, as shown in the flowchart of Fig-

ure 3.4:

Step 1. Data decomposition and modal parameter analysis: Using the approximated

mode shape matrix, Φ̂0 = Φ̂init , from the initial modal parameter identification, perform an ap-

proximate mode decomposition using Equation (2.3) , to get X p,m =

[
xp,1 xp,2 · · · xp,m

]T

,

where xp,i is the modal response of ith mode. Initialize the mode number by setting i = 1.

Step 2. Data segmentation: Select the modal response of the ith mode, xp,i, and identify the

peak points and zero crossing points. Select an approximate window length based on the period

of the lowest mode, L = c · T1, where T1 is the period of the lowest mode and c is the factor

defining the number of cycles to be considered. Segment the response based on the identified

peaks, selected window length and window overlap ratio. Modify the length of each segmented

window, by finding the nearest zero crossing points, thus ensuring that a full number of cycles

of the ith mode are analysed. Initialize window number by setting k = 1.

Step 3. Modal parameter updating: Select the kth time window, update the mode shape

matrix Φ̂k = Φ̂k−1. Identify the modal frequency with the strongest energy from the ith modes’s

FRS, yabs
i (ω), and create shape function, Ni, using Equation (2.21) for ith mode, which will

segregate the FRS around the selected modal frequency. Calculate the isolated FRS for mode i,

yiso,env
i (Φ̂k) , using Equation (3.8). Use Equation (3.6) to calculate the initial correlation coeffi-
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Step 1: Collect acceleration data X =
[
x1 x2 · · · xm

]T , create a random or-
thogonal mode shape matrix, Φ̂init , transform the data into the frequency domain,
Y , using Equation (2.3). Initialize mode number i = 1.

Step 2: Pick the mode, ye,max, with the strongest energy, where emax is
the mode index number. Rearrange the approximated mode shape matrix,
Φ̂init (:, [i emax]) = Φ̂init (:, [emax i])

Step 3: Identify the peak from the ith mode FRS, yi , and create shape function,
Ni, using Equation (2.21) for ith mode. Calculate yiso,env

i (Φ̂init) using Equation
(3.8). Calculate the initial correlation coefficient Riter=0 = Corriso,i

(
Φ̂init(:, i)

)
using Equation (3.6).

Step 4: Create optimization matrix, Φ̂orth = Φ̂k. Define the optimization
matrix ith column as a function of φ̂ orth

j,i , where j = 1...m, Φ̂orth(:, i) =[
φ̂ orth

1,i φ̂ orth
2,i · · · φ̂ orth

m,i
]T

. Define the correlation coefficient as a function of
φ̂ orth

j,i

Corriso,i
(
Φ̂orth(:, i)

)
=Corriso,i

([
φ̂ orth

1,i φ̂ orth
2,i · · · φ̂ orth

m,i
]T)

.

Step 5: Solve linear unconstrained optimization problem using Equation (3.5)
and obtain the optimized mode shape coefficients for the ith mode, Φ̂orth(:, i)

Step 6: Orthogonalize the remaining mode shape coefficients ( j = 1...m, j 6= i)
with respect to identified mode shape coefficients, Φ̂orth(:, i), using the modified
Gram-Schmidt method.

φ̂ j
orth

= φ̂ j− φ̂i ·
φ̂ j

T · M̂ · φ̂i

φ̂i
T · M̂ · φ̂i

Step 7: Calculate the total correlation coefficient, Riter = Corriso,i
(
Φ̂init(:, i)

)
using Equation (3.6), and check the convergence: Conviter =

Riter−1−Riter
Riter−1

.

Step 8: Update the approximated mode shape matrix’s ith mode and the rest of
unidentified modes (uidm), Φ̂init(:, [i uidm]) = Φ̂orth(:, [i uidm]).

Riter < 1e−6

Is the ith mode the
newly identified?

Step 9: Verify the
newly identified mode
and re-evaluate all the
identified modes .

Step 10: Step to next mode.

iter = 1

Yes

Yes i=1

No

i=i+1

iter = iter+1

O
pt

im
iz

at
io

n
lo

op

M
od

e
re

-i
te

ra
tio

n
lo

op

N
ew

m
od

e
id

en
tifi

ca
tio

n
lo

op

Figure 3.3: Flow chart for initial mode-by-mode optimization for any given time window
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cient Riter=0 =Corriso,i (Φ̂k(:, i)
)
.

Step 4*. Mode shape re-evaluation: Perform mode optimization/re-evaluation by imple-

menting the steps Step 4 to Step 8 as described in Figure 3.4 for all the selected time windows.

Step 9. Stepping to next mode: Step to next mode, i = i+1, and return to Step 2.

Initial modal parameter identification per Figure 3.3

Step 1: Use the mode shape matrix indentified during the initial optimization
as the starting point, Φ̂0 = Φ̂init . Perform mode decomposition using Equa-
tion (2.3) to get the approximate variation of each modal parameter X p,n =[
xp,1 xp,2 · · · xp,n

]
. Initialize mode number i=1.

Step 2: Select the modal response of the ith mode, xp,i, and identify the peak
points and zero crossing points. Segment the response into seperate window
based on identified peaks and zero crossing points. The length of each time win-
dow is re-defined by the distance between zero crossing points.

Step 3: Update the mode shape matrix Φ̂k = Φ̂k−1. Identify the peak from ith

mode FRS, yi , and create shape function, Ni, using Equation (2.21). Calcu-
late yiso,env

i (Φ̂k) , per Equation (3.8). Calculate the initial correlation coefficient
Riter=0 =Corriso,i

(
Φ̂k(:, i)

)
using Equation (3.6).

Step 4-8: Perform optimization by implementing Step 4 to Step 8 (optimization
loop), as shown in Figure 3.3.

k < TotWindowNumber

Step 9: Step to next mode.
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Figure 3.4: Flow chart for identification of modal parameter evolution
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3.3 Method validation and analyses

3.3.1 Test structure

The proposed method is validated analytically using a 3D FE model representing a simplified

model of a bridge pier structure, as shown in Figure 2.5, which is used for method verification

in Chapter 2. Thus, for brevity, structural description and model assumptions are not provided

herein. Detailed description of the structure is provided in Section 2.3.1.

3.3.2 Input ground motions and input parameters

Modal parameter evolution is identified for a response to an input ground motion, which con-

sists of 120 seconds long broadband 2.5%g RMS white noise excitation with constant frequency

distribution, as shown in Figure 3.5b, and a 50 seconds long earthquake excitation with peak

ground acceleration (PGA) of 0.17g with frequency content, as shown in Figure 3.5c applied

in x and y directions. The modal parameters are initialized by carrying out an initial modal

parameter identification based on output-only identification using response measurements from

the first 30 seconds (of 120) of white noise excitation.

Modal parameter identification is carried out for short time windows to track the evolution

of the modal parameters. In the presence of any significant damage occurring in the structure

during the ground excitation, changes in the modal parameters (frequency and mode shape coef-

ficients) are expected to take place. To demonstrate the robustness of the method when analyz-

ing short time windows, first, the modal parameter identification is carried out of for the white

noise excitation data, where a linear time-invariant system is simulated. Second, the identifi-

cation is continued for the earthquake excitation induced response, where damage takes place.

To simulate the damage, an abrupt decrease in stiffness around the y axis (Iy,damage = 0.3Iy) is

applied to the bottom 2.5m segment of the structure during the earthquake excitation, which

represents the stiffness of a fully cracked section of the RC column recommended by [171].

The numerical simulation is implemented using Newmark-β integration method with sampling
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Figure 3.5: (a) Input ground motion time history in x direction and frequency spectra for (b) white noise
2.5%g RMS and (c) selected earthquake ground motions

frequency of f = 200Hz.

Modal parameter evolution is identified assuming the input ground motion is measured. For

comparison, the identification is also carried out based on output-only measurements, which

will demonstrate the advantages of extended objective function in Equation 3.6.

The identification is carried out using three different window lengths with 50% overlap. The

selected window lengths are 5T1 and 20T1, where T1 is the estimated period of the first mode,

based on initial mode shape identification. To represent more realistic data acquisition situa-

tions, different levels of random RMS noise are added to the simulated response and ground

motion inputs. The RMS noise is a random normal distribution of the square root of the average

of the clean (no noise) simulated measurement with 99.7% of random values within the defined

noise level. For brevity, the detailed identification results are presented only for the cases with

added 5% and 20% RMS noise. In addition, two uncertainty levels of the assumed mass ma-

trix, M̂, are analyzed: 1) mass matrix is known exactly (0% uncertainty), and 2) the difference

between assumed and exact mass matrices is 30%. It should be noted that the assumed mass
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matrices affect the orthogonalization process, as described in Step 6 in the flowchart of Figure

3.3, and the calculation of the weighting factors, defined in Equation (2.17).

Finally, three different peak segregation widths (W = 5,10,20), as shown in Figure 2.1 and

defined in Equation (2.21), are tested to demonstrate the effect on identification accuracy. The

identification accuracy is quantified by the absolute mean error (MAE). For example, MAE for

the identified frequencies of the ith mode is calculated:

MAE f ,i =

K

∑
k=1

∣∣ f model
i (k)− f ident

i (k)
∣∣

K
(3.10)

where K is the total number of identified samples, f ident
i (k) is the identified modal frequency of

ith mode at time instant k and f model
i (k) is the modal frequency obtained from the simulation.

A summary of various parameters, affecting the outcome of identification, considered in this

study is shown Table 3.1.

Table 3.1: A list of parameters used for modal parameter identification

Parameter Units Equation Tested values

RMS signal noise % - 0/5/10/15/20/25
Window length, L s - 5T1,10T1,20T1

Peak segregation width, W Hz (2.21) 5∆w, 10∆w, 20∆w
Uncertainty in mass matrix, M % (2.17) 0,30

3.4 Results

3.4.1 Modal parameter evolution

The simulated time history of the four monitored DOF’s of the analysed structure are shown in

Figure 3.6. Two excitations comprise the total input time history: 1) the time segment 0-120s

corresponds to WN excitation and 2) the time segment 120-200s corresponds to earthquake

excitation. The damage is introduced at t = 135s.
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Undamaged Damaged

Figure 3.6: Absolute acceleration response time history of the selected DOFs (φ1 and φ3) of time-variant
structure subjected to white noise (0-120s) and earthquake (120-200s) excitations, with the damage
occurring at t = 135s

The identified modal frequency evolution of all the modes is shown in Figure 3.7. Mode

shape coefficients are unit normalized, so variation is seen only in three DOFs of four. The

identification is based on measurements with 5% RMS noise level. The response data is win-

dowed using a L = 5T1 length Hanning window. The identified modal frequencies demonstrate

significant scatter, which is quantified by the mean absolute error (MAE), defined in Equation

(3.10). However, the overall trend of frequency evolution is clear and the frequency shifts for

Mode 1 and Mode 3 can be easily seen at the onset of the assumed damage.

Figure 3.8 shows mode shape evolution identified based on response measurements with

added 5% RMS noise. The identified mode shape coefficients demonstrate relatively good con-

sistency with the true values, especially for Modes 1 and 2. Small, arbitrary identification errors

can be observed for Modes 3 and 4. However, changes in mode shape coefficients can be clearly

seen at the onset of the damage. The modal parameter identification errors could be associated

to the chosen relatively short windows, which typically causes poor frequency resolution when

transforming the response data into the frequency domain. To reduce these errors, the identifi-

cation is repeated for longer response window segments.

Figure 3.9 shows the identified frequency evolution of all the modes for response measure-

ments with 5% RMS signal noise. The response data is windowed using a L = 20T1 length

Hanning window. The identified modal frequency evolution demonstrates significantly smaller

errors, MAE f ,i, for all the modes. Due to the longer response segment windows used, the identi-

62



MAE
f1

=0.071Hz

MAE
f2

=0.066Hz

MAE
f3

=0.083Hz

MAE
f4

=0.092Hz

0 20 40 60 80 100 120 140 160 180

Time,s

0

1

2

3

4

5

6

7

8

9

Fr
eq

ue
nc

y,
 H

z

f1,id f2,id f3,id f4,id fi,model

Figure 3.7: Modal frequency evolution identified based on 5% RMS signal to noise ratio using L = 5T1
window length, effective peak width W = 5 and assumed mass matrix with 30% error

Mode: i=1

MAE
(1,1)

=0

MAE
(2,1)

=0.004

MAE
(3,1)

=0.004

MAE
(4,1)

=0.002

-0.2

0

0.2

0.4

0.6

0.8

1

1,i 2,i 3,i 4,i model

Mode: i=2

MAE
(1,2)

=0.007

MAE
(2,2)

=0.003

MAE
(3,2)

=0

MAE
(4,2)

=0.001

-0.2

0

0.2

0.4

0.6

0.8

1

Mode: i=3

MAE
(1,3)

=0

MAE
(2,3)

=0.012

MAE
(3,3)

=0.017

MAE
(4,3)

=0.018

60 80 100 120 140 160

Time,s

-0.2

0

0.2

0.4

0.6

0.8

1
Mode: i=4

MAE
(1,4)

=0.007
MAE

(2,4)
=0.004

MAE
(3,4)

=0.01
MAE

(4,4)
=0

60 80 100 120 140 160

Time,s

-0.5

0

0.5

1

Figure 3.8: Mode shape evolution identified based on 5% RMS signal to noise ratio using L = 5T1
window length, effective peak width W = 5 and assumed mass matrix with 30% error
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fication takes longer to converge to the true values when damage takes place. Figure 3.10 shows

the mode shape coefficients identified for the L = 20T1 long time segments. The use of longer

response segments yields significantly more accurate results for Modes 3 and 4.

To demonstrate methods ability to identify modal parameters in the presence of high signal

noise content, the identification is repeated for the simulated response superimposed with 20%

RMS white noise. Figure 3.11 shows the identified modal frequencies and Figure 3.12 shows

the identified mode shape evolution based on L = 20T1 long time segments. The identified

parameters demonstrate relatively good accuracy. Larger identification errors in mode shape

coefficients can be observed for Modes 3 and 4, which can most likely be associated to lower

signal-to-noise (S/N) ratios. High modes inherently have lower spectral energy compared to the

lower modes, leading to significantly lower S/N ratios and larger identification errors.

3.4.2 Output-only identification

Modal parameter identification is carried out based on response measurements only to demon-

strate the advantages of introduced extended objective function defined in Equation (3.6). The

identification is implemented for simulated response measurements superimposed with 5%

RMS noise and segmented using L = 20T1 window length. The identified modal frequencies

shown in Figure 3.13 show very good consistency. This result is expected, as the modal fre-

quency identification is entirely based on absolute response measurements in any case. The

identified mode shape coefficients shown in Figure 3.14 demonstrate larger deviations from the

true values. To be more precise, the errors are larger only for the first two modes. Very poor

accuracy can be seen for the identified mode shape evolution of the first mode. Meanwhile, the

identification of the upper two modes yields nearly exact results as the identification based on

input-output measurements. Hence, the extended objective function allows more for accurate

reconstruction of the lower mode shapes for these shorter segmented responses, whereas the

identification based on the objective function formulated using only the output measurements

is capable of accurate reconstruction only for the higher modes, presenting potential limitation
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Figure 3.9: Modal frequency evolution identified based on 5% RMS signal to noise ratio using L = 20T1
window length, effective peak width W = 5 and assumed mass matrix with 30% error
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Figure 3.10: Mode shape evolution identified based on 5% RMS signal to noise ratio using L = 20T1
window length, effective peak width W = 5 and assumed mass matrix with 30% error
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Figure 3.11: Modal frequency evolution identified based on 20% RMS signal to noise ratio using L =
20T1 window length, effective peak width W = 5 and assumed mass matrix with 30% error
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Figure 3.12: Mode shape evolution identified based on 20% RMS signal to noise ratio using L = 20T1
window length, effective peak width W = 5 and assumed mass matrix with 30% error
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of other ambient response, output-only methods.

3.4.3 Parameter sensitivity analysis

A parameter study is carried out to investigate the influence of different parameters on identifi-

cation accuracy based on input-output measurements. Modal parameter evolution identification

is carried out for 6 different white noise RMS levels (0%, 5%, 10%, 15%, 20% and 25%) and

3 different data segmentation lengths (L = 5T1,L = 10T2 and L = 20T1). The influence of ef-

fective peak isolation width, W , is also investigated. And finally, two different levels of mass

matrix uncertainty are considered. The accuracy of identification is quantified by estimating the

total mean absolute error (MAE) for the identified frequencies and mode shape coefficients:

MAEtot
f =

4

∑
mode=1

MAEmode
f

MAEtot
Φ =

4

∑
mode=1

4

∑
do f=1

MAEΦ(mode,do f )

(3.11)

where MAEtot
f and MAEtot

Φ
is the total mean absolute error of the identified frequencies and

mode shape coefficients, respectively.

Figure 3.15 shows the total MAE of the identified frequencies with respect to the applied

noise estimated for different sets of parameters. The identified modal frequencies show very

low sensitivity to the applied noise. However, a significant reduction in the total MAE, thus

increase in accuracy, is achieved by increasing the length of the time segments. In addition, the

effective peak width, W , and the accuracy of the assumed mass matrix, M̂, has no or very small

effect on the modal frequency estimation.

Figure 3.16 shows the total MAE of the identified mode shape coefficients with respect to

applied noise estimated for different sets of parameters. The identified mode shapes demonstrate

larger errors with increasing levels of noise. However, the errors can significantly be reduced

by analyzing the structural response in larger time segments. The selection of effective peak
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Figure 3.13: Modal frequency evolution identified based on 20% RMS signal to noise ratio using L =
20T1 window length, effective peak width W = 10 and assumed mass matrix with 30% error
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Figure 3.14: Mode shape evolution identified using output-only measurements based on 5% RMS signal
to noise ratio using L = 20T1 window length, effective peak width W = 5 and assumed mass matrix with
30% error
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Figure 3.15: (a) Total mean absolute error (MAE) of identified frequencies estimated for different RMS
noise levels, window lengths (L) and peak widths (W) a) assuming the mass matrix, M, is known and b)
assuming 30% error in mass matix estimation

width, W , has a very similar effect on the total error, as the application larger factors tends to

reduce the errors. The parameter study also indicates that the accuracy of the assumed mass

matrix, M̂, has very little or no effect on the MAE of identified mode shape coefficients.

3.4.4 Overall discussion and limitations

Modal parameter identification for a time-variant system is presented and numerically validated

by analysing short overlapping response time windows for different levels of noise. The iden-

tification results have shown the method can capture sudden changes in modal parameters if

short response windows are analysed. However, the parameters identified based on short time

windows demonstrate larger deviations from the simulated true values. However, further results

indicate identification accuracy can be improved by increasing the length of the time windows

or/and the effective peak isolation width, W .

Systems with mass disparity require reasonable estimation of the mass matrix, to ensure
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Figure 3.16: (a) Mean absolute error (MAE) estimated for differerent RMS noise levels, window lengths
(L) and peak widths (W) a) assuming the mass matrix, M, is known and b) assuming 30% error in mass
matix estimaiton

mass scaled orthogonality, per Equation (2.17). These results indicate that even 30% error in

mass matrix estimation still provides very comparable identification results, which is a very

robust result. It should be noted that for systems represented by a mass matrix with small dif-

ferences across different DOFs, an identity mass matrix can be adopted, as a result, avoiding

complexity. Finally, all the results demonstrate relatively good accuracy for all added RMS

noise levels.

It should be noted that the window length is limited not only by the period of the lowest

mode, T1, but also by the properties of FFT transformation to ensure enough frequency bins

ot get a good resolution FFT. Thus, the analysis of short time windows inherently provides

poor frequency resolution, which in turn affects the outcome of identification. In contrast, the

analysis of long time windows provides good frequency, but poor time resolution, which is a

limiting factor for time-variant systems, with abrupt changes in modal parameters. Thus, for

real life structures, the method can effectively be applied by employing different data segmen-

tation strategies. For example, low intensity response data, where a linear time-invariant system
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behavior is assumed, can be segmented using long time windows (L = 10...20T1). High inten-

sity response time segments, where a non-linear or degrading system behavior is expected, can

be segmented using short time windows.

The proposed method operates in the modal space and is based on mode decomposition,

thus a linear time-invariant system (LTI) is assumed throughout the analyzed time window.

Strong ground motion, however, will often trigger the inelastic system behavior, meaning that

the principle of mode superposition will not be valid any more. However, most of structures

exhibit a non-linear behavior only for a very short time period and the non-linear part comprises

a very small part of the whole hysteresis loop. Thus, the modal parameters, identified for short

response windows of a non-linear time-invariant system, will represent an average modal pa-

rameters that provide the best mode decoupling.

3.5 Summary

In this chapter a novel input-output modal parameter estimation technique is presented, which

is extension to output-only modal identification technique introduced in Chapter 2. The method

enables identification and continuous tracking of the modes participating in the response with

significant energy. The method tracks the dominant modes by re-evaluating the modal frequen-

cies and mode shape coefficients over short time windows. Hence, the approach is capable of

identifying the modal parameters for linear and non-linear systems. The method can perform as

output-only modal parameter identification technique using the ambient load induced vibrations

and more importantly as input-output technique for earthquake generated non-linear response.

Thus, the presented approach can provide a better insight into structures subjected to strong

ground motion events.

The method is validated using a simulated data for a 4 DOF time-variant non-linear system

representing a simplified version of a bridge pier. The results show the method enables iden-

tification and tracking of time varying modal parameters within good accuracy, which clearly
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indicated the damage.

The comparison between input-output and output-only methods shows the extended method

enables more accurate identification of the mode shape evolution for the lower modes. In con-

trast, mode shape identification of the higher modes yields the same or very marginal improve-

ment in accuracy. In addition, the extended method provides the same identification accuracy

of modal frequency evolution as the output-only method.

Overall, the input-output method performs robustly for all levels of noise added to the sim-

ulated response. The identified modal frequencies show very low sensitivity to added noise,

whereas the identified mode shape coefficients demonstrate larger errors with increasing lev-

els of added noise. These errors can be reduced by performing optimization over longer time

windows or utilizing wider effective peak isolation widths. However, these parameters should

be carefully chosen by the operator when identifying MDOF systems exhibiting strong non-

linearities and/or systems having closely spaced modes.
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CHAPTER 4

Non-linear analysis using fiber formulation and modal

parameter identification

4.1 Introduction

Modal parameter identification using one of several well-established system identification meth-

ods [99, 100, 110, 112, 121, 155] is generally limited to linear structures excited by broadband

white noise loads of significant time duration. Thus, these methods are not able to estimate

modal parameters when structures are subjected to unpredictable, relatively short duration earth-

quake loads. Particularly if they trigger non-linear response behavior.

The modal parameter identification technique presented in Chapter 3 was validated for a

simple 4DOF simulated linear time-variant structure with abrupt stiffness degradation. The

results show the method is able to capture changes in modal parameters with relatively good ac-

curacy. However, structures excited by strong ground motion enter non-linear response regimes

multiple times. As a result, the stiffness matrix may exhibit significant variability, which trans-

fers to variability in mode shape coefficients and frequencies.

To explore this variability of modal parameters, a more sophisticated non-linear dynamic

analysis based on fiber element formulation is carried out to simulate the structural response

and provide synthetic data for subsequent identification/SHM. These models offer great accu-
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racy and resolution in simulating and understanding non-linear response. Finally, time-varying

modal parameters are identified using the input-output method presented in Chapter 3, and

compared with simulation results from the fiber model.

4.2 Methodology

4.2.1 FE modeling using fiber formulation

The proposed modal parameter identification is validated for an FE model assembled using fiber

elements. Fiber elements are also called distributed plasticity models, whose stiffness behaviour

is purely derived from material stress-strain behaviour [172]. In contrast to concentrated plas-

ticity elements, fiber sections can take into account the coupling behaviour between varying

axial forces and bending moments [173]. The main advantage of the fiber element formulation

is that it does not require determining the length of the plastic zone, as the plasticity can be

formed at any element integration/control point.

However, the traditional fiber element formulation suffers from the following deficiencies [174–

176]:

• Does not provide coupling between shear and flexural behavior.

• Assumes perfect bond between steel bars and surrounding concrete, which is typically

partially lost at the onset of crack formation.

• Does not take into account tension stiffening.

• Does not capture strength and/or stiffness degradation associated with bond slip.

• Does not capture bar pullout (loss of stiffness) at the interface of beam-column connec-

tions and footing.

These disadvantages are solved utilizing more sophisticated fiber models [176–178]. However,

the main purpose of this study is to demonstrate the sensitivity of modal parameters with respect

to non-linear behavior, which can conveniently be modelled using typical fiber elements.

Non-linear numerical analysis of FE models incorporating fiber elements can be carried
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out using a Newmark-Raphson iteration scheme. Fiber element state determination is imple-

mented inside a Newton-Raphson iteration scheme as an additional loop after incremental nodal

displacements are computed. More specifically, element state determination based on hybrid

formulation is an iterative process determining the state of section deformations and resisting

forces at selected integration points, which meet force equilibrium and displacement compati-

bility requirements. Thus, the whole numerical analysis consists of two loops representing the

global/structure’s level state determination and element level state determination. The element

level state determination iteration loop is initialized after incremental nodal displacements are

determined and the overall process is shown in Figure 4.1.

4.2.2 Modal parameter identification

Modal parameter identification of the non-linear time-varying system is carried out using the

methodology presented in Section 3.2.2. The evolution of each mode shape can be identified

by re-evaluating the mode shapes over selected relatively short time windows using Equation

(3.6). This procedure can be described as a step process, as shown in Figure 4.2.
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Incremental nodal displacements of
fiber elements from structures state
determination loop:

∆q1 = Aassembly ·∆x

Step 1: Determining element nodal
force increments:

∆Q j = F−1 ·∆q j

Step 2: Determining element sec-
tion force increments using force
interpolation functions b(x):

∆D j(x) = b(x) ·∆Q j

Step 3: Determining element sec-
tion deformations based on section
flexibility f j:

∆d j(x) = f j(x) ·∆D j(x)

d j(x) = d j−1(x)+∆d j(x)

Step 4: Determining fiber strains
assuming section remains plain:

e(x) = l(x) ·d j(x)

Step 5: Determining fiber stress
and tangent stiffness based on de-
termined strain levels e(x) using
constitutive material models:

σ f ib(x)⇒ σmaterial(ε f ib)

E f ib(x)⇒ Ematerial(ε f ib)

Step 6: Finding section resisting
force and section tangent stiffness :

Dr(x) =


N
∑

f ib=1
σ f ib(x) ·A f ib

N
∑

f ib=1
σ f ib(x) ·A f ib · z f ib


Step 7: Finding section unballanced
forces :

D j
u(x) = ∆D j(x)−Dr(x)

Step 8: Calculating residual section
deformation and resulting element
residual displacement:

r j+1(x) = f j(x) ·D j
u(x)

s j+1 =
∫ L

0
bT (x) · r j(x) ·dx

Step 9: Calculating element flexibil-
ity and stiffness matrices:

F j =
∫ L

0
bT (x) f j(x)b(x)dx

K j =
[
F j]−1

Step 10: Check convergence

Extracting fiber element nodal forces

∆Q j
tot , assembling structure resisting

force vector and finding unbalanced

forces.

j=1

j= j+1; ∆q j=s j

Re-iterate fiber element

Figure 4.1: Flow chart for fiber element state determination loop implemented inside Newton-Raphson
structure’s integration loop [173]
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Initial modal parameter identification per Figure 3.3

Step 1: Use the mode shape matrix indentified during the initial optimization
as the starting point, Φ̂0 = Φ̂init . Perform mode decomposition using Equa-
tion (2.3) to get the approximate variation of each modal parameter X p,n =[
xp,1 xp,2 · · · xp,n

]
. Initialize mode number i=1.

Step 2: Select the modal response of the ith mode, xp,i, and identify the peak
points and zero crossing points. Segment the response into seperate window
based on identified peaks and zero crossing points. The length of each time win-
dow is re-defined by the distance between zero crossing points.

Step 3: Update the mode shape matrix Φ̂k = Φ̂k−1. Identify the peak from ith

mode FRS, yi , and create shape function, Ni, using Equation (2.21). Calcu-
late yiso,env

i (Φ̂k) , per Equation (3.8). Calculate the initial correlation coefficient
Riter=0 =Corriso,i

(
Φ̂k(:, i)

)
using Equation (3.6).

Step 4-8: Perform optimization by implementing Step 4 to Step 8 (optimization
loop), as shown in Figure 3.3.

k < TotWindowNumber

Step 9: Step to next mode.
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Figure 4.2: Flow chart for identification of modal parameter evolution

4.3 Validation study using simulated non-linear response

4.3.1 FE model

The proposed modal parameter identification method is validated analytically using a non-linear

FE model representing the full-scale 5-story reinforced cast-in-situ concrete building, shown in

Figure 4.3 [179]. The superstructure was designed to meet a performance target of 2.5% maxi-

mum inter-story drift ratio with a maximum peak floor acceleration of 0.8g.

The full-scale building has a plan dimensions of 11m by 8.1m and is 22.9m high. The mo-
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ment resisting frame consists of two bays (frame and gravity) in the shaking direction and one

bay in the transverse direction. The frame bay consists of moment resisting beams on each floor

with equivalent moment capacities, but different detailing, where the gravity bay comprises a

200mm thick concrete slab. Lateral stiffness is ensured by two concrete transverse shear walls

located on both sides of the elevator shaft. Steel bracing is added on the other side of the build-

ing between on the grid line C to prevent the structure from excessive torsional motion.

Due to the significant computational effort required to carry out a full non-linear analysis, a

simplified 2D model is used. More specifically, only one of two lateral load resisting frames is

modelled to simulate the response of the selected test structure. As a result, the adopted simpli-

fied 2D frame model does not account for over strength provided by two shear walls aligned in

transversal direction. However, the goal here is a non-linear validation, rather than accuracy to

a given experimental case that was stiff enough to provide a linear response.

In total, the FE model is assembled using 15 column fiber elements (C), 5 beam fiber ele-

ments situated in the load carrying bay and 5 elastic elements representing concrete slab situated

in the gravity bay, as shown in Figure 4.3. Slab elements are assumed to be elastic to reduce

computational demands as they have a negligible contribution to the lateral load carrying ca-

pacity. The effective width of the elastic slab element is assumed to be the width of column

element. Column elements are assumed to be rigidly supported at the base. The test structure

is designed according to the strong column-weak beam concept [179], where the main energy

dissipation and lateral load capacity is provided by beam elements (B1 to B5), which have dif-

ferent detailing for each floor, as shown in Figure 4.3. However, for simplicity, the FE frame is

modelled using only two different beam types (B1 and B5) with different flexural capacity, as

shown in Figure 4.4. All the elements are connected through rigid joints, which are offset by

the half height of the column element (Loffset = 0.33m).

Beam (B) and column (C) elements are modelled using a hybrid formulation, which: a)

ensures force equilibrium along the element; and b) satisfies displacement compatibility [173].
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Figure 4.3: Elevation and plan views of modelled full-scale test structure [179]
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Figure 4.4: Simplified 2D fiber model constructed using beam and column fiber elements

79



All the fiber elements are discretized into 5 integrations points. Material properties assigned

to fiber elements are summarized in Table 4.1. The cyclic stress-strain behavior of the steel

reinforcement material is described using Menegotto-Pinto constitutive model [180]:

σ
∗ = bε

∗+
(1−b)ε∗

(1+ ε∗R)
1
R

σ
∗ =

σ −σr

σ0−σr
ε
∗ =

ε− εr

ε0− εr

(4.1)

where b is the strain hardening ratio, ε∗ and σ∗ are the normalized strain and stress, respectively,

εr and σr are the stress and strain, respectively, at the last load reversal, R is the parameter

controlling the transition curve and takes into account Bauschinger effect:

R = R0−
a1εpl

a2 + εpl
(4.2)

where εpl is the plastic strain, a1 and a2 are the experimentally determined parameters.

Menegotto-Pinto steel stress strain model can be successfully implemented using the fol-

lowing parameters [173, 181]:

R0 = 20 a1 = 18.5 a2 = 0.15 b = 0.05 (4.3)

Table 4.1: Member properties used for 2D FE model

Member
name

Dimensions,
m

Cover
thickness, m

Length, m
Concrete
strength,
fc0,MPa

Steel strength,
fy,MPa

B1 0.70x0.30 0.05 4.48 40 480
B5 0.70x0.30 0.05 4.48 40 450
C1 0.66x0.46 0.05 3.56 40 450
S1 0.20x0.46 - 4.48 - -

Concrete material cyclic stress-strain behavior is defined using the concrete model proposed

by [182], where the loading, unloading and transition rules are adopted from [183]. A constant

thickness of unconfined cover concrete is assumed for all fiber elements tunconfined = 0.05m.

Confined and unconfined concrete area is discretized into 20 and 10 fibers, respectively.
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A diagonal mass matrix is assumed, where the floor mass is lumped uniformly at the rigid

joints, with the following mass distribution starting from the ground floor:

M f loor =

[
0.37 0.39 0.50 0.54 0.35

]
·1e5kg (4.4)

A constant damping matrix is used, assuming Rayleigh proportional damping C = α0M +

α1K0, where proportionality constants α0 and α1 are estimated to provide ξ1 = 3% and ξ2 = 3%

critical damping for the first and second modes, respectively. The initial stiffness matrix, K0,

represents the the stiffness of the undamaged structure. Calculated modal frequencies, fi, and

equivalent damping ratios, ξi, for all modes are shown in Table 4.2. It should be noted that esti-

mated modal parameters are valid only for the healthy, undamaged structure. These parameters

are subjected to a change once damage is induced in the structure, resulting in a changed stiff-

ness matrix (Ktan 6= K0). Finally, non-linear dynamic analysis is carried out using Newmark-β

integration method with sampling frequency of f = 200Hz.

Table 4.2: Estimated first 5 modal parameters

Mode 1 2 3 4 5

Modal frequency, f (Hz) 1.53 5.29 10.2 15.8 22.7
Modal damping, ξ (%) 3.00 3.00 4.82 7.17 10.1

4.3.2 Non-linear simulation

The analysed FE fiber frame model is subjected to the 20 unidirectional (x dir) different inten-

sity earthquake (EQ) inputs representing SAC records [184] shown in Table 4.3. All ground

motion inputs are 100 seconds long. However, the actual effective duration of each strong

ground motion is different. Hence, the remaining time duration is filled with 1%g RMS white

noise (WN) excitation, which represents ambient load. A typical example of 100 seconds of

excitation, consisting of EQ and WN inputs, is shown in Figure 4.5.
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Table 4.3: A suite of 20 input ground motions [184]

Test Earthquake PGA(m/s2)

EQ1 Coyote Lake, 1979, Gilroy 5.78
EQ2 Coyote Lake, 1979, Gilroy 3.27
EQ3 Imperial Valley, El Centro 1.41
EQ4 Imperial Valley, El Centro 1.09
EQ5 Kern County , 1952 1.41
EQ6 Kern County 1952 1.56
EQ7 Landers Eqk, 1992 3.31
EQ8 Landers, 1992 3.02
EQ9 Morgan Hill, 1984, Gilroy 3.12

EQ10 Morgan Hill, 1984, Gilroy 5.36
EQ11 Parkfield, 1966 7.66
EQ12 Parkfield, 1966 6.19
EQ13 Parkfield, 1966 6.80
EQ14 Parkfield, 1966 7.75
EQ15 North Palm Springs, 1986 5.08
EQ16 North Palm Springs, 1986 3.72
EQ17 San Fernando, 1971 2.48
EQ18 San Fernando, 1971 2.27
EQ19 Whittier, 1987 7.54
EQ20 Whittier, 1987 4.69

WN excitation EQ excitation WN
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Figure 4.5: Input ground motion time histories for EQ3 and EQ6 events
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4.3.3 Modal parameter identification

Modal parameter identification is carried out using the input-output method presented in Chap-

ter 3. This method assumes each floor acceleration is measured. Thus, a 5DOF system is

considered. Different levels of RMS white noise are added to the simulated structural response

signal from the FE model to test robustness. The RMS noise is a random normal distribution

of the square root of the average of the clean (no noise) simulated measurement with 99.7% of

random values within the defined noise level. Identification is carried out assuming the mass

matrix is estimated with 10% error. Finally, the effective peak isolation width is taken W = 10.

First, an initial modal parameter identification is carried out using 30 seconds white noise

excitation response data to identify modal parameters for a healthy, undamaged structure. This

step mimics a pre-event ambient modal identification, as might happen in real SHM systems.

Second, white noise and earthquake response data are decomposed into separate modes, which

are then analysed for peaks and zero crossing points. These points are used to characterize

the start and end time of moving windows. Low intensity modal response of the ith mode,

Ẍ i < 0.1m/s2, is segmented into 20 second windows with 50% overlap, where high intensity

modal response, Ẍ i > 0.1m/s2, is segmented into 10 second windows with 75% overlap. Third,

the mode shape coefficients of each mode are re-evaluated over each moving window by solv-

ing the non-linear optimization problem introduced in Section 3.2.2 (Equation 3.6). Finally, a

continuous time-varying mode shape evolution between the optimized windows is obtained by

applying a piecewise C1 continuous cubic interpolation.

Identification error of mode shape coefficients is quantified by calculating the mean absolute

error (MAE):

MAEφ ,i =

J

∑
j=1

K

∑
k=1

∣∣φ̂ k( j, i)−φ k( j, i)
∣∣

K · J
(4.5)

where φ̂ k( j, i) and φ k( j, i) are the identified and simulated ith mode shape coefficient of jth

DOF, and K is the number of identified samples and J is the number of DOF.
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4.4 Results and Discussion

4.4.1 Initial modal parameter identification

Initial modal parameters are identified using a 30s long white noise excitation. The identified

modal frequencies and mode shape coefficients are shown in Figure 4.6 and Tables 4.4, 4.5

and 4.6. Initial modal parameter identification yields relatively accurate results. The maximum

captured error of identified mode shape coefficients is 6.1% for noiseless signal and 5.81% for

signal with 11.2% RMS noise, indicating good robustness. Good accuracy can be seen in the

identified modal frequencies, where the maximum captured error is 1.7%. In contrast, modal

identification for damping ratios yields poor accuracy, especially for the first mode, where the

error of 21.3% is observed. However, other readily available SHM methods [43, 99, 117, 118]

can be used if better modal damping identification accuracy is desired. Overall, large modal

parameter identification errors are mainly seen for small values, meaning that relatively small

errors result in large relative errors.
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Figure 4.6: Mode shapes identified from 30 seconds white noise excitation response
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Table 4.4: Comparison of simulated and identified modal parameters using 30 seconds white noise
excitation response, with and without noise added to the response data before identification.

Mode φmodel φ̂id,0 ∆φ ,% φ̂id,10% ∆φ ,%

Mode 1

φ1,1 0.16 0.16 0.06 0.16 -0.24
φ2,1 0.41 0.41 -0.05 0.41 -0.15
φ3,1 0.66 0.66 -0.05 0.66 -0.20
φ4,1 0.86 0.86 -0.02 0.86 -0.06
φ5,1 1.00 1.00 0.00 1.00 0.00

Mode 2

φ1,2 -0.53 -0.53 -0.60 -0.53 0.32
φ2,2 -0.96 -0.96 0.36 -0.96 0.54
φ3,2 -0.71 -0.72 1.66 -0.71 0.74
φ4,2 0.14 0.13 -6.48 0.14 -1.08
φ5,2 1.00 1.00 0.00 1.00 0.00

Mode 3

φ1,3 1.00 1.00 0.00 1.00 0.00
φ2,3 0.83 0.83 -0.37 0.84 0.78
φ3,3 -0.60 -0.59 -1.53 -0.59 -1.99
φ4,3 -0.70 -0.69 -1.75 -0.70 -0.98
φ5,3 0.96 0.95 -1.02 0.95 -0.66

Mode 4

φ1,4 1.00 1.00 0.00 1.00 0.00
φ2,4 -0.20 -0.18 -6.12 -0.17 -11.21
φ3,4 -0.71 -0.68 -4.81 -0.69 -4.09
φ4,4 0.86 0.83 -3.78 0.82 -4.35
φ5,4 -0.55 -0.53 -4.68 -0.52 -5.83

Mode 5

φ1,5 -0.91 -0.89 -1.63 -0.87 -4.15
φ2,5 1.00 1.00 0.00 1.00 0.00
φ3,5 -0.62 -0.62 0.19 -0.62 0.24
φ4,5 0.33 0.31 -4.24 0.31 -4.06
φ5,5 -0.15 -0.15 -0.20 -0.15 0.87

Table 4.5: Identified modal frequencies for different signal noise levels based on white noise excitation
response

Mode fmodel,Hz f̂id,0,Hz ∆ f ,% f̂id,10%,Hz ∆ f ,%

Mode 1 1.531 1.558 1.74 1.557 1.70
Mode 2 5.312 5.320 0.14 5.322 0.19
Mode 3 10.183 10.152 -0.30 10.154 -0.28
Mode 4 15.873 15.791 -0.52 15.798 -0.47
Mode 5 22.697 22.596 -0.45 22.569 -0.56

Table 4.6: Equivalent modal damping for different signal noise levels identified from response to white
noise excitation

Mode ξmodel ξ̂id,0 ∆ξ ,% ξ̂id,10% ∆ξ ,%

Mode 1 0.030 0.027 -11.0 0.026 -14.67
Mode 2 0.030 0.028 -8.0 0.036 21.33
Mode 3 0.048 0.050 3.9 0.051 5.19
Mode 4 0.072 0.077 7.4 0.075 3.91
Mode 5 0.101 0.098 -3.6 0.100 -1.28
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4.4.2 Modal parameter identification for a suite of EQ inputs

Modal parameter evolution is obtained by carrying out an optimization problem for selected

modes over relatively short overlapping response windows. Identification is carried out for two

data acquisition scenarios: 1) measured response data is free of noise; and 2) the data has 10%

RMS white noise added. The time history response for the 20 ground motion inputs in Table 4.3

is analysed in total. Mode shape evolution for the simulated structure is obtained by performing

an eigenanalysis based on the estimated tangent stiffness matrix at any point in time:

[Φ(t),λ (t)] = eig(Ktan(t),M) (4.6)

where t is the time instant, Φ(t) and λ (t) is mode shape matrix and eigen values, respectively,

calculated based on tangent stiffness matrix, Ktan(t).

Mode shape evolution for the first five modes identified for EQ3 and EQ6 with 10% RMS

noise are shown in Figures 4.7 and 4.8. Modal parameter identification carried out for these two

earthquake response time histories represent the best and poorest overall identification accuracy,

respectively, estimated by mean absolute error (MAE).

The overall performance of modal parameter identification carried out for 20 different in-

tensity and duration ground motion inputs is shown in Figure 4.9. The events are sorted in

ascending identification MAE order. All mode shape coefficients are unit normalized. Thus,

variations are seen in the remaining 4 DOFs. To enable a better comparison, simulated mode

shape coefficients are smoothed using a 10 seconds long moving window, over which the mode

shapes are identified.

The simulated mode shape coefficients demonstrate significant variability due to the non-

linear behaviour of fibre elements, as expected. Hence, the identified values represent the av-

erage of time-varying mode shape coefficients over the analysed time windows. In this study,

low and high intensity modal responses are segmented into 20 and 10 seconds windows, respec-
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Figure 4.7: A comparison between identified and simulated mode shape evolutions of 5 modes for earth-
quake input EQ3. Vertical dashed line marks the effective duration of earthquake event
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Figure 4.8: A comparison between identified and simulated mode shape evolutions of 5 modes for earth-
quake input EQ6. Vertical dashed line marks the effective duration of earthquake event
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tively, yielding the point shown.

Comparison indicates identification of the lowest two modes yields relatively good ac-

curacy for all analysed ground motion inputs. Mean absolute error varies in the range of

MAE = 0.004−0.04. A clear shift and transition can been seen in mode shape evolution dur-

ing strong ground motion excitation, which is caused by damage. Significantly larger MAE in

identified mode shape coefficients can be seen for modes 3, 4 and 5 for different input ground

motions, with MAE = 0.021 to 0.200.

Observed identification errors can be distinguished into 2 types:

• Errors caused by temporal high amplitude variation of mode shape coefficients, which

is triggered by highly non-linear behaviour as the identified values typically represent

moving averages.

• Errors caused by a constant offset as a result of poor identification accuracy.

Particularly poor identification can be seen for modes 4 and 5, where the identified mode shape

coefficients are offset significantly from simulated ones during strong ground motion excita-

tion. However, the identification converges to simulated values once white noise excitation is

initiated, as might occur in weak motions at the end of the event or in weaker aftershocks. This

feature is evident particularly in Figure 4.7, as the white noise excitation was sufficiently long

duration to allow convergence of mode shape identification.

Large identification errors in higher modes can mainly be observed during strong ground

motion excitation. This poor performance can be explained by analyzing the frequency content

of selected earthquake inputs, which can be divided into two groups:

• Group 1. Earthquake inputs EQ1, EQ3 and EQ8, for which the identification yielded the

best accuracy.

• Group 2. Earthquake inputs EQ6, EQ9 and EQ18, for which the identification produced

the least accurate results.
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Figure 4.9: Estimated mean absolute error (MAE) of identified mode shape coefficients for different
earthquake inputs using data polluted with 10% RMS noise sorted in ascending MAE order

Normalized frequency spectra for the selected input ground motions are shown in Figure

4.10. It can be clearly seen that identification yielded better results for earthquake inputs, con-

taining less concentrated and more widely spread frequency spectrum. Hence, earthquake in-

puts with more uniform spectral energy distribution are exciting the higher modes with higher

energy, which allows the identification to yield mode accurate results. This observation explains

the relatively accurate identification using white noise excitation, which is simulated at the start

and the end of each time history. In contrast, earthquake inputs with spectral energy concen-

trated in a narrow frequency range may excite higher modes with only limited energy, leading

to poor signal/noise ratio, and consequently, inaccurate identification. It should be noted that

identification error can also be significantly affected by earthquake intensity, which can trig-

ger higher/lower non-linearities. Moreover, overall identification accuracy based on MAE can

also be influenced by the effective duration of earthquake event. More specifically, as the total

length of the response time history used for identification is constant for all events, large errors

resulting from identification of short duration earthquake events have smaller impact on over-

all accuracy. The opposite holds for identification carried out based on response time histories

containing long duration strong ground motion

Similar trends can be seen for the identified modal frequencies. Modal frequency evolution

for a white noise excitation combined with strong ground motion events EQ3 and EQ6 is shown

in Figures 4.11 and 4.12. As mentioned earlier, the method yielded the most and least accurate

identification for these two events, respectively. The overall performance of frequency identifi-

cation for all events is shown in Figure 4.13.
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Figure 4.11: A comparison between identified and simulated modal frequency evolutions of 5 modes for
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Figure 4.12: A comparison between identified and simulated modal frequency evolutions of 5 modes for
earthquake input EQ6. Vertical dashed line marks the effective duration of earthquake event
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Figure 4.13: A comparison between identified and simulated modal frequency evolutions of 5 modes for
earthquake input EQ6. Vertical dashed line marks the effective duration of earthquake event

The method tracks the lowest two modal frequencies with a good accuracy for majority of

events, where MAE varies within the range 0.03-0.2. However, modal frequencies of Modes 3

to 5 are identified with very large errors for some tests. These errors can mainly be attributed
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to poor excitation levels which lead to poor signal to added noise ratios. Large identification

errors could also be related to abrupt and /or temporal variation of frequencies as the identi-

fication provides the constant/average modal parameters over monitored overlapping window,

which was 20s and 10s long for white noise and strong ground motion response, respectively.

However, frequency identification based on white noise excitation shows very good accuracy

for all modes, as the modes are excited with sufficient energy. Overall, the method can pro-

vide a near real-time tracking of modal frequencies and capture changes which can be directly

associated with damage.

4.5 Summary

This study investigates the application of modal parameter identification technique to non-linear

structures excited by white noise and earthquake inputs. The method is validated using simula-

tion data of non-linear 5 DOF reinforced concrete structure assembled using fiber elements. FE

modeling based on fiber elements allows the simulation of more realistic behavior of RC struc-

tures exhibiting stiffness and strength degradation during strong ground motion events. Fiber

element behavior is purely based on material stress-strain properties and provides a highly non-

linear analytical test case with and without noise, added to the response data before identifica-

tion.

The results show the modal parameter identification technique is capable of identifying

mode shape coefficients with good accuracy using white noise excitation data. However, strong

ground motions trigger highly non-linear behavior, resulting in some significant variation of

simulated mode shape coefficients over relatively short windows. Modal parameter identifica-

tion carried out over short non-linear response windows yields mode shape evolution, which

represents the smoothed/average variation of simulated mode shape coefficients. Hence, the

method can capture only the overall trend of mode shape variation.

Finally, the results show the method can yield inaccurate identification of higher modes

for earthquake excitation data, due to mainly poor signal-to-noise ratio when these inputs do
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not excite higher modes significantly. However, the method provides relatively accurate mode

shape evolution for the lower modes, which can be used for mode decoupling. Mode decoupled

response allows for reconstruction of single mode dominant restoring force loops, which can be

readily analysed using hysteresis loop analysis.
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CHAPTER 5

Damage Identification for Hysteretic Structures Using a

Novel Mode Filtering Method

5.1 Introduction

A recently developed parametric identification technique based on the reconstruction of hys-

teresis loops, enables effective identification of both structural parameters, and the presence

and level of any non-linear structural behaviour. This relatively computationally simple method

relies only on measured accelerations and infrequently measured displacements, and has proven

to be robust in capturing the physical parameters of a simulated SDOF pinching structure

[147, 185] and non-linear experimental structures [18]. However, it has not been verified with

data including measurable response contributions from higher modes. Higher modes result in

irregular shape hysteresis loops, which can be hard to identify. In particular, they can lead to

inaccurate identification of the structural parameters using a hysteresis loop analysis method.

Higher modes can be filtered out using a simple nth-order Butterworth filter or other simple

low-pass filtering. However, its performance is poor for non-linear data and it requires knowl-

edge of the structural frequencies before and after damage occurs. As a result, an adaptive

time-varying modal filtering technique is developed here to separate different vibration modes

over time for linear and non-linear data to enable more precise and “smooth” reconstruction of

hysteresis loops for each mode. The overall approach tracks relevant mode shapes over time by
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regularly re-evaluating the mode shape matrices.

This chapter presents results of SHM carried out for a full-scale experimental bridge pier

structure, which consists of two parts: a) application of modal parameter identification; and

b) analysis of reconstructed single mode dominant ”smooth” hysteresis loops using HLA. The

core of methodology used for modal parameter identification is presented in Chapters 2 and 3

Ḣowever, as the work presented in this chapter was carried out in the early stages of the whole

research, minor alterations to the method exist. These existing differences represent the initial

idea of modal parameter identification, which was further extended to more general method-

ology, presented in Chapters 2 and 3, which is applicable to any MDOF structure. However,

simplifications adopted in this chapter do not affect the outcome of identification due to sim-

plicity of analysed structure. The existing differences are:

• The effectiveness of mode shape identification (objective function) adopted in this chapter

is defined using energy ratio principle, rather than cross-correlation of modal FRS, per

Equations (2.14) and (3.6).

• The method proposed in this chapter uses a simplified shape function to segregate differ-

ent mode FRF’s, which is based on a simple windowing technique.

• The objective functions do not take into account the weighting factors, which act as a

penalty coefficients for closely spaced modes with high degree of consistency.

5.2 Methodology

As mentioned in introduction, the modal parameter identification adopted in this chapter resem-

bles a simplified version of the one presented in Chapter 2 and Chapter 3. Thus, for clarity, the

simplified methodology is introduced briefly herein highlighting the main differences adopted.

5.2.1 Reconstruction of hysteresis loops for selected modes

The equation of motion of a linear multi-degree-of-freedom (MDOF) system is described:
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M{Ẍ}+C{Ẋ}+K{X}=−Mr{Ẍg} (5.1)

where M, C, K are the mass, damping and stiffness matrices, r is the excitation influence vector,

{Ẍ}, {Ẋ} and {X} are the acceleration, velocity and displacement vectors of MDOF system,

respectively, and {Ẍg} is the ground motion acceleration.

The linear MDOF system response can be represented as the weighted, linear sum of individual

vibration modes:

X(t) =
n

∑
i=1

φi ·X i(t) = ΦX(t) (5.2)

where n is the number of modes, X i(t) is modal displacement of the ith mode at time instant

t, where each row of X(t) represent each mode, Φ =
[
φ1 φ2 ... φi

]
is the n× n mode shape

matrix calculated by solving an eigenvalue problem, where φn is n×1 mode shape vector of the

nth mode.

Assuming the mode shape matrix, Φ, is mass orthogonal [164], φ T
i Mφ j = 0 for i 6= j , the

stiffness restoring force for the ith mode can be reconstructed by rearranging Equation (5.1):

Fs,i = M ·φi

[
{Ẍ

abs
i }+2ξiωi{Ẋ i}

]
(5.3)

where Fs,i, ξi, ωi are the stiffness restoring force vector, damping ratio and the natural frequency

of the ith mode, Ẍ
abs
i and Ẋ i are the absolute modal acceleration and relative modal velocity of

the ith mode, respectively, calculated:

Ẍ
abs

= Φ
−1 (Ẍ + r · Ẍg

)
Ẋ = Φ

−1Ẋ
(5.4)

Equation (5.3) implies the stiffness restoring force of the structure can be constructed for

each individual mode providing the mode shape matrix, Φ, is known.
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5.2.2 Mode shape identification

In Section 3.2.1 it has been demonstrated that mode shapes can be identified sequentially for se-

lected time windows using optimization functions, which minimize the sum of weighted cross-

correlation of modal frequency response spectra (FRS). This chapter utilizes a slightly simpli-

fied concept, which is based on minimization of energy of interfering modes. Spectral energy

contribution from interfering modes is calculated using simple shape functions, which extract

the spectral energy of selected mode for selected frequency range. The method is explained in

detail below.

In Section 2.2.1 it was demonstrated that a sequential mode-by-mode identification is pos-

sible, which can be achieved through eliminating the modal response of the selected ith mode

from the modal responses of all other modes per Equation (2.7). One of the easiest ways to

quantify the contribution of each mode is by calculating its energy content in the frequency

domain. Ideally, other modes would have zero energy if Φ̂ is perfectly identified as in Equation

(2.6). Decomposed parameters can be represented in the frequency domain:

Y abs(Φ̂) =
∣∣FFT (Ẍ p,m)

∣∣= ∣∣Ẍ p,m ·WFFT
∣∣= ∣∣Φ̂−1 · Ẍabs ·WFFT

∣∣ (5.5)

where Ẍabs is the measured absolute acceleration, WFFT is the Fourier transformation matrix

defined WFFT (n,k) =W (n−1)(k−1)
N where WN = e(−2πi)/N , (n = 1. . .N), N is the discrete length

of the monitored signal X , and k = 1. . .K, where K is the number of frequency bins in the

analysis, and is a function of N and sampling rate. Modulus of FFT value is defined:

∣∣FFT (Ẍ p,m)
∣∣=√a2 +b2 (5.6)

where a = Re
(

FFT (Ẍ p,m)
)

and b = Im
(

FFT (Ẍ p,m)
)

are the real (Re) and imaginary (Im)

parts of FFT analysis.
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The energy content of the jth mode can be calculated:

E j
mode

(
Φ̂(:, j)

)
= Y

(
Φ̂(:, j)

)
·N j,mode =

∣∣Φ̂−1 ·X ·WFFT
∣∣ ·N j,mode (5.7)

where N j,mode is a K×1 shape matrix used to segregate a given mode’s frequency range to cal-

culate its energy without other modes contributing and can be formulated using any windowing

function, as shown in Figure 5.1.

Similarly, the total energy of every modal parameter can be calculated:

Etot
(
Φ̂(:, j)

)
= Y

(
Φ̂(:, j)

)
·Ntot =

∣∣Φ̂−1 ·X ·WFFT
∣∣ ·Ntot (5.8)

where Ntot is a K×1 shape matrix and be considered as vector of ones, selecting all frequencies

and thus all modes.

Figure 5.1: Mode-by-mode mode shape identification for a MDOF system

The efficiency of the partial decoupling for mode i can thus be estimated as the energy of
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each interfering mode ( j = 1. . .m; i 6= j) divided by the total modal energy:

R j
(
Φ̂(:, j)

)
=

m

∑
i=1,i6= j

(
E i

mode

(
Φ̂(:, j)

)
E i

tot
(
Φ̂(:, j)

) )2

(5.9)

This value is equal to zero if the identification of Φ̂ is perfect and Φ̂ = Φ, as in Equation (2.6).

Finally, the solution to the optimal jth mode shape coefficients can be written as the solution

to the following optimization problem:

(Φ̂(:, j)) = argmin
Φ̂(:, j)

(
R j
(
Φ̂(:, j)

))
(5.10)

Once the optimal approximated mode shape coefficients Φ̂k (:, j) for mode i are found, the

optimization can proceed for the next mode, as shown in Figure 5.1. The optimization problem

can be readily solved using the constrained non-linear multivariable solver available in MAT-

LAB. A more detailed mode identification routine is shown in the flow chart in Figure 3.3.

This mode shape optimization process can be carried out for the whole record or any selected

time window. In this study, an 8 second window is selected to track evolution of mode shapes

throughout the response window. The mode optimization problem, as carried out for any given

time segment, can be rewritten using Equation (5.10):

(Φ̂k(:, j)) = argmin
Φ̂k(:, j)

(
R j

(
Φ̂

k(:, j)
))

(5.11)

where Φ̂k(:, j) are the approximated mode shape coefficients for mode j for the kth time win-

dow. A time varying mode shape evolution, Φ̂t , between the optimized time windows can be

estimated by applying a piecewise C1 continuous cubic interpolation.

The method is based on mode decomposition, meaning a linear system behaviour is as-

sumed for the analysed time window. Although most of concrete structures exhibit a non-linear

behaviour under a strong ground motion event, the non-linear response usually comprises very
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short time segment of the total response. Thus, majority of the time the structure will respond

within almost linear or entirely linear range, which means that the method will be able to pro-

vide good mode shape approximations for most of the time windows. The approximated mode

shapes are used to separate the modes and reconstruct single mode dominant hysteresis loops

for HLA, thus any mode shape approximation errors associated to non-linear behaviour and

signal noise can still be accepted, as the provided method aims to make the HLA more robust.

5.3 Method validation using experimental structure

The proposed mode decomposition method is validated using experimental dynamic test data

from a full scale bridge pier test available on the NEES archive [186]. The structure was sub-

jected to the 9 strong uni-directional ground motions listed in Table 5.1, resulting in nonlinear

response due to plastic hinge formation. White-noise excitations with root-mean-square accel-

eration of 3% g were run before each strong motion test. Stiffness and strength degradation

were observed, caused by concrete spalling, concrete crushing, longitudinal bar buckling or

fracturing.

The bridge pier consists of a cantilever column, footing and lumped mass, which provided

a target axial load and dynamic load necessary to bring the structure into a non-linear response.

The bridge pier was designed to current Caltrans design guidelines, with basic dimensions

shown in Figure 5.2. Reinforced concrete column of 1.22m diameter consists of 18 equally

spaced 35.8mm diameter longitudinal steel bars with a yield strength of 518.5MPa. The shear

strength is provided by 16mm double hoop reinforcement with 152mm center to center spacing.

The specified concrete strength is 27.6MPa. The estimated translational mass of the concrete

blocks is 2.32MN and the rotational mass moment of the concrete blocks around its centre of

mass is 10.7MNm2. The estimated flexural yield capacity was 5800kNm at 1.2% drift ratio,

where the cracking moment is estimated to be 840kNm. The lumped mass consists of five cast-

in-place concrete blocks, post-tensioned together to ensure a rigid body behaviour. The central

block is mounted and anchored to top of the column ensuring a moment resisting connection.
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The center of mass of all concrete blocks matches with the top of the column. The concrete col-

umn is anchored to the concrete footing through the moment-resisting connection, reinforced

using 35.8mm grade 60 steel bars. Full details on the test structure can be found in [165].

(a) (b)

Figure 5.2: a) Bridge pier on the shake table [165]; and b) sensor location with basic dimensions

The bridge pier was instrumented with a large number of accelerometers with a sampling

rate of 240Hz. However, this study relies on five sensor measurements: 1) accelerometer

mounted to the foot of the bridge measuring the horizontal ground excitation; 2,3,4) three ac-

celerometers mounted to the top edge of the superstructure measuring the horizontal and vertical

response of the structure; and 5) a GPS displacement on the superstructure sampled at 50Hz.

The vertical acceleration is transformed into an angular acceleration by dividing the accelerom-

eter readings by the horizontal distance between sensors, yielding the modeled DOF in Figure

5.2.

Table 5.1: Input ground motions to test structure

Test Earthquake Station Component PGA(g)

EQ1 Loma Prieta Agnew State Hospital 90.00 -0.20
EQ2 Loma Prieta Corralitos 90.00 0.41
EQ3 Loma Prieta LGPC 0.00 0.53
EQ4 Loma Prieta Corralitos 90.00 0.45
EQ5 Kobe Takatori 0.00 -0.53
EQ6 Loma Prieta LGPC 0.00 -0.51
EQ7 Kobe Takatori 0.00 0.65
EQ8 Kobe Takatori 0.00 -0.83
EQ9 Kobe Takatori 0.00 0.82
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5.3.1 Analyses

Test results show the structural response is dominated by the first mode [165]. However, the

presence of a very high rotational mass results in significant contribution of the second mode.

As a result, the structure can be considered a 2DOF system, as in Figure 5.2. The relative

horizontal acceleration is calculated as a difference between measured absolute horizontal ac-

celeration at point X and ground excitation. The angular acceleration is calculated by dividing

the vertical acceleration by the horizontal distance between sensor location and the centre of

mass of the superstructure. The velocities are obtained by integrating acceleration and applying

a low-pass filter to remove drift. Horizontal displacement is calculated by double integrating

acceleration and fusing it with GPS data using a Kalman filtering technique [56,147,187,188].

The displacement data from GPS is refined by applying cubic spline interpolation to match the

sampling rate of accelerometer data. Mode shape identification is carried out only for the first

two modes (i=1,2). Mode shape evolution is carried out for each test using an 8 second Hanning

window, tracking evolution in 8 second blocks. Hanning windowing technique is chosen due its

performance to reduce spectral leakage associated to signal discontinuities. Mode shape evolu-

tion between the windows is obtained by applying a cubic interpolation. The identified mode

shapes are used for mode separation, damping identification and reconstruction of hysteresis

loops. Smoothed evolution of mode shape coefficients is obtained using a 50 sample moving

window. Hysteresis loops of base moment against relative displacement are reconstructed for

the first mode to demonstrate the effectiveness of the mode decomposition. To calculate the

base bending moment for the ith mode, Equation (5.3) is rearranged and put into incremental

form to take into account the variation of the mode shape matrix, Φ̂t :

Mi,base(t) = Mi,base(t−1)+
[

7.3 1

]
·M · Φ̂t(:, i) ·

[
∆Ẍ i,abs(t)+2ξiωi ·∆Ẋ i(t)

]
∆Ẍ i,abs(t) =

(
Φ̂

t)−1 ·
[
∆Ẍ(t)+ r ·∆Ẍg(t)

] (5.12)

where the mass matrix is M =

[
2.36kg 0;0 10.9kg/m2

]
·105, the excitation influence vector

is r =

[
1 0

]T

. The equivalent damping ratio of the first mode, ξi=1 , is determined from
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the force-displacement relation. The area enclosed by this hysteresis loop is equated to the

dissipated energy. As a result, the equivalent viscous damping, ξeq , can be determined [164]:

ξeq =
1

2π
· Ed

Es0
(5.13)

where Es0 is the maximum strain energy in each half-cycle and Ed is the energy dissipated dur-

ing each half-cycle. To disregard energy dissipated by yielding and concrete cracking, only

small hysteresis loops were considered in identifying damping, comprising only hysteresis

loops where the maximum restoring force is less than 80% of yielding force. This choice

excludes loops, where energy is dissipated by structural hysteresis/ yielding.

The average natural frequency ωi=1 is selected for each test separately, since it varies as the

structure degrades from test to test. Modal velocity increment, ∆Ẋ , is calculated by integrating

the modal acceleration increment, ∆Ẍ .

The reconstructed hysteresis loops are compared with a backbone curve, representing the

stiffness of a fully cracked structure, defined for cantilever structures 8 [189]:

kcracked =
3EIcracked

L3 (5.14)

where E = 22.9GPa is the measured modulus of elasticity for concrete, Icracked = αI0 and I0 is

the section modulus of undamaged cross-section, and α = 0.3 is the stiffness reduction coeffi-

cient for concrete columns with an axial load ratio of less than 0.1 recommended by ASCE 41.

The estimated flexural stiffness of the cracked column is kcracked = 6.6MN/m.

Finally, the evolution of the elastic stiffness is identified using regression analysis and the

hysteresis loop analysis (HLA) method of [147]. Reconstructed single mode dominant stiff-

ness restoring force loops represent structure’s external force-deformation relationship, which

varies with time due to structural degradation and and/or damage during strong motion events.

In HLA method, the restoring force loops are subdivided into path dependent loading and un-
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loading half-cycles, which are then assumed to be piecewise linear. F type hypothesis testing is

applied to identify the number of piecewise segments that represent an approximated hysteretic

model. Finally, overall least squares linear regression analysis is carried out to selected sub-half

cycles to identify regression coefficients, which represent elastic stiffness, plastic stiffness and

cumulative plastic deformation. In this study elastic stiffness evolution is presented as measure

of damage severity. In the presence of any structural damage occurring during the monitored

time period, the changes will be captured by degradation of elastic stiffness, which is presented

in the form of elastic stiffness evolution. The elastic stiffness is identified for each direction

(positive and negative x direction) for each half-cycle of response, since the extent of the dam-

age on each side of the structure varies from test to test. The smoothed evolution of the average

elastic stiffness presented in the results is obtained using a 10 sample moving window.

5.4 Results and discussion

The following section presents validation results carried out for the presented test structure.

Section 5.4.1 provides single mode dominant reconstructed hysteresis loops, which directly il-

lustrate the effectiveness of the presented mode filtering method. Section 5.4.2 presents HLA

results on reconstructed single mode dominant hysteresis loop in form of elastic stiffness evolu-

tion. Section 5.4.3 discuses mode shape identification results, which allows for mode decompo-

sition and reconstruction of single mode dominant hysteresis loops for the analysed structure.

Section 5.4.4 summarizes all the results and limitations are discussed in Section 5.4.5.

5.4.1 Reconstructed hysteresis loops for Tests 1 to 9

The reconstructed hysteresis loops for white noise and earthquake excitation tests are presented

in Figure 5.3. Each white noise test was done immediately prior to the corresponding number

earthquake. The red line represents the theoretical backbone curve and can be used as a refer-

ence stiffness of undamaged structure. The grey solid line represents the hysteresis loops history

that was obtained in the previous tests and can be used to track the test-to-test stiffness changes.
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It is clear, the mode decomposition method enables reconstruction of smooth hysteresis loops

for the first mode that can be readily used for primary inspection and damage identification.

Analysis based on visual analysis of these hysteresis loops indicates a significant loss of elastic

stiffness after Tests 1, 2 and 3. Stiffness degradation observed after Tests 1 and 2 can be related

to concrete cracking and crack opening, and, from comparison with the backbone curve, it can

be concluded that the structure is fully cracked. Stiffness degradation observed after Test 3 can

be related to severe yielding and concrete cracking, as reported in the initial study [165].

Abrupt changes in restoring force can be observed during Tests 8 and 9. These changes can

be attributed to the fracturing of longitudinal reinforcing bars. This outcome is also reported

in [165].

5.4.2 Hysteresis loop analysis

The HLA SHM of the hysteresis loops shown in Figure 5.5 provides an informative evolution of

the elastic stiffness of the first, dominant mode. The elastic stiffness values identified at the start

of the test, kstart , and at the end of the test, kend , are presented in Table 5.2. The elastic stiffness

is identified for positive, kel,pos (red crosses), and negative, kel,neg (blue circles), x direction, to

demonstrate the level of damage in each direction. The identified positive and negative elastic

stiffness values are almost identical till the onset of the Test 2 (EQ2), with the difference in-

creasing during the test, indicating the different level of damage in each direction.

The identified average elastic stiffness, kel,avg, clearly indicates a significant loss of stiffness

after Tests 1, 2, 3, 5 and 8, also seen as kstart and kend values in Table 5.2. The identified initial

stiffness at the first white noise test (WN1), kstart = 12.1MN/m (from Table 5.2), is nearly twice

as large as the estimated cracked flexural stiffness of cantilever column kcracked = 6.6MN/m,

shown as a red dashed line in Figure 5.4, which indicates that the structure has no or very

minor cracks. Identified elastic stiffness degradation (∆k = −16.5% from Table 5.2) observed

during first white noise test (WN1), kend = 10.1MN/m, is not surprising, since the maximum

base moment reached during excitation (2.25MNm) is well above the rated cracking moment
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(a) (b)

Figure 5.3: Base moment versus displacement loops reconstructed from white noise (WN) and earth-
quake (EQ) excitation tests 1-9 using a) raw acceleration data; and b) mode decomposed data
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Figure 5.4: The overall evolution of the elastic stiffness from Test 1 to Test 9 (WN – white noise, EQ-
earthquake excitation)

(0.84MNm). Based on visual analysis of hysteresis loops shown in Figure 5.3, loss of stiff-

ness observed after Tests 1 and 2 (∆k = −27% and ∆k = −17.3% respectively) can mainly

be attributed to tensile concrete cracking. Stiffness degradation observed during Tests 7 and

8 (∆k = −19.2% and ∆k = −21.8%) can be associated to severe yielding, which resulted in

concrete spalling and fracture of tensile longitudinal reinforcement, also seen as a sudden drop

in restoring force during Test EQ8 in Figure 5.3. The elastic stiffness inconsistencies observed

between the tests defined as the difference between the identified final stiffness, kend , of one

event and the identified stiffness at the start of the next event, kstart , are small, within 6%, and

can be attributed to identification error due to noise or/and small changes.

Table 5.2: Summary of elastic stiffness evolution before and after the tests

Test kstart kend ∆k(%)

WN1 12.1 10.1 -16.5
WN2 7.3 7.4 1.9
WN3 6.5 6.2 -4.8
WN4 3.7 3.8 0.4
WN5 3.7 3.7 0.7
WN6 3.1 3.1 -0.9
WN7 2.9 2.8 -2.4
WN8 3.0 2.9 -2.9
WN9 2.1 2.1 2.1

Test kstart kend ∆k(%)

EQ1 10.4 7.6 -27.0
EQ2 7.1 5.9 -17.3
EQ3 5.8 3.8 -33.4
EQ4 4.0 4.0 0.1
EQ5 3.6 3.4 -5.4
EQ6 3.1 3.1 -2.3
EQ7 3.5 2.8 -19.2
EQ8 2.9 2.3 -21.8
EQ9 1.8 2.1 19.6
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5.4.3 Modal parameter identification

Mode decomposition is performed using a time-varying identified, approximate mode shape

matrix, Φ̂k , as per Equation 5.11. The mode shape coefficients were identified for each 8

second time-window over each event. The mode shape coefficients are normalized, so that

Φ̂k(1,1) = Φ̂k(1,2) = 1, and thus these two values do not change. All evolution is thus seen

in the values for Φ̂k(2,1) and Φ̂k(2,2). The smoothed mode shape evolution shown in Figure

5.4 indicates stiffness degradation during Tests 2, 3 5 and 9, which matches the HLA results

presented in Table 5.2 and Figure 5.4. However, the stiffness degradation observed during white

noise excitation before Test 1 (WN1) and during Test 1 in HLA analysis, as shown in Figure

5.3 and Table 5.2, did not affect the mode shapes. This difference can be explained by the low

sensitivity of mode shape factors to the actual damage experienced [190].
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Figure 5.5: The overall mode shape evolution from Test 1 to Test 9 for Φ̂(2,1) and Φ̂(1,2), where
Φ̂(1,1) = Φ̂(2,2) = 1 due to normalization

Identified modal frequencies and equivalent damping ratios for two dominant modes are

shown in Figure 5.6. Modal damping ratios are identified using curve fit method per Equation

(2.20), for the white noise excitation response data, segmented into 60s long windows with

75% overlap. For the earthquake response data, where frequency variation and degradation is

anticipated throughout relatively short time window, the modal damping for the first mode is

estimated for the whole record from force-displacement relation using Equation 5.13 and de-

noted as ξ1(hyst) in Figure 5.6. Modal frequency evolution is identified using curve fit method

for response data segmented into 8s windows.
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Figure 5.6: Identified modal damping ratios and frequencies for two dominant modes

The identified modal damping ratios for the first mode using curve fit method, ξ1( f it),

demonstrate a significant variability, which could be associated to varying frequency and re-

sponse intensity throughout analyzed time window and/or identification error. Average damping

identified for the first mode using force-displacement relation, ξ1(hyst) demonstrates relatively

good consistence between the tests. Notoriously higher damping can be seen for tests EQ8 and

EQ9. The identified damping ratios for the second mode, ξ2( f it), demonstrate a lower scatter.

In addition, a significant increase in damping can be observed, ξ2 = 2% to 10%, as the damage

progresses. The identified modal frequencies demonstrate degradation with increasing damage.

5.4.4 Overall damage identification

In this study, a new modal parameter identification technique is proposed. The method is ini-

tially developed for mode decomposition. This approach enables reconstruction of smooth/single

mode dominant restoring force- displacement loops.
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Mode shape evolution, shown in Figure 5.4, can be readily used for SHM. The evolution

clearly indicates structural changes after Tests 2, 3, 5 and 9. Although the changes in mode

shape evolution are clear, it does not provide the key physical parameters for estimation of

damage severity, or, in some cases, the location of the damage [190]. In this study, recon-

struction of the resulting mode-decomposed hysteresis loops and subsequent hysteresis loops

analysis (HLA) is proposed, which, in combination, enables estimation of damage severity and

location.

Hysteresis loops, as shown in Figure 5.3, reconstructed using mode decomposed data are

clearly more informative in terms of damage type and severity. The damage severity is quanti-

fied by carrying out HLA for the reconstructed hysteresis loops to identify the degradation of

the elastic stiffness. Elastic stiffness evolution, as shown in Figure 5.3, clearly demonstrates

degradation, which is caused by the tensile concrete cracking (Tests 1 and 2) and severe inelas-

tic behaviour (Tests 3 and 5). The elastic stiffness degradation observed during Test 8, is likely

caused by the fracture of the tensile longitudinal reinforcement and, can be seen in the sudden

drop in restoring force in Figure 5.3.

Overall, the mode shape evolution, shown in Figure 5.5 matches well with the elastic stiff-

ness evolution of Figure 5.4 for all tests, except for Test 1. However, the elastic stiffness evolu-

tion obtained from HLA together with the reconstructed hysteresis loops in Figure 5.3, allows

for better identification of the type of damage and its severity.

5.4.5 Limitation and other aspects

Mode shape identification, as presented in this study, is based on the principle of mode decou-

pling, which theoretically can only be used for linear structures. However, in this study, mode

shape approximation is carried out for a structure exhibiting a significant non-linearity. For

this reason the structural response and identification are analysed in relatively short overlapping

time windows, in which a linear structure is assumed. Any non-linearity occurring during the
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selected time window may result in large errors, as the approximated mode shapes simply rep-

resent the best mode decoupling for the analysed time window. However, in most of the cases

the non-linear response will typically comprise a very short window of the total structure’s re-

sponse, hence for majority of the analysed time windows the structure will exhibit almost linear

or entirely linear behaviour. Hence, the proposed method will be able to provide good mode

shape approximations for most of the time windows, which will result in mode shape evolution.

The method has also limitations in case of high signal noise content, which results in poor

signal-to-noise ratio. The method is designed to remove the energy content from the interfering

modes through optimization process presented. Hence in case of high noise content, the opti-

mization may result in a false global minima, consequently providing inaccurate mode shape

coefficients. Thus, effective mode decoupling cannot be possible due to non-zero values in

Equation (2.6).

Overall, poor mode decoupling causes mode interference in time domain, or spectral leak-

age in frequency domain due to non-zero values in Equation (2.6). Although spectral leakage

of the low modes might seem to be small for acceleration data, significantly larger leakages

can be observed for velocity and displacement data if single and double integrations are applied

respectively to the decoupled acceleration data. This implies that in case of highly non-linear

structural behaviour and/or poor mode decoupling, displacement reconstruction might result in

significant errors. However, in this study the double integrated displacement is fused with GPS

data using Kalman filtering technique, which allows for accurate reconstruction of displace-

ment, which has been demonstrated by [56, 147, 187, 188].

The presented mode approximation method is limited to structures in which the principal

mode frequencies do not significantly overlap. If modes are so closely spaced that frequency

range segregation in Equation (5.1) becomes impossible, the method can break down. However,

many structures of interest do not have such closely spaced modal frequencies.
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The proposed mode approximation technique is primarily used to decouple/remove the un-

wanted higher modes, which allows for reconstruction of single mode dominant restoring force-

displacement loops. Mode shape approximation errors associated with above mentioned non-

linear behaviour, signal noise or any other method assumptions will typically result in incom-

plete mode decoupling, which can, based on results, still be well tolerated.

Finally, the proposed mode shape approximation method has been validated for a single test

structure, which may appear rather simple. Thus, the proposed method needs to be verified for

more complex MDOF structures exhibiting non-linearities and stiffness degradation, which will

be the future study.

5.5 Summary

This study develops an adaptive time-varying modal filtering technique to separate vibration

modes for linear and non-linear data. The overall approach tracks relevant mode shapes over

time by re-evaluating mode shape matrices in relatively short time windows. Identification of

mode shape evolution allows for mode separation and reconstruction of “smooth” hysteresis

loops for dominant modes of response. In turn, these filtered modes and resulting filtered hys-

teresis loops can be readily used for visual inspection and hysteresis loops analysis (HLA).

The developed method is validated using experimental dynamic test data from full scale

bridge pier tests. The results show that mode decomposition allows for reconstruction of smooth

hysteresis loops for the first mode that can be readily used for primary inspection and damage

identification using HLA methods. The HLA method, in turn, clearly indicates the degradation

of elastic stiffness, which can be used for further SHM. The identified mode shape evolution

also indicates abrupt structural changes during the tests and match with most observations from

HLA, however, in some cases, the mode shape evolution appeared to be less sensitive to damage

compared HLA.
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Finally, the overall method can be readily generalized to a range of more complex MDOF

structures, as it does not depend on a specific structure and provides a method of continuous

and rapid SHM.
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CHAPTER 6

Modal parameter identification for a 5-story full scale test

structure

6.1 Introduction

The novel input-output modal parameter identification technique was introduced and validated

using simulated response data of different complexity non-linear FE models in Chapters 3 and

4. Chapter 5 presented modal identification results of a simple full-scale bridge pier test struc-

ture exhibiting notable contribution from at least two modes. The results demonstrated the

proposed method is efficient in tracking modal parameters of structures exhibiting significant

non-linearities which can be used to detect damage.

In this chapter, the novel modal parameter identification technique is applied to a more

complex full-scale 5-story reinforced concrete test structure, which has significant contribution

from multiple higher modes. The experimental MDOF structure was tested and identified for

two structural configurations: 1) base isolated (BI); and 2) fixed based (FB). The test struc-

ture was subjected to a number of different intensity white noise, pulse, and earthquake ground

inputs. Time-varying mode shapes, frequencies and damping ratios are approximated using

input-output modal parameter identification presented in Chapter 3. The identified modal pa-

rameter evolution can subsequently be used to detect abnormalities caused by the structural

damage.

115



6.2 Method

Modal parameter identification for experimental test structure in this chapter is implemented

using the same input-output methodology as presented in Chapter 3. Hence, for references and

methodology details please refer to Chapter 3.

6.3 Method validation and analyses

6.3.1 Test structure

The proposed modal parameter approximation is validated using experimental dynamic test

data from a full-scale 5-story reinforced cast-in-situ concrete building, shown in Figure 6.1,

which was constructed on the shake table at the University of California, San Diego [179]. The

building was outfitted with a large range of non-structural components and systems, such as

a passenger elevator, stairs, full architectural façade and interior partitions, plumbing, heating,

ventilation and air-conditioning and etc. The experiments were carried out for two building

configurations: 1) base isolated (BI) building equipped with four lead-rubber bearings located

at each corner; and 2) fixed base (FB) building. The BI building was subjected to 7 increasing

intensity uniaxial earthquake inputs listed in Table 6.1 and the FB building to 6 events listed in

Table 6.2. The structure was also subjected to different intensity white-noise excitations before

and after each strong motion test. The superstructure was designed to meet a performance target

of 2.5% maximum inter-story drift ratio with a maximum peak floor acceleration of 0.8g.

The full-scale building has a plan dimensions of 11m by 8.1m and is 22.9m high, as shown

in Figure 6.2. The moment resisting frame consists of two bays (frame and gravity) in the

shaking direction and one bay in the transverse direction. The frame bay consists of moment

resisting beams on each floor with equivalent moment capacities, but different detailing, where

the gravity bay comprises a 200mm thick concrete slab. Lateral stiffness is ensured by two con-
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(a) (b) (c)

Figure 6.1: a) Bare structural frame before installation of non-structural components b) Building
equipped with the facade c) Base isolator detail. Pictures taken from [191]

crete transverse shear walls located on both sides of the elevator shaft. Steel bracing is added

on the other side of the building to prevent the structure from excessive torsional motion. The

superstructure is erected on a stiff foundation, designed to accommodate both the BI and FB

testing configurations.
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Figure 6.2: Front and plan views of the 5 storey concrete structure and accelerometer spatial arrange-
ment

The main load carrying frame is instrumented with a large number of triaxial accelerometers

placed on each corner of all the floors. The shake table is equipped to two triaxial accelerometers
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placed on the opposite corners. In this study, two accelerometers placed on the opposite corners

of each floor are used for identification of the modal parameters. The accelerometer data is

sampled at 200Hz.

Table 6.1: Input ground motions for the base iso-
lated test structure

Test Ground motion name PGA(g)

WN1 WN test* -
EQ1 Northridge 1994 0.21
WN2 -
EQ2 Northridge 1994 0.22
WN3 WN test* -
EQ3 Northridge 1994 0.25
WN4 WN test* -
EQ4 2010 Maule (Chile) 0.52
WN5 WN test* -
EQ5 2007 Pisco (Peru) 0.17
WN6 WN test* -
EQ6 2007 Pisco (Peru) 0.32
WN7 WN test* -
EQ7 2007 Pisco (Peru) 0.50
WN8 WN test* -

Table 6.2: Input ground motions for the fixed base
test structure

Test Ground motion PGA(g)

WN1 WN test* -
EQ1 Northridge 1994 0.21
WN2 Double pulse -
EQ2 Northridge 1994 0.18
WN3 Double pulse -
EQ3 2007 Pisco (Peru) 0.21
WN4 Double pulse -
EQ4 2007 Pisco (Peru) 0.26
WN5 WN test 2** -
EQ5 2002 Denali 0.64
WN5 WN test 2** -
EQ6 2002 Denali 0.80

* WN test represents the following set of increasing intensity white noise excitations: 6min WN(1.5%g
RMS) + 6min WN(3.0%g RMS)+6min WN(3.5%g RMS)
** WN test 2 represents the following set of increasing intensity white noise excitations: 6min WN(1.5%g
RMS) + 4min WN(3.0%g RMS)

6.3.2 Analyses

Modal parameter identification is carried out for both (BI and FB) building configurations. First,

the initial modal parameter identification is carried out using ambient and white noise excita-

tion data collected from accelerometers. Second, the strong ground motion response data is

segmented into relatively short time windows. Third, the mode re-evaluation of Equation (3.5)

is carried out for each segmented time window for the selected dominant modes determined in

the initial modal analysis.

Absolute floor acceleration data at two opposite corners from each floor results in a to-

tal of 24 DOFs for the BI structure, as shown in Figure 6.2. Mode shape coefficients for the

other two corners are estimated assuming rigid floor motion and are used only for visual mode
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shape representation. For the FB structure 4 DOF’s (x1,x7, x13, x19) located at the base of the

structure (Level 1) are omitted, as shown in Figure 6.2. Input excitation data is taken from the

accelerometer located in the shake table for the BI structure and from DOF’s x1 and x17 for the

FB structure. All accelerometer data is detrended, windowed to remove non-zero end values

and finally filtered using high-pass 2nd order Butterworth filter with cut-off frequency of 0.1Hz.

Finally, for modal analysis, a diagonal 24×24 lumped mass matrix is used:

M = diag
([

M f loor
2

M f loor
2

M f loor
2

M f loor
2

])
(6.1)

where M f loor =

[
0.21 0.74 0.77 1.00 1.08 0.71

]
kg · 1e5 is the floor mass starting from

the ground floor. For the FB building configuration the floor matrix, M f loor, is reduced to a

1×5 matrix by disregarding the ground floor mass.

Initial modal parameter identification

Initial modal parameter identification for the BI building configuration is implemented using a

30 seconds long ambient vibration data, recorded before the start of the test protocol. Initial

modal parameter identification of the FB building configuration is carried out using the first

white noise excitation. This latter test comprises initial short duration very low amplitude white

noise excitation, followed by two pulse excitations and three 6 minute white noise excitations

of different intensity, as shown in Table 6.2. Modal parameters are identified using the first 40

seconds of low amplitude white noise excitation (0.05%g RMS), before the pulse excitation is

initiated.

Data segmentation into time windows and identification of modal parameter evolution

Modal parameter (mode shape, frequency and damping) evolution is obtained by carrying out

an identification for all of the segmented response data. In the following, the time window is
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denoted by t0 and t1, which represents the start and the end time of the monitored response

segment.

Mode shape and frequency evolution is captured using two different window lengths. Low

intensity Ẍabs(t0 : t1)< 0.1m/s2 ambient vibrations and white noise excitation data is segmented

using t1− t0 = 60 seconds windows with 50% overlap, because it is not expected to capture any

abrupt changes in modal parameters for these low intensity tests. High intensity vibrations

Ẍabs(t0 : t1)> 0.1m/s2 are divided into t1− t0 = 10 seconds windows with 75% overlap, which

will capture gradual changes in modal frequency and relevant mode shapes caused by non-linear

mechanical system behavior or stiffness degradation. The selected response segments are win-

dowed using Hanning windows, to remove input non-stationarity and alleviate spectral leakage

effects [192].

Mode shape evolution for the selected dominant modes is obtained by carrying out a mode-

by-mode optimization using Equation (3.5) for each segmented window. To alleviate signal

noise effects, the correlation factors are calculated per Equation (3.7) using unnormalized FRS,

Y abs and Y rel , which adds more weight on strong modes. The optimized mode shape coefficients

are updated for each window based on total reduction in total cross-correlation:

Φ̂
k(:, i) = Φ̂

k−1(:, i)+
(

Φ̂
opt(:, i)− Φ̂

k−1(:, i)
)
·
(

∆Corr
Corriso,i(Φ̂opt)

)0.5

∆Corr =Corriso,i(Φ̂k−1)−Corriso,i(Φ̂opt)

(6.2)

where k is the window segment number, thus Φ̂opt(:, i) are the optimized ith mode shape coef-

ficients for the kth time window obtained using Equation (3.5), Corriso,i(Φ̂opt(:, i)) is the total

cross-correlation coefficient based on the optimized mode shape coefficient Φ̂opt(:, i), and fi-

nally Corriso,i(Φ̂k−1(:, i)) is the total cross-correlation coefficient based on the updated mode

shape coefficients for the previous time window, k−1.

Modal frequency and damping evolution is obtained by identifying the selected modes for
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each segmented window using the curve fit method in Equation (2.20). Equivalent modal damp-

ing ratios are identified using only ambient vibration and white noise excitation data. Strong

ground motion response data is not used due to normally highly varying modal frequency within

relatively short time windows. Modal damping is estimated based on t1− t0 = 60 seconds long

response data. Data segmentation parameters are summarized in Table 6.3.

Table 6.3: Data segmentation summary

Excitation intensity Mode shape id Frequency id Damping id

Window
length/Overlap

∣∣Ẍ(t0 : t1)
∣∣< 0.1m/s2 60s/50% 60s/50% 60s/50%∣∣Ẍ(t0 : t1)
∣∣> 0.1m/s2 10s/75% 10s/75% 60s/50%

Equation No 3.5 2.20 2.20

The identified modal parameters are compared with the results from other studies [126,

127, 149], where the authors used different system identification methods (SSI-Data, NExT-

ERA, EFDD, DSI and OKID-ERA) to identify the modal parameters for this same structure.

However, due to method limitations, all the studies were implemented based on the ambient

load and white noise excitation induced vibrations. Thus, only ambient or white noise excitation

based identification results of this study are able to be compared with these other studies.

6.4 Results and Discussion

6.4.1 Base isolated structure

Initial modal parameter identification

Initial modal parameter identification based on 30 seconds white noise excitation data (RMS

0.05%g) resulted in 10 modes being identified. The fitted FRF for an equivalent SDOF system

for each mode are shown in Figure 6.3, and the identified mode shapes are shown in Figure 6.4.

Modes 2, 5, 8 and 10 can be attributed to longitudinal (L) modes (shaking direction), modes

1, 4 are transversal (T), and modes 3, 6, 7, 9 are torsional (To). The first three modes (longi-

tudinal translation, 1-L, transversal translation, 2-T, and torsion, 3-To) represent a typical base
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Figure 6.3: Receptance FRF of BI structure for the first lowest 10 identified modes

isolation response with a nearly rigid body superstructure response. The first two modes (1-

L and 2-T) overlap due to isotropic in-plane and out-of-plane rubber bearing properties and

nearly identical effective masses, which are mode shape dependent. Modes 4-T and 5-L repre-

sent typical flexural modes of a superstructure with separated modal frequencies due to different

stiffness in longitudinal and transversal directions. Modes 1-T and 4-T clearly indicate that the

bracing installed on the eastern transverse bay did not prevent the structure from a significant

torsional motion. Although the mode has a significant spectral energy under ambient vibrations

compared with other modes, it’s contribution to the total structural response is expected to be

negligible under unidirectional test ground motions.

Overall, the identified mode shapes are comparable with those obtained by [116], where the

authors applied two output-only (SSI-DATA and ERA) and one input-output (DSI) system iden-

tification methods. Based on visual inspection, the identified ten modes in this study are/appear

very comparable with those obtained by the SSI-DATA method.
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Figure 6.4: Identified first ten mode shapes
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Modal frequency evolution

Modal frequency evolution of the most prevailing seven modes (1-T, 2-L, 3-To, 5-L, 7-To, 8-L

and 10-L) is shown in Figure 6.5. All the modal frequencies demonstrate very high variability,

which can be associated with either highly non-linear behavior of the rubber bearings or poor

signal-to-noise ratio .
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Figure 6.5: Modal frequency evolution

In addition, the modal frequencies experience a sudden drop once a certain ground exci-

tation intensity is reached even for the white noise excitations. This can be explained by the

well known Payne effect [193, 194], where the added carbon black changes the stiffness prop-

erties of the rubber compound, which becomes highly non-linear for small and large amplitude

strains, where the maximum damping is reached at intermediate strain amplitudes [195]. Rub-

ber insulator non-linear restoring force behaviour can be approximated using various existing

complex mathematical models [196, 197]. However, it can also be considered as a simple bi-

linear hysteretic system [198]. At small amplitude ambient or ground excitation induced vi-

brations, the base isolator’s effective shear stiffness is equal to the initial slope (ke f f = k1),
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whereas for large amplitude vibrations the effective shear stiffness will be displacement de-

pendent (k2 < ke f f < k1). For this reason, it is more relevant to compare the identified modal

frequencies with respect to base excitation intensity.

Figure 6.6 shows modal frequency relation to the root-mean-square (RMS) input accelera-

tion for the analysed time window for selected test groups. The selected tests were divided into

two groups. The first group consists of the tests carried out at the start of the testing protocol

(WN1, EQ1 , WN2, EQ2 and WN3) as shown in Table 6.1. The second group includes the tests

carried out at the end of the test protocol (EQ7 and WN7). The presented modal frequencies of

the strongest modes (Modes 2-L, 5-L and 8-L) demonstrate a consistent decrease with increas-

ing input ground motion.
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Figure 6.6: Modal frequency versus RMS ground excitation estimated for two selected test groups

In addition, overall frequency reduction can be seen in Figure 6.6, where the solid black line

represents the averaged modal frequency distribution with respect to RMS ground excitation

for tests WN1, EQ1, WN2, EQ2 and WN3, whereas the solid red line represents the averaged

frequency distribution for tests EQ7 and WN7. Very small reductions in modal frequency can

be seen for mode 2-L, where significantly larger reductions in modal frequency are observed for
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modes 5-L and 8-L across the whole input excitation intensity range. The observed modal fre-

quency reduction could be related to concrete cracking in the superstructure or rubber bearing

Muller/scragginng effect. The Muller effect is defined as the change in strength and stiffness of

the rubber bearing from first half-cycle of loading of a virgin bearing (unscragged properties)

to subsequent cycles of loading of scragged bearing (scragged properties) [199]. This reduction

is well-known to be temporary and the rubber compound recovers its virgin properties, as seen

in the modal frequency evolution in Figure 6.5. However, the length of this recovery process

varies [193]. Although the time difference between the start and the end of the test protocol is

11 days, the time difference between the last 3 strongest ground motions is only one day, which

could have resulted in incomplete recovery of the mechanical properties of the rubber bearings.

Similar findings can be seen in Astroza et al. [116] study shown in Figure 6.7, where the

SSI-DATA system identification method for ambient vibrations only, resulted in temporal evo-

lution of the natural frequencies. However, the evolution of Astroza et al. study cannot be

directly compared with Figure 6.5, since, in this study, the system identification is carried out

for both, low amplitude white noise, ranging 0.05-2.5%g RMS, and strong ground motion in-

puts. Nevertheless, both evolutions demonstrate a similar overall trend.
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tion data. Figure modified from [116]
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Figure 6.8: Equivalent modal damping ratio evolution for the selected modes identified from the ambient
vibrations and white noise excitation

Modal damping evolution

The equivalent modal damping ratio evolution for each mode is shown in Figure 6.8. Modal

damping evolution for each mode is calculated using windowed 1 minute long response data

with 50% overlap obtained from the white noise excitation or ambient vibration events. Modal

damping evolution does not include the actual earthquake excitation, due to highly varying

modal frequency within relatively short time windows, leading to inaccurate estimation of the

damping ratio, ζ .
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Again, as for the identified modal frequencies, the identified modal damping coefficients

demonstrate very high variability, which is excitation intensity dependent. Modal damping ra-

tios for the lowest three modes vary between 5% and 25%, due to energy dissipative properties

of the rubber bearings. In addition, the damping ratio of the transversal and torsional modes (1-

T, 3-To) appears more variable, which can be attributed to low signal-to-noise ratio. It must be

noted that maximum manufacturer’s rated damping is approximately 18.5% [179], which corre-

sponds to a 50mm shear deformation, and is the lowest deformation tested by the manufacturer.

The difference between identified and rated rubber bearing damping can thus be attributed to

dynamic effects, as it is known that the effective damping increases with strain rate [200, 201],

and/or low shear deformations, that vary from 10-30mm for the white noise base excitations.

The higher modes (5-L, 7-L, 8-L and 10-L) also show a certain degree of variability, particu-

larly mode 5-L, but it can be related to non-linear mechanical properties of the superstructure.

Modal damping relation to RMS value of the ground excitation is show in Figure 6.9. As can

be seen, the lowest three modes (1-L, 2-T and 3-To) are excitation intensity dependent, whereas

the remaining identified higher modes show lower sensitivity with respect to ground excitation

intensity. No changes in critical damping ratio are observed throughout all the tests.

The identified modal damping values for the first three modes (1-T, 2-L and 3-To) are higher

than those identified in [116]. The other modes (5-L, 7-To, 8-L and 10-L) show smaller differ-

ences in comparison to this study.

Mode shape evolution

Mode shape evolution of the strongest two modes (2-L and 5-L) is shown in Figure 6.10. All

mode shapes for all tests are unit normalized. Thus, one of the mode shape coefficients for each

mode does not vary. The mode shape evolutions presented demonstrate high variability, which

is excitation intensity dependent. Mode shape evolution for Mode 2-L directly illustrates the

efficiency of the rubber bearings, which are typically designed to isolate the superstructure from

strong ground motion. As seen in Figure 6.10a, under high intensity ground motion, the total

deformation of the superstructure, defined as the difference between the top and ground floor
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Figure 6.9: Modal damping versus RMS ground excitation identified from the ambient and white noise
ground excitation

displacement, decreases as a result of lower base isolator effective stiffness, as expected. Large

mode shape variations of Mode 5-L seen in Figure 6.10b can be attributed to low signal-to-noise

ratios, as well as strong non-linear behaviour of rubber isolators.

Due to the uni-directional ground motion, the lateral and torsional modes are being excited

at significantly lower intensity compared to longitudinal modes. Hence, the modes have signif-

icantly lower signal-to noise-ratio, which leads to larger mode shape identification errors.

Overall, due to the high and temporary variability of the mode shapes it is difficult to observe

any permanent mode shape changes, which are caused by the structural damage. As a result,

no attempt has been made to use statistical analysis based on changes in the mode shape coeffi-

cients to capture the damage. However, the identified mode shapes can be utilized to decompose

the modes and reconstruct single mode dominant hysteresis loops, which can be analysed using

HLA [18,147]. The HLA method should provide a better and more intuitive insight on systems

structural behavior and its evolution of structural stiffness than a modal method.
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6.4.2 Fixed base structure

Initial modal parameter identification

Initial modal parameter identification for the FB building configuration is carried out using 40

seconds long ambient vibration data, which resulted in 10 modes being identified. Figure 6.11

shows the fitted FRFs of the first ten identified modes and Figure 6.12 shows the identified

mode shapes. The first two modes, the longitudinal 1-L and transversal 2-T flexural modes,

are at almost identical frequencies, resulting in overlapping FRFs. Mode 2-L involves a small

torsional deformation caused by the asymmetric transversal stiffness of two bays, due to the

presence of the transversal shear walls in one of the bays. The identified modal frequencies

for the FB structure are significantly different from the identified superstructure flexural mode

frequencies of BI structure, shown in Figure 6.3, due to different support conditions. No struc-

tural changes have been implemented in the superstructure, which would affect the structural

stiffness or building mass.

Modal frequency evolution

Modal frequency evolution of the selected first seven modes (1-L, 2-T, 3-To, 4-To, 5-L, 6-To

and 7-L) is shown in Figure 6.13. Modal frequency evolution of the other three modes (8-L,

9-To and 10-L) is not presented, due to poor consistency of the results, which can be attributed

to either relatively high damping or/and poor signal-to-noise ratio.

The identified modal frequencies demonstrate very high variability, which can be distin-

guished into short-term variability and permanent overall degradation. Short-term variability,

seen as gentle variation in WN tests and a sudden, but recovering, variation in EQ tests, can

most likely related to either pinching effect of concrete elements [18, 202] or contribution from

non-structural buildings components (NSC), which can have a significant contribution to the

total structural stiffness and strength [203, 204]. Short-term variability is excitation intensity

dependent. Thus, some of modal frequency evolution discontinuities seen between the tests
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Figure 6.11: FRFs for the first ten identified modes

(WN1 and EQ1) is the result of different ground motion intensity. Permanent overall frequency

degradation can also be observed throughout the series of tests, as expected for the FB case,

which is more pronounced for longitudinal modes (1-L, 5-L and 7-L) and can be associated with

the structural damage in the longitudinal bays. In addition, during the initial modal parameter

identification two mode couples (1-L & 2-T and 4-To & 5-L) were identified with overlaping

FRF’s, as shown in Figure 6.11. However, at the end of the testing protocol, as seen in Fig-

ure 6.13, the gap between the modes increases. This result, again, confirms the fact that most

of the structural damage took place in longitudinal bays, as expected in the direction of shaking.

Figure 6.14 shows the modal frequency relative to RMS input acceleration for the three

strongest modes (1-L,5-L and 7-L) for each EQ event combined with the low amplitude WN

excitation carried out after each EQ event (EQ+WN). The solid lines represent the averaged

frequency-RMS ground excitation relation, which indicates that the modal frequency evolu-

tions is non-linear, excitation intensity dependent. With increasing ground motion intensity all

the modal frequencies drop at different rate, which can again be attributed to crack opening

or closing in concrete members and/or stiffness contribution from NSC, which decreases with

increasing inter-story deformations. In addition, as structural damage progresses, the modal

frequencies tend to drop at a higher rate with increasing ground motion intensity. At small am-
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Figure 6.12: Identified first ten mode shapes for the FB building
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Figure 6.13: Modal frequency evolution of the first seven modes for white noise (WN) and earthquake
(EQ) excitations

plitude vibrations the cracks remain partially closed, which results in higher member stiffness,

and thus a higher observed modal frequency. As damage progresses, more and more cracks de-

velop resulting in significantly lower effective stiffness and modal frequencies at high amplitude

vibrations. Hence, temporarily varying identified modal frequencies with an increasing dispar-

ity between small and large amplitude vibrations can reveal the extent of member cracking.

Permanent modal frequency changes are also obvious, which can be associated with permanent

stiffness degradation due to concrete cracking.

Modal damping evolution

Figure 6.15 shows the modal damping, ξi, evolution of the first seven selected modes (1-L, 2-T,

3-To, 4-To, 5-L, 6-To and 7-L). Again, as observed for the modal frequency evolution, modal

damping demonstrates significant excitation dependent variability.

The three strongest principal longitudinal modes (1-L, 5-L and 7-L) exhibit relatively high

damping, which is in the range of 5%-to 10% of the critical damping ratio. Increase in the

modal damping ratio from 5% to 10% for Modes 4-T and 7-L can be observed after test EQ4

for higher WN excitation intensities, where the damping of the lower modes remains in the

same range (4% to 6%). Overall, damping ratios of the transversal modes (2-T, 3-To and 6-To)

have a higher variance due to low excitation levels in transversal direction, which results in

134



Mode:1-L

0 2 4 6 8
0

0.5

1

1.5

2

M
od

al
 f

re
qu

en
cy

, H
z

Mode:5-L

0 2 4 6 8
RMS ground excitation, %g

0

1

2

3

4

5

6

7

WN1+EQ1+WN2 EQ2+WN3 EQ3+WN4
EQ4+WN5 EQ5+WN6 EQ6

Mode:7-L

0 2 4 6 8
0

2

4

6

8

10

12

Figure 6.14: Modal frequency relation to RMS ground excitation at different stages of the test protocol
for modes 1-L, 5-L and 7-L

Mode1-L

0
0.1
0.2

 smoothed  identified

Mode2-T

0
0.1
0.2

Mode3-To

0
0.1
0.2

D
am

pi
ng

 r
at

io
, 

Mode4-T

0
0.1
0.2

Mode5-L

0
0.1
0.2

Mode6-To

0
0.1
0.2

Mode7-L

W
N

1

E
Q

1
W

N
2

E
Q

2

W
N

3

E
Q

3
W

N
4

E
Q

4

W
N

4

W
N

5

E
Q

5

W
N

6

E
Q

60
0.1
0.2

Figure 6.15: Modal damping, ξ , evolution of the first seven modes for white noise (WN) and earthquake
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Figure 6.16: Modal damping, ξ , of the first seven modes identified for different RMS input ground
excitation levels

poor signal-to-noise ratio and consequently larger errors in modal damping identification. In

general, modal damping evolution does not demonstrate a clear increasing or decreasing trend

with increasing damage.

Figure 6.16 shows modal damping versus RMS ground excitation for all the tests. It is

clear modal damping is excitation intensity dependent, which is especially more pronounced

for longitudinal modes (1-L, 5-L and 7-L) in the direction of shaking, as might be expected.

The transversal and torsional modes show lower dependence to excitation intensity, because the

modes are not excited at a high intensity.

Mode shape evolution

Mode shape evolution for the three selected strongest modes (1-L, 5-L and 7-L) is shown in

Figures 6.17-6.19. Since these modes are in the longitudinal shaking direction, the evolution of

longitudinal DOF’s, φ2...12, is represented in solid black lines, where evolution of the transversal

DOFs is shown in grey solid lines.
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Evolution of mode 1-L in Figure 6.17 shows small variations through EQ1, WN2 and EQ2.

At the end of these tests, the difference between DOFs φ3 and φ8 increases, which can be at-

tributed to unsymmetrical structural damage, since these DOFs are located on the same level,

but different corners. This difference between two modal coefficients reduces after the test EQ4,

which implies the damage occurring during test EQ4 re-balances the structural stiffness of the

two longitudinal bays. Notable permanent changes in all DOF’s can be observed after EQ5 and

EQ6, which can be attributed to a significant structural damage.

Overall mode shape evolution of 5-L and 7-L in Figures 6.18 and 6.19 exhibit higher vari-

ability compared to mode 1-L. This result is mainly due to greater sensitivity to structural

changes and signal noise.

In plane DOFs Out of plane DOFs

Figure 6.17: Mode shape 1-L ,Φ(:, i) = [φ1...φ24]
T , evolution for white noise (WN) and earhtquake (EQ)

excitations.
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In plane DOFs Out of plane DOFs

Figure 6.18: Mode shape 5-L ,Φ(:, i) = [φ1...φ24]
T , evolution for white noise (WN) and earhtquake (EQ)

excitations.

In plane DOFs Out of plane DOFs

Figure 6.19: Mode shape 7-L ,Φ(:, i) = [φ1...φ24]
T , evolution for white noise (WN) and earhtquake (EQ)

excitations.
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6.5 Summary

This study presents a novel modal parameter estimation technique, which is capable of iden-

tification and continuous tracking of the modes participating in the response. The method is

based on tracking the dominant modes of response by re-evaluating the modal frequencies and

mode shape coefficients over short, overlapping time windows. Hence, the approach is capable

of identifying the modal parameters for linear and non-linear systems. The method can perform

as an input-output technique for earthquake generated non-linear responses. Thus, the approach

presented can provide a better insight into structures subjected to strong ground motion events.

The method is applied to identify the modal parameters of a 5-story full-scale reinforced

concrete test structure, which was tested for two structural configurations: base isolated and

fixed base. The results demonstrate the method is capable of tracking the relevant modal pa-

rameters for all types of input excitation. The identified mode shape evolution for the BI struc-

ture indicates that the structure exhibits highly non-linear behavior, which is excitation intensity

dependent and is consistent with expectations for a BI structure and other studies. Modal fre-

quency degradation is observed at the end of the test protocol, which can be associated with

concrete cracking of the superstructure or incomplete recovery of the rubber bearings. The

identified modal parameters for the FB structure identify the expected progressive structural

damage induced by increasing intensity earthquake inputs. The observed changes in modal pa-

rameters can be distinguished into temporary and permanent changes. Temporary variation in

modal parameters can be attributed to non-linear behavior of superstructure, caused by concrete

crack opening/closing and contribution from non-structural components, and is excitation in-

tensity dependent. Permanent changes in modal parameters are related to stiffness degradation

of the superstructure due to concrete cracking/spalling and yielding of steel reinforcement.

Overall, the method performs robustly and can be used for identification of any MDOF

structure subjected to long duration earthquake excitations. The method requires input force

measurements and a relatively rich spatial arrangement of monitored DOFs to fully delineate
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the response of closely spaced modes. The identified mode shape evolution can be used to

decompose the modes and reconstruct single mode dominant hysteresis loops, which can be

analysed using HLA [18, 147].
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CHAPTER 7

Application of mode decomposition and HLA

7.1 Introduction

SHM based on hysteresis loop analysis (HLA) [147] offers a simple, effective and intuitive

SHM tool for damage identification in structures that have undergone non-linear response. The

method performs well when the structural response is single mode dominant, thus producing

regular shape hysteresis loops. However, strong ground motion can trigger higher modes, which

have a significant contribution to the total response. The presence of higher modes typically re-

sults in irregular hysteresis loops, which are hard to identify as accurately using HLA. Single

mode dominant hysteresis loops can be obtained by segregating the modes using mode decom-

position, which relies on the identified approximate mode shape coefficients. The previous

study (Section 6.4.1 and Section 6.4.2), demonstrated that mode shape coefficients can success-

fully be tracked over relatively short time windows using a novel method.

Thus, this chapter presents the second part of the SHM implementation process, which con-

sists of mode decomposition, reconstruction of single mode dominant hysteresis loops, and the

resultant application of HLA. This overall proposed SHM strategy is applied to an experimental

full-scale 5-story reinforced concrete building, which was tested for two structural configura-

tions: 1) base isolated (BI); and 2) fixed base (FB). The test structure was subjected to number

of different type ground motions. The results show that mode segregation allows the extraction

of regular shape hysteresis loops, which can readily be used for visual inspection and HLA.
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The identified stiffness evolution profiles from HLA clearly indicate the loss of stiffness during

strong ground motion events, which can be attributed to extensive concrete cracking and yield-

ing of steel reinforcement. Thus, the presented SHM implementation strategy can successfully

be used to perform a continuous tracking of hysteretic structures.

7.2 Method

7.2.1 Modal parameter identification and mode decoupling

Modal parameter identification can be successfully implemented using input-output method

presented in Chapter 3. The identified modal parameter evolution is used to decouple the struc-

tural response into separate modes and reconstruct single mode dominant hysteresis loops, as

demonstrated in Section 5.2.1 per Equation (5.3):

Fs,i = M · φ̂i

[
{Ẍ

abs
i }+2ξiωi{Ẋ i}

]
(7.1)

where M is the mass matrix, Φ̂ =
[
φ̂1 φ̂2 ... φ̂i

]
is the identified mode shape matrix, where

φ̂n is the identified mode shape vector of the nth mode. Fs,i, ξi, ωi are the stiffness restoring

force vector, damping ratio and the natural frequency of the ith mode, respectively, Ẍ
abs
i and Ẋ i

are the absolute modal acceleration and relative modal velocity of the ith mode, respectively,

calculated:
Ẍ

abs
= Φ̂

−1 (Ẍ + r · Ẍg
)

Ẋ = Φ̂
−1Ẋ

(7.2)

where Ẍ , Ẋ are the relative acceleration and velocity, respectively, Ẍg is the input ground accel-

eration and r is the influence vector.
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7.2.2 Hysteresis loop analysis (HLA)

Stiffness restoring force, Fs,i, versus displacement hysteresis loops can be reconstructed for the

dominant ith mode to represent the structure’s external force-deformation relationship, which

varies with time due to structural degradation and/or damage during strong ground motion

events. In the HLA method, the reconstructed path dependent hysteresis loops are subdivided

into different loading and unloading sub-half cycles, which can be approximated by a series of

piecewise linear segments. F-type hypothesis testing is applied to identify the number of piece-

wise segments that represent an approximated hysteretic model. Finally, overall least squares

linear regression analysis is carried out to selected sub-half cycles which allows the identifica-

tion of the elastic stiffness, plastic stiffness and cumulative plastic deformation. Full details of

the HLA method and its application to test structures can be found in [18] and [147].

The original HLA method has been modified to increase the number of successfully iden-

tified half-cycles by introducing parametric constraints. A general r-phase piecewise linear

approximated hysteretic model can be expressed [147] :

G(x) =g1(x) = a1x+b1 X1 ≤ x≤ Xt1

= g2(x) = a2x+b2 Xt1 ≤ x≤ Xt2

= · · ·

= gr(x) = arx+br Xtr−1 ≤ x≤ Xn

(7.3)

where Xt1 · · ·Xtr−1 are the breakpoints in sub-half cycles, X1,Xn are the start and end hysteretic

displacements of the analyzed sub-half cycle and Y1,Yn are the corresponding restoring force

components, as shown in Figure 7.1. The reconstructed hysteresis loop points, (Xi,Yi), can be

approximated by a piecewise linear model:

Yi = G(Xi)+ ei i = 1 · · ·n (7.4)

where ei is the measurement noise and/or modeling error. The overall residual sum squared
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Figure 7.1: Piecewise linear hysteretic models (r = 1,2,3,4) for an arbitrary sub-half cycle

error for r-phase linear model can be expressed:

Rr
(
X̂t1 , · · · , X̂tr−1 ,a1,b1, · · · ,ar,br

)
=

t1

∑
i=1

[Yi−g1(Xi)]
2 +

t2

∑
i=t1+1

[Yi−g2(Xi)]
2 + · · ·

· · ·+
n

∑
i=tr−1+1

[Yi−gr(Xi)]
2

(7.5)

As a result, a solution to the most optimal parameters,
(
X̂t1, · · · , X̂tr−1 ,a1,b1, · · · ,ar,br

)
, pro-

ducing the lowest residual sum of squares, Rr, for this r-phase linear model can be written as an

optimization problem:

(
X̂t1, · · · , X̂tr−1,a1,b1, · · · ,ar,br

)
=

= argmin
(X̂t1 ,··· ,X̂tr−1 ,a1,b1,··· ,ar,br)

(
Rr
(
X̂t1, · · · , X̂tr−1,a1,b1, · · · ,ar,br

))
(7.6)

where the optimization problem can be solved by dividing the sub-half cycle hysteresis segment

into a number of possible r piecewise segments and solving the optimization problem for each

potential segment configuration.

Solution to Equation (7.6) yields the overall minimum of all possible piecewise segment

configurations. The values (X̂t1 , · · · , X̂tr−1) are the breakpoints. The values (a1,b1, · · · ,ar,br)

are the regression coefficients representing each segment of an approximated r-segment (r =

1,2,3,4) piecewise hysteretic model, as shown in Figure 7.1.

Due to the presence of sensor noise, higher mode effects and limitations in objective function

(under-constrained parameters), the optimization problem may yield an unrealistic piecewise r-

segment hysteretic model that has less or limited physical meaning. Thus, inaccurate regression

144



coefficients will be obtained. More realistic piecewise approximations of the hysteretic model

can be achieved by adding constraints to the least squares objective function in Equation (7.6):

(
Xt1, · · · ,Xtr−1,a1,b1, · · · ,ar,br

)
= argmin

Constr

(
Rr
(
Xt1, · · · ,Xtr−1,a1,b1, · · · ,ar,br

))
(7.7)

where Constr indicates the imposed constraints for different r-segment hysteretic models and

can be divided into three groups:

1. Model continuity constraints are applied to multi-segment (r = 2,3,4) hysteretic models

to impose regression function continuity at the estimated break points (X̂t1 , · · · , X̂tr−1):

gi(X̂ti) = gi+1(X̂ti)

ai · X̂ti +bi = ai+1 · X̂ti +bi+1

(7.8)

2. Minimum segment length constraints are applied to each segment of the approximated

hysteric sub-half cycle to ensure that only significant hysteretic features are captured dur-

ing the optimization process: ∣∣X̂ti+1− X̂ti

∣∣= ∆r,i (7.9)

3. Regression coefficient constraints are applied to r = 2,3,4 segment piecewise hysteretic

models to ensure that only specific sub-half cycles are captured. For example, r = 3 seg-

ment piecewise models are used to identify sub-half cycles exhibiting significant pinch-

ing, which typically can be described:

ar
1 > ar

2 ar
3 > ar

2 ar
1 ≈ ar

3 (7.10)

Similarly, regression coefficients for a typical r = 4 segment piecewise hysteretic model

can be described:

ar
1 > ar

2 ar
3 > ar

2 ar
1 ≈ ar

3 ar
4 < ar

3 (7.11)

A full list of such constraints imposed on r-segment piecewise hysteretic models is shown
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in Table 7.1. Hence, the constrained least sum of squares optimization function in Equation

(7.7) allows for approximation of more realistic sub-half cycles, despite issues with noise and

higher modes, and which comply with the imposed physical boundaries. This approach makes

the hypothesis testing more robust.

Table 7.1: Constrains imposed on HLA

Constrain
type

r segment model

r = 1 r = 2 r = 3 r = 4

Model
continuity

- g1(X̂t1) = g2(X̂t1)

- - g2(X̂t2) = g3(X̂t2)

- - - g3(X̂t3) = g4(X̂t3)

Minimum
length

|Xn−X1|= ∆r,1 |X̂t1 − X̂1|= ∆r,1 |X̂t1 − X̂1|= ∆r,1 |X̂t1 −X1|= ∆r,1

- |Xn− X̂t1 |= ∆r,2 |X̂t2 − X̂t1 |= ∆r,2 |X̂t2 − X̂t1 |= ∆r,2

- - |Xn− X̂t2 |= ∆r,3 |X̂t3 − X̂t2 |= ∆r,3

- - - |Xn− X̂t3 |= ∆r,4

Regression
coefficient

- ar
2 < ar

1 ar
2 < ar

1 ar
2 < ar

1

- - ar
3 ≈ ar

1 ar
3 ≈ ar

1

- - - ar
4 < ar

3

More specifically, F-type hypothesis testing is used to identify the optimal number of seg-

ments, which approximate the hysteretic model. First, a constrained optimization problem is

solved (Equation (7.7)) to identify each r-phase (r = 1,2,3,4) piecewise linear hysteretic model

over the specific half-cycle. Each identified r-phase linear model is defined by regression co-

efficients a1,b1 · · ·ar,br and corresponding breakpoints X̂t1, · · · X̂tr−1 . The optimal number of

segments, r, is determined by assuming an r = 4 phase linear model, which is characterised by

three break points X̂t1, X̂t2 and X̂t3 . Next, it assumed that r = 4 phase linear model can be ap-

proximated by r−1 = 3 segments. Thus, one of the breakpoints X̂ti is removed by considering

two segments connected through this breakpoint as a single segment. Then the residual sum of

squares is calculated assuming the other break points are kept fixed, X̂t j , ( j = 1 · · ·r−1, j 6= i).

The overall residual sum of squares of the assumed r−1 phase model is calculated:

R
′
r−1 = min

j=1···r−1
min

i=1···r−1
Rr−1(X̂t1, · · · , X̂t j−i, X̂t j+i, · · · , X̂tr−1) (7.12)
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The hypothesis test is carried out between the null hypothesis H0 and the alternative hy-

pothesis H1. The null hypothesis assumes the hysteresis model can be approximated using r

segments. The alternative hypothesis states the approximated model can be simplified to r−1

number of segments. The F-type testing is defined [205]:

F (r−1|r) =
N
(

R
′
r−1−Rr

)
R′r−1

(7.13)

where N is the number of points (Xi,Yi) representing the hysteresis loop. Equation (7.13) calcu-

lates the relative improvement in overall minimum value of squared residuals (cumulative error)

between the approximated r segment model and assumed r−1 segment model.

Thus, rejection in favour of a model with r segments is allowed if the estimated cumulative

error of model with r segments, Rr, is sufficiently smaller than the estimated cumulative error,

R
′
r−1, of a model simplified to r−1 segments. The critical values, Sr

θ
, defining the significance

levels of the hypothesis testing are provided by [205]. In this study, the significance level θ is

set to 0.01, resulting in the following critical values for q = 2 degrees of freedom regression

model:

S1
0.01 = 16.64 S2

0.01 = 17.98 S3
0.01 = 18.66 (7.14)

If rejection in favor of alternative hypothesis is concluded, an r− 1 segment model is as-

sumed to represent the hysteretic model, which has been approximated using the constrained

optimization problem in Equation (7.7). Model simplification, by removing one of the break-

points Xti is repeated again and checked for significance test using Equation (7.13) until the

alternative hypothesis is rejected. Thus, the best model for r = 1,2,3,4 segments can be found.

Finally, once the optimal number of segments/breakpoints is identified, the regression coef-

ficients (a1,b1, · · · ,ar,br) are obtained from constrained optimization analysis as per Equation

(7.7).

It must be noted that the proposed number of segments (breakpoints) identification proce-
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dure presented here differs slightly from that presented in [147] and [205]. The latter methods

initially assume an r segment model, and then perform F-type hypothesis testing to check the

presence of additional breakpoints/segments. In this study, the reverse process is proposed.

Specifically, first, a constrained r segment piecewise hysteretic model is assumed and then

the hypothesis test is carried out to check whether the model can be simplified to a r−1 piece-

wise linear model. In addition, the imposed constraints allow identification of realistic hysteretic

models, that exhibit expected features, such as elastic loading/unloading, pinching and yielding.

Hence, when F-type hypothesis testing is carried out to determine the number of segments, only

realistic hysteretic models are compared.

Typically, unconstrained hysteretic models with r+1 segments will always result in lower

or the same residual sum of squares than r segment model. In some cases, the improvement

might be significant enough to assume the presence of r+1 segments using hypothesis testing,

even though the assumed additional segment/breakpoint cannot be associated with any of spe-

cific, known hysteresis phases. These spurious segments simply capture higher modes, noise,

or data processing error. Therefore, application of the constraints in the optimization function

in Equation (7.7) makes the HLA less sensitive to these aforementioned errors, and thus more

robust. This overall process is shown as a flowchart in Figure 7.2.
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Step 1: Extract the selected sub-half cycle, based on zero velocity points (turning
points)

Step 2: Define the constraints for each r-segment (r = 1,2,3,4) hysteretic model, as
shown in Table 7.1, and solve the constrained optimization problem defined in Equa-
tion (7.7) for each r-segment hysteretic model.

Step 3: Assume r = 4 segment hysteretic model. Assume that two adjacent segments
can be approximated by one segment by removing one of the breakpoints X̂t1 , X̂t2 or
X̂t3 . Find the best approximation for r = 3 segment alternative model which produces
the lowest overall sum of squared residuals, R

′
r−1, as per Equation (7.12).

Step 4: Check whether r = 4 segment model produces significantly better fit then ap-
proximated alternative r = 3 segment model by determining F(4|3) from Equation
(7.13) and performing the following significance test:

F(4|3)> S3
0.01 = 18.66

Step 5: Assume r = 3 segment hysteretic model determined in Step 2. Assume that
two adjacent segments can be approximated by one segment by removing one of the
breakpoints X̂t1 or X̂t2 . Find the best approximation for r = 2 segment alternative model
which produces the lowest overall sum of squared residuals, R

′
r−1, as per Equation

(7.12).

Step 6: Check whether r = 3 segment model produces significantly better fit then ap-
proximated alternative r = 2 segment model by determining F(3|2) from Equation
(7.13) and performing the following significance test:

F(3|2)> S2
0.01 = 17.98

Step 7: Assume r = 2 segment hysteretic model determined in Step 2. Assume that
two adjacent segments can be approximated by one segment. Find the best approxi-
mation for r = 1 segment alternative model which produces the lowest overall sum of
squared residuals, R

′
r−1, as per Equation (7.12).

Step 8: Check whether r = 2 segment model produces significantly better fit then ap-
proximated alternative r = 1 segment model by determining F(2|1) from Equation
(7.13) and performing the following significance test:

F(2|1)> S2
0.01 = 16.64

Step 9: Assume r = 1 segment hysteretic model determined in Step 2.

Step 10: Extract the regression coefficients from constrained optimization analysis
(Step 2) for r-segment hysteretic model to obtain the physical parameters ke, kpinch,
kpl , ∆p

No

No

No

Yes

Yes

Yes

Figure 7.2: Flow chart for optimal number of segments identification for selected sub-half cycle
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7.3 Method validation

7.3.1 Test structure

This section presents the second part of the SHM implementation process. Mode segregation,

reconstruction of single mode dominant hysteresis loops and application of HLA are imple-

mented to the full-scale 5-story reinforced concrete structure, which was introduced in Chapter

6. Hence, for brevity, the description of the test structure used to validate aforementioned SHM

steps is omitted herein.

7.3.2 Analyses

Mode decomposition and reconstruction of hysteresis loops for the dominant modes

To take into account the time-varying mode shape coefficients, Φ̂t , Equation (2.2) is re-arranged

and expressed in the incremental form:

∆Xabs(t) =
(
Φ̂

t)−1 ·∆Xabs(t) (7.15)

Thus, the inter-story stiffness restoring shear force increment vector of the ith mode can be

calculated by substituting Equation (7.15) into Equation (7.1) and re-arranging:

∆V i(:, t) =Bxdir ·M ·Si(t) · (Φ̂t)−1 ·
[
∆Ẍabs(:, t)+2ξiωi∆Ẋ(:, t)

]
= Ti

[
∆Ẍabs(:, t)+2ξi(t)ωi(t)∆Ẋ(:, t)

] (7.16)

where the term Ti = Bxdir ·M ·Si · (Φ̂t)−1 can be considered as the C×m decomposition matrix

for the ith mode and is used to calculate the story shear force increment, ∆V , generated by the

ith mode, Bxdir is a C×m summation matrix, which adds all the floor inertia forces acting in x

direction (direction of shaking), C is the number of floors, ξi(t) is the average critical damping

ratio estimated from the white noise excitation, ωi(t) is the average identified angular frequency

for the ith mode, Φ̂t is the identified mode shape matrix, and Si is the “isolated” ith mode shape
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matrix defined:

Si(t) =
[
{0}m×i−1 Φ̂t(:, i) {0}m×m−i+1

]
(7.17)

The diagonal mass matrix, M, is defined:

M = diag
([

M f loor
2

M f loor
2

M f loor
2

M f loor
2

])
(7.18)

where M f loor =

[
m1 m2 m3 m4 m5 m6

]
=

[
0.21 0.74 0.77 1.00 1.08 0.71

]
kg·1e5

is the floor mass starting from the ground floor. For the FB building configuration the floor ma-

trix, M f loor, is reduced to 1×5 matrix by disregarding the ground floor mass.

The relative velocity increment, ∆Ẋ , is obtained by integrating the relative acceleration in-

crement, ∆Ẍ , and the relative displacement increment, ∆X , is obtained by double integration

of the relative acceleration increment. Total relative displacement of each floor, Xi, is filtered

using 2nd order high-pass Butterworth filter with cut-off frequency of 0.1Hz to remove only the

drift, due to double integration.

Hence, the total inter-story shear force time history can be obtained:

V i(:, t) =V i(:, t−1)+∆V i(:, t) (7.19)

For the BI structure the hysteresis loops for the dominant mode are reconstructed for two in-

dependent mechanical hysteretic systems: 1) SDOF system consisting of a soft rubber bearing-

rigid superstructure; and 2) SDOF system representing the superstructure’s flexural deforma-

tion. Total base shear force for the dominant mode is calculated using Equation (7.19) based on

the computational model shown in Figure 7.3b. Base isolation deformation is calculated as the

average difference between the 1st floor and ground displacements. Total superstructure defor-

mation is calculated as the average difference between the roof and the first floor displacements.

For the FB building configuration the hysteresis loops are reconstructed for each inter-story,
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as shown in Figure 7.3c.
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Figure 7.3: a) Structure with monitored 24 DOFs b) Assumed hysteretic model for the BI structure c)
Assumed hysteretic model for the FB structure

Hysteresis loop analysis

The HLA method is applied to single-mode dominant restoring force-displacement sub-half

cycles to identify the stiffness components. For the BI structure a typical rubber bearing hys-

teretic behavior can be characterized using a bi-linear approximation [198], which makes HLA

a convenient tool for stiffness identification using one-segment (r = 1) and two-segment (r = 2)

piecewise linear models. The estimated slopes of the identified segments represent the elas-

tic, kelastic, and post-elastic , kpost−elastic, stiffness components of bi-linear model, as shown in

Figure 7.4a. The HLA is carried out by imposing the constraints presented in Table 7.1. The

minimum length of each segment is set to ∆r,i = 0.002m to capture only the significant hys-

teretic features.

For the FB structure HLA is applied to identify elastic and pinching stiffness components,

as shown in Figure 7.4b. The minimum length of each segment is set to ∆r,i = 0.002m. In the

presence of any structural damage occurring during the monitored time period, the changes are
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Figure 7.4: a) Typical hysteretic behavior of base isolators and HLA approximation and b) typical
hysteretic pinching behavior of RC structure and HLA approximation using r = 4 segment model

captured by degradation of elastic stiffness, which is presented in the form of stiffness evolution

plots over time.

7.4 Results and Discussion

7.4.1 Base isolated structure

Hysteresis loop reconstruction

Single mode dominant base isolator and the total superstructure hysteresis loops are recon-

structed for HLA implementation. HLA enables physical parameter identification that is easy

to interpret and more intuitive, especially for non-linear cases, which is the case for the BI

structure. In this study, the hysteresis loops are reconstructed for mode 2-L using the modal

filtering process described in Section 6.4.1, which is, by far, the most dominant mode in the

structural response. To demonstrate rubber bearing energy dissipative properties, the damping

force component from Equation (7.16) is not taken into account, ξ2 = 0%. Thus only the dy-

namic component is considered.

Base isolator and superstructure hysteresis loops reconstructed from the white noise and
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earthquake excitations are shown in Figures 7.5 and 7.6, respectively. Overall, based on visual

analysis, hysteresis loops reconstructed for the rubber bearings do not show any obvious signs

of strength and stiffness degradation. Muller or scragging effects, defined as a reduction in peak

strength and effective stiffness after the first half-cycle [193, 199], can be clearly seen in tests

EQ1, EQ2, EQ3 and EQ4.

Hysteresis loop analysis

Base isolator HLA

HLA is carried out for the stiffness restoring force loops reconstructed for the rubber bearings,

shown in Figure 7.5. The identified post elastic stiffness, kpost−elastic, evolution profiles for the

base isolator are shown in Figure 7.7. Circles represent the actual identified post elastic stiffness,

kpost−elastic, where the solid black line represents the moving average, based on robust locally

weighted least squares regression (RLOWESS), which assigns lower weights to outliers in the

regression analysis [206]. The identified post-elastic stiffness is compared to the manufacturer’s

rated stiffness approximated based on pseudo-static tests using a bi-linear model [179].

Figure 7.7 clearly shows the identified post-elastic stiffness, kpost−elastic, is highly variable

and excitation dependent. At small amplitude shear displacements, the rubber isolators exhibit

relatively stiff behavior, kp−e,id ≈ 5MN/m, compared to the approximated manufacturer’s rated

post-elastic stiffness, kp−e,est ≈ 2.5MN/m, which results in higher load demands on the super-

structure. Notoriously stiff behavior can be observed in the test WN1, which could be related

to Muller’s effect. However, for the actual design events, the rubber bearings demonstrate sig-

nificantly softer behavior, kp−e,id ≈ 2− 3MN/m, which indicates the effectiveness of the base

isolation, as designed.

In addition, white noise tests carried out after each EQ event also indicate that the rubber

bearings fully recover their mechanical properties. Post-elastic stiffness discontinuities between

the tests, as shown in Table 7.2, can be attributed to highly varying hysteretic displacements.

During the WN tests the base isolators do not develop the post-elastic regime fully. Thus, the
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Figure 7.5: Base isolator hysteresis loops reconstructed for white noise(WN) and earthquake excitations
(EQ). The grey lines represent restoring force history from the previous cycles
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Figure 7.6: Base isolator hysteresis loops reconstructed for white noise (WN) and earthquake excitations
(EQ). The grey lines represent restoring force history from the previous cycles
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Figure 7.7: Post-elastic stiffness evolution of rubber bearings for earthquake (EQ) and white noise (WN)
tests

identified post-elastic stiffness captures the transition part, as shown in Figure 7.4a. In contrast,

during the EQ tests the isolators are excited well beyond the elastic regime. For example, in

tests EQ5 and EQ6, the base excitation starts abruptly, which results in large hysteretic displace-

ments at the start of the test and consequently lower post-elastic stiffness.

Superstructure HLA

HLA on the reconstructed hysteresis loops is carried out using one segment fit, which represents

an effective shear stiffness of the whole superstructure. The identified elastic shear stiffness

evolution is shown in Figure 7.8. Circles represent the actual identified elastic shear stiffness,

where the solid black line represents a 10 sample moving average, which is based on robust

locally weighted least squares regression (RLOWESS) [206].

The superstructure exhibits relatively stiff, ke f f ,id ≈ 32MN/m, behavior during the first

white noise test (WN1) compared to subsequent tests. Slightly lower effective shear stiffness,

ke f f ,id ≈ 25MN/m, of superstructure can be observed for all strong ground motion test (EQ),

which can be attributed to pinching behavior or identification error, since the the stiffness is

recovered during much lower amplitude response white noise events (WN). Permanent reduc-

tions in effective shear stiffness are captured after tests EQ6 and EQ7, which, in total, resulted

in an overall 25% reduction to ke f f ,id ≈ 21.4MN/m. The observed stiffness degradation can
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Figure 7.8: Elastic stiffness evolution of the superstructure for earthquake (EQ) tests for the BI structure

most likely be associated to minor concrete cracking, which has been reported in the technical

report [179] based on visual inspection carried out after the testing. Overall, as show in Table

7.2, superstructure shear stiffness evolution demonstrates relatively good consistency between

the tests, which indicates that HLA method performs robustly, as it was demonstrated in other

studies [18, 147, 185].

Table 7.2: Identified total shear stiffness of the superstructure at the start and the end of the earthquake
(EQ) and white noise (WN) tests

Base isolator shear stiffness Total superstructure shear stiffness
Test kstart kend ∆k kstart kend ∆k

MN/m MN/m % MN/m MN/m %
WN1 7 5.9 -15.9 32.9 31.9 -2.9
EQ1 3.5 3.8 8.6 24.8 26.2 5.5
WN2 5.2 4.8 -8.5 29 29.4 1.5
EQ2 5.6 3.6 -35.4 25.1 26.2 4.2
WN3 5.2 4.8 -7.3 29 28.9 -0.6
EQ3 6.1 3.6 -41 25.3 27.5 8.9
WN4 5.2 4.9 -6.9 29 28 -3.4
EQ4 5.1 4.9 -4.8 26.6 25.8 -2.9
EQ5 5.1 3.8 47.1 28.9 28.3 8.7
WN6 5.1 4.5 -11.1 28.6 28.2 -1.5
EQ6 2.7 4.5 66.5 26.8 26.6 -0.7
WN7 4.9 4.5 -8.8 26.3 26.6 1.5
EQ7 3.5 3.9 13.6 24 21.5 -10.4
WN8 4.7 4.6 -1.3 21.8 21.4 -1.7
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Unconstrained HLA using raw data

Base isolator hysteresis loops are also reconstructed using raw acceleration data to show the

effect of mode decoupling. Figure 7.9 shows restoring force loops reconstructed for tests EQ3,

EQ4 and EQ5. During these tests the higher modes are excited at significantly higher energy,

which are successfully segregated using mode decomposition. It is clear that the hysteresis

loops reconstructed using mode decomposed data are easier to interpret than raw hysteresis

loops, due to the absence of higher mode effects.

Unconstrained HLA [18,147,185] is applied to raw base isolator hysteresis loops to demon-

strate the effect of mode decoupling. HLA results are shown in Figure 7.7 in the solid red line,

representing a 10 sample moving average based on RLOWESS. Although the applied mode seg-

regation method creates ”smoother”, easy to read hysteresis loops, the resulting HLA provides

slightly different results than HLA applied to raw hysteresis loops. Hence, in the situations

where a simple bi-linear hysteretic behavior is expected, which can be identified using r = 2

segment piecewise models, hysteretic parameters can effectively be tracked using unconstrained

HLA applied to raw hysteresis loops.
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7.4.2 Fixed base structure

Hysteresis loops reconstruction

The identified evolution of mode shape coefficients presented in Section 6.4.2) enables segrega-

tion of the modes and analysis of the response of each mode individually. For SHM implemen-

tation of the FB structure, single mode dominant stiffness restoring force hysteresis loops are

reconstructed using the segregated response of mode 1-L, which is the most dominant mode in

the structural response. Inter-story shear force triggered by mode 1-L is calculated using Equa-

tion (7.19). Inter-story shear force versus deformation loops for each inter-story are show in

Figures 7.10 to 7.12. It must be noted that the inter-story restoring force loops are reconstructed

using unfiltered raw data and it can be clearly seen that the loops are relatively smooth and

almost free of the higher modes for most of the tests, which allows for a direct visual analysis

that can be readily applied for HLA. Higher mode contribution seen in hysteresis loops during

event EQ6 is most likely caused by the rupture of steel reinforcement, leading to a sudden load

redistribution and subsequent acceleration spikes across the floors. Notable stiffness degrada-

tion can be clearly seen in tests EQ3 and EQ4 caused by concrete cracking and yielding of the

reinforcement. Severe yielding can be observed in tests EQ5 and EQ6. Significant strength

degradation can also be seen in test EQ6.

Hysteresis loop analysis

HLA is implemented for the single mode dominant restoring shear force-inter-story deforma-

tion loops in Figures 7.10 to 7.12, reconstructed for the most dominant mode 1-L. Elastic, kel,id ,

and pinching , kp,id , stiffness components are identified for each inter-story, as shown in Fig-

ures 7.4b. HLA results are shown in Figure 7.13, where the solid black line represents smoothed

pinching stiffness evolution, kp,smooth, and the dashed line represents smoothed elastic stiffness

evolution, kel,smooth, using a 10 sample moving average based on RLOWESS. To demonstrate

and compare the overall load carrying performance of the superstructure between the FB and BI

building configurations, HLA is also applied to single mode dominant hysteresis loops recon-
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Figure 7.10: Hysteresis loops reconstructed for each inter-story of FB building for tests WN1 to WN3
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Figure 7.11: Hysteresis loops reconstructed for each inter-story of FB building for tests EQ3 to WN4
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Figure 7.12: Hysteresis loops reconstructed for each inter-story of FB building for tests WN5 to EQ6
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structed for the superstructure as a whole. Superstructure HLA results are shown in Figure 7.14.

The elastic stiffness, kel,id , is captured only at large amplitude vibrations, which are typi-

cally triggered by the strong ground motion data. Hence, the elastic stiffness evolution is shown

only for the earthquake events. The identified elastic stiffness, kel,smooth, and pinching stiffness,

kp,smooth, evolution follows very similar trend as the damage progresses. In addition, elastic

stiffness evolution, kel,smooth, demonstrates a lot higher variability, which can be associated with

relatively small hysteretic displacements.

The transition part between pinching and elastic regimes is relatively long, meaning if restor-

ing force reversal occurs in the transition regime or shortly after the end of the transition regime,

the identified elastic stiffness will be greatly affected by the transition part. Since both identified

stiffness components demonstrate a similar trend, it can be concluded that SHM can success-

fully be implemented based on pinching stiffness evolution alone. Hence, all further HLA

discussion will be based on identified pinching stiffness evolution, kp,smooth. Tables 7.3 and 7.4

provide the identified pinching stiffness values at the start and the end of the test event.

Inter-story shear stiffness degradation (7-20%) can be observed for all the inter-stories for

the initial white noise test (WN1), which is most likely attributable to minor concrete member

cracking, as the hysteresis loops shown in Figure 7.10 do not indicate any obvious signs of steel

reinforcement yielding. A significant loss of stiffness can be seen during the first two strong

ground motion tests , EQ1 and EQ2, where the damage has resulted in a 6-30% reduction in

shear stiffness for different inter-stories during each test, which can be associated to extensive

concrete cracking accompanied by localized yielding. The visual inspection carried out after

test EQ2 indicated most of the damage occurred on level 2, where small cracks (0.1mm) were

observed in the slab around the north and south central columns, with a minor concrete crush-

ing at the base of NW column. Equally, only very minor cracks were found in the upper floors,

further supporting this study.
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(EQ), where the dashed blue line represents the shear stiffness identified at the end of BI testing, as
shown in Figure 7.8

Significant progression in damage is seen for tests EQ3 and EQ4 for all inter-stories as the

structure experiences yielding and concrete cracking, resulting in approximately 20-40% shear

stiffness reduction after each event. Concrete cracking at the base of the first floor columns,

mainly concentrated at the north frame, was observed during the visual inspection. Significant

cracking was also reported in the concrete slab and beam elements in different places of level

2. In contrast, significantly less damage was observed for level 3. No additional cracking was

observed in level 4 or the roof.

During test EQ5, the structure reached nearly 2.5% inter-story drift, which is the design

performance target. Yielding was observed for all inter-stories, which consequently resulted in

a 40-60% reduction in inter-story shear stiffness across different inter-stories. According to the

visual inspection report, the damage was mainly concentrated at the first three floors, where sig-

nificant crack propagation and concrete spalling occurred at the base of the first floor columns.

During the last earthquake test, EQ6, the structure experienced significant damage, which

led to loss of stiffness from 22% to 57% for different inter-stories. Based on HLA it can be

concluded that the damage has concentrated in the first three levels, where 38-57% reduction in

stiffness is observed after the test, where the top two levels had a 21-26% loss in stiffness, all

of which is supported by the visual inspection observations. Significant concrete spalling was
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reported around the base of the first floor columns. Severe damage was observed in different

members of second and third levels. In contrast, negligible damage was reported in the 5th and

roof levels.

Tables 7.3 and 7.4 summarize the identified shear stiffness values before and after each test.

The identified stiffness changes observed during white noise (WN) tests can be attributed to

identification error due to relatively small hysteretic displacements. Stiffness inconsistencies

between tests are relatively small, within 10%, except for a few tests. For example, the differ-

ence between the end of test WN1 and beginning of EQ1 for inter-story 1 was large. In this case,

stiffness inconsistencies arise mainly from smoothing effect, as very few significant half-cycles

are being identified before the onset of stiffness degradation.

Table 7.3: Identified inter-story shear stiffness at the start and the end of the earthquake (EQ) and white
noise (WN) tests for the FB configuration

1st interstory 2nd interstory 3rd interstory
Test kstart kend ∆k kstart kend ∆k kstart kend ∆k

MN/m MN/m % MN/m MN/m % MN/m MN/m %
WN1 88.2 79 −10.4 61.7 49.5 −19.8 74.2 60 −19.3
EQ1 67.1 63.2 −5.8 49.7 43.3 −12.9 57.6 48.3 −16.2
WN2 62.1 62.2 0.2 41.2 41.7 1.3 57 56.5 −0.8
EQ2 61.9 56.3 −9.1 43.1 33.8 −21.7 55.3 47 −14.9
WN3 55.4 56.1 1.2 35.4 36 1.6 52.3 50.5 −3.5
EQ3 53.8 40.1 −25.5 36.9 24.9 −32.3 53.1 36.3 −31.6
WN4 43.4 43.1 −0.5 26.9 28.4 5.6 39.3 40.5 3.2
EQ4 40.2 33.1 −17.7 25.1 21.7 −13.5 39.8 24.1 −39.5
WN5 34.3 34.2 0 23.4 24.4 4.3 26.6 27.8 4.5
EQ5 31.6 12.7 −59.9 21 9.7 −53.7 25.7 12.5 −51.6
WN6 16 16.1 0.6 12.4 11.7 −5.5 15.5 17.6 13.1
EQ6 13.8 5.9 −57.3 9.3 5.7 −38.8 11.4 7.1 −38.3

Overall shear stiffness of the superstructure is calculated in a similar manner as for the BI

structure and can be described as the total base shear force versus total roof drift. Identified

elastic and pinching shear stiffness evolution of the superstructure is shown in Figure 7.14. The

blue dashed line represents the identified shear stiffness of the superstructure at the end of BI

structure testing, as shown in Figure 7.8. The identified pinching shear stiffness at the start of the

testing protocol (EQ1), kp,smooth = 20MN/m, is slightly lower than the identified stiffness at the

end of BI structure testing protocol, kel ≈ 22MN/m, and can be attributed to higher amplitude
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Table 7.4: Identified inter-story shear stiffness at the start and the end of the earthquake (EQ) and white
noise (WN) tests for the FB configuration

4th interstory 5th interstory Total
Test kstart kend ∆k kstart kend ∆k kstart kend ∆k

MN/m MN/m % MN/m MN/m % MN/m MN/m %
WN1 76.6 70.1 −8.5 54.3 52.2 −3.8 20.4 18.3 −10.3
EQ1 65 53.6 −17.5 48.2 42.4 −12.1 17.8 14.6 −17.7
WN2 55.5 56.7 2.2 40.6 41 1.1 14.7 14.9 1.7
EQ2 58.4 48 −17.7 35.2 39.5 12.4 14.4 12.4 −14
WN3 52.3 53.1 1.5 39.5 39 −1.1 13 13.2 2
EQ3 50.8 38.6 −24.1 38.3 30.1 −21.3 12 9.5 −21.2
WN4 40.9 40.9 0 31.8 31.8 0 10 10.2 1.8
EQ4 37.9 28.4 −25.1 31.2 24.6 −21.2 9.4 7 −25.8
WN5 31.8 31.3 −1.6 26.2 24.9 −5 7.7 7.7 −0.9
EQ5 29.5 15 −49 25.2 14.3 −43.3 7 3.4 −51.2
WN6 19.8 20.4 3.1 15.5 15.4 −0.9 4.3 4.2 −2.5
EQ6 17.9 13.1 −26.7 14.2 11 −22.5 3.4 2 −40.6

vibrations, since the effective stiffness is excitation dependent.

Unconstrained HLA using raw data

A comparative study is carried to demonstrate the effect of mode decoupling and application

of constrained HLA. Inter-story shear force versus deformation loops are reconstructed us-

ing raw acceleration data and then subsequently analysed using unconstrained HLA method

[18, 147, 185]. For brevity, raw hysteresis loops are presented herein only for tests EQ4 and

EQ5, as shown in Figure 7.15 and Figure 7.16. These tests demonstrate a prominent contribu-

tion from the higher modes, thus can best illustrate the effect of mode decoupling. It is obvious

that hysteresis loops reconstructed only for mode 1-L are significantly smoother, especially for

the higher inter-stories.

Unconstrained HLA is carried out for raw inter-story shear force-deformation loops and

compared with the HLA results presented in Figure 7.13. The comparison is shown in Figure

7.17, where only pinching stiffness evolution profiles are compared for each test. Comparison

study suggests that application of mode decoupling in conjunction with constrained HLA pro-

vides marginally more accurate evolution of stiffness. Better agreement can be seen between

the identified stiffness at the end of test and the start stiffness of the successive test. In addi-
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Figure 7.15: Comparison of inter-story shear force versus displacement loops reconstructed for test EQ4
using raw (left) and decoupled (right) acceleration data
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Figure 7.16: Comparison of inter-story shear force versus displacement loops reconstructed for test EQ5
using raw (left) and decoupled (right) acceleration data
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Figure 7.17: A comparison of inter-story pinching stiffness evolution profiles obtained using decoupled
(black) and raw (red) hysteresis loops for white noise (WN) and earthquake (EQ) excitations
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tion, more regular evolution of stiffness profiles can be seen during strong ground motion tests,

especially for the higher inter-stories.

7.5 Summary

This chapter presents the second part of a novel SHM technique, which is capable of track-

ing stiffness components of non-linear hysteretic structures. The method is based on modified

hysteresis loop analysis (HLA), which is applied to reconstructed single mode dominant hys-

teresis loops. Path dependent restoring force-deformation loops are reconstructed using mode

decomposed data, which is approximated using the identified time-varying modal parameters

(frequency, damping ratio and mode shapes).

The presented SHM technique is applied to a full-scale five-story test structure, which was

tested for two structural configurations: 1) base isolated (BI) and 2) fixed based (FB). Hysteresis

loop reconstruction and HLA are applied to both building configurations. For the BI structure,

the hysteresis loops are reconstructed for two independent hysteretic systems: base isolator and

superstructure. The results show that the base isolators exhibit highly non-linear behaviour,

which demonstrates expected stiffness softening and isolation with increasing ground motion

intensity. No significant changes in stiffness are observed after strong ground motion events,

which could be related to damage. In contrast, HLA on the reconstructed hysteresis loops of the

superstructure indicate the presence of structural damage after the first and last two earthquake

events. Based on the visual analysis of the reconstructed hysteresis loops, it can be concluded

that the experienced damage is minor and can be most likely related to concrete cracking.

For the FB building configuration the hysteresis loops are reconstructed for each inter-story.

The identified stiffness components clearly indicate a progressive damage through stiffness

degradation, which is induced by increasing intensity ground motion input. However, as the

building is designed according to strong beam-weak column concept, with expected energy

dissipation through formation of plastic hinges in the beam elements in multiple floors, it is

difficult to estimate damage location accurately.
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Reconstruction of overall superstructure hysteresis loops and HLA may be especially ap-

pealing to structural engineers when estimating the damage due to its intuitive meaning. A

typical structural design or assessment process often involves the pushover analysis, which

characterizes the expected backbone path of an overall restoring force under different imposed

displacements. Hence, the reconstructed hysteresis loops obtained can be directly overlapped

and compared with the estimated backbone curve to estimate the performance and infer the re-

maining capacity of the structure.

Overall, the results show that the proposed SHM implementation strategy consisting of

modal parameter identification and constrained HLA is robust and effective in tracking the per-

formance of non-linear structures. Although the analyzed full-scale test structure did not exhibit

very large contribution from the higher modes for all tests, few tests demonstrated potential ad-

vantages of proposed SHM strategy consisting of mode decomposition and constrained HLA.

Based on findings of this study, it should be noted, that the robustness of HLA can be improved

by decomposing the response and/or applying constrains to HLA itself. Finally, the proposed

technique can be implemented as a nearly real-time system and directly used to estimate the

structural damage effectively immediately after an event.
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CHAPTER 8

Conclusions

This thesis proposed a two step SHM implementation strategy consisting of: 1) damage iden-

tification, and 2) damage quantification. For damage identification, a novel modal parameter

identification method is developed in this work. For damage quantification, the application of

a recently developed hysteresis loop analysis (HLA) is explored, particularly for cases where

higher modes interfere with response and make HLA methods less accurate and effective.

The developed modal parameter identification technique addresses some of the limitations

of existing methods currently used for system identification. More specifically, the introduced

method allows near real-time modal parameter identification and can be used to track the perfor-

mance of non-linear structures subjected to earthquake excitation. The identified modal param-

eters and detected changes can indicate the presence of damage, but typically provide limited

information about damage location, severity and type directly. Thus, a method based on mode

decomposition and reconstruction of single mode dominant hysteresis loops is explored. The

revised, filtered hysteresis loops produced can be subsequently assessed using HLA to precisely

quantify the damage and location. In turn, the HLA method provides operators with easy to in-

terpret information, which can be conveniently used by professional practitioners of engineering

for immediate and long term decision making.

The development and validation of a novel modal parameter identification method was pre-

sented in Chapters 2, 3, 4 and 6 of this thesis. The subsequent application of HLA for damage
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identification was explored in Chapters 5 and 7. These validation studies include numerical,

known cases, and independent experimental cases.

Chapter 2 presented the methodology for a novel output-only modal parameter identification

technique. The method is limited to linear structures and can perform identification using long

duration recorded response. The technique is based on iterative mode-by-mode optimization,

which minimizes cross-correlation of frequency response spectra of interfering modes. The

method relies on mode superposition and can perform system identification using both white

noise and earthquake input excitations as demonstrated on the simulated response of a 4 DOF

time-invariant linear structure. It performs equally robustly to both input excitation types and

demonstrated good accuracy for high levels of noise added to response and excitation data.

Chapter 3 presented an extension to the output-only modal parameter identification. The

method takes advantage of measured input excitation, thus considered an input-output identifi-

cation technique. The technique is based on the same principle as the output-only identification

the decoupling frequency response spectra of interfering modes through iterative optimization.

However, using the measured input excitation enables formulation of an objective function uti-

lizing two different frequency response spectra, namely, the receptance and inertance spectra.

This innovation allows for more accurate system identification, which can be carried out over

relatively short response windows enabling near real-time tracking of the active modes of the

system response exhibiting non-linearities.

The presented input-output modal parameter identification technique is subsequently vali-

dated for the simulated non-linear response of a 4 DOF non-linear structure subjected to dif-

ferent types of bi-directional input excitation. A sensitivity study quantified the influence of

different parameters on the identification accuracy. Although the technique requires estimation

of the mass matrix, the analysis shows even 30% error in mass matrix estimation has a relatively

small effect on mean absolute error. The results demonstrated the method is robust and effective

in identifying time-varying modal parameters even for high levels of added noise (20% RMS).
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Chapter 4 presented the validation results of the input-output identification technique de-

veloped in Chapter 3. Validation was carried out using non-linear simulation results of a more

complex FE model. A fiber element formulation was utilized to simulate the non-linear re-

sponse of a 2D FE model representing a simplified version of an experimental 5 story RC

structure. This type of FE allows analysis of realistic effects of non-linear behavior resulting in

a varying stiffness matrix transferring into varying mode shape coefficients.

The method’s results showed the simulated mode shape coefficients may exhibit significant

variations and the degree of variability increases with increasing non-linearity and increasing

mode order, while accurately capturing modeled non-linear behaviour. In particular, the mode

shape identification algorithm successfully captures the average variation of simulated mode

shapes for the lower, dominant modes. In contrast, identification of the higher modes yielded

relatively poor results for some earthquake inputs, mainly attributed to low signal-to-noise ra-

tios, as some earthquakes contained spectral energy concentrated in a narrow frequency range,

leading to poor excitation of some modes. Overall, this study demonstrated the applicability

of the novel input-output identification technique to structures exhibiting strong non-linearities,

validated against known structure properties.

In Chapter 5, the proposed modal parameter identification technique and its application with

HLA is validated for a full-scale experimental reinforced concrete bridge pier. The analyzed test

structure was subjected to 9 increasing intensity earthquake excitations and had a notable contri-

bution from at least two modes. The results show the method is robust in tracking time-varying

modal parameters. However, the identified mode shapes demonstrated relatively low sensitivity

to light levels of damage such as concrete cracking. The identified modal frequencies indicated

a clear degradation suggesting the loss of stiffness caused by damage. In contrast, the iden-

tified equivalent damping of the second mode increased consistently with increasing levels of

damage. Hysteresis loops reconstructed using the decomposed response demonstrated excellent

regularity, and could be readily used for primary visual inspection and HLA. The HLA method
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applied to single mode dominant hysteresis loops clearly quantified and localized the degrada-

tion of elastic stiffness. Overall, the proposed SHM strategy demonstrated a good potential in

identifying and tracking the performance of non-linear hysteretic structures.

A similar validation study for the proposed SHM implementation strategy was carried using

test results of a more complex full-scale 5-story reinforced concrete structure in Chapters 6 and

7. In Chapter 6, the experimental structure was tested for base isolated and fixed base struc-

tural configurations. The results demonstrate the identification technique is robust in tracking

the modal parameters of base isolated and fixed based structures exhibiting highly non-linear

behavior. The identified changes in modal parameters indicated the presence of damage, which

was then refined using HLA in Chapter 7.

Chapter 7 presented the validation results of the recently developed HLA applied to single

mode dominant hysteresis loops reconstructed using a modal decoupling technique. It shows

the modal parameter segregation method enables extraction of regular shaped, ”smooth” hys-

teresis loops that are easy to interpret. The HLA was modified by adding constraints to extract

more realistic hysteric models. The subsequent application of the modified HLA quantified the

damage for both structural configurations in terms of stiffness evolution. The original HLA

method was also applied to raw hysteresis loops, reconstructed using unprocessed accelerations

to quantify the improvements. A comparison study showed the proposed two step technique

had marginal advantages over HLA applied to raw hysteresis for this analyzed test structure due

to limited participation of the higher modes in this specific test case.

Overall, this thesis presented a 2 step SHM process consisting of a novel modal parameter

identification and its subsequent application to recently developed HLA. The proposed modal

identification extends the limitations of modal SHM to non-linear cases and earthquake inputs.

The technique performs without any operator input and can be easily automated to track the

modal parameters and detect damage. Validation studies carried out to simulated and test struc-

tures demonstrated the proposed strategy is robust and efficient in tracking non-linear behavior
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of systems subjected to various types of input excitation. The presented method is novel, com-

putationally efficient, and demonstrates great potential to be used for near real-time SHM, stand

alone and/or in combination with other SHM methods to quantify damage. However, its full

limitations and wider applications need to be investigated further.
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CHAPTER 9

Future research

9.1 Improving time resolution and accuracy of modal param-

eter tracking

The proposed modal parameter identification operates in modal space and is based on decou-

pling frequency response spectra (FRS) of modal responses contributing to the total response

with significant energy. FRS of modal response is computed using Fast Fourier Transforma-

tion (FFT) over selected relatively short time segments. In this thesis, validation studies were

carried out for simulated and experimental response data segmented into moving L = 8 to 10

seconds windows. However, the validation study carried out for the simulated highly non-linear

structure in Chapter 5 demonstrated that the simulated mode shape coefficients might exhibit

a very high temporal variation. However, the proposed modal identification method identifies

only the average variation of mode shape coefficients for selected response window.

Hence, to improve the time resolution and accuracy the mode shape identification, future

work could analyse the following extensions/variations to the method:

• The use of shorter time windows could provide more accurate variation. However, the

minimum window length is often limited by the properties of FFT, which provides poor

frequency resolution for short time windows resulting in inaccurate identification. Wavelet

transformation is known to be superior to windowed Fourier transformation, when bet-
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ter frequency resolution is desired. Thus, future work could investigate the application

wavelets to enable the analysis of shorter time windows and increase the time resolution

of varying modal parameters.

• In addition to the application of wavelets, future work could analyse the application of

mode shape coefficient shape functions, which would mimic/approximate the temporal

variation of simulated/true mode shape coefficients.

9.2 Identification using limited number of DOFs

The majority of the validation studies carried out in this thesis used a complete or nearly com-

plete set of response measurements to identify modal parameters. Future work should anal-

yse the robustness of method for cases where a limited amount of sensors is available. More

specifically, the proposed modal identification technique should be validated for cases where

the number of relatively active modes is higher than number of measured DOFs, which is very

common for bridge SHM situations, and in buildings with sparse instrumentation.

9.3 Formulation of objective functions using raw FRS

For the proposed novel modal identification method, mode shape coefficients are identified

through and iterative optimization process. The objective function is formulated by estimat-

ing the weighted sum of cross-correlations of normalized modal response FRS, per Equations

(2.14) and (3.6). Some validation studies demonstrated that the use of raw FRS may yield more

robust modal parameter tracking, especially for the cases with low signal-to-noise ratios, as it

adds some extra weighting to modal FRS. Hence, the use of raw FRS should be subjected to

further investigation in the future studies.
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9.4 Identification of non-classically damped systems

The proposed modal identification technique is based on mode decomposition. It assumes

the modes can be fully segregated and the modes are classically damped. However, for non-

classically damped systems the modes cannot be fully delineated due to mode coupling. Hence,

future studies should assess the performance of the method for these cases or investigate modi-

fications to the method to accommodate the identification of non-classically damped systems.

9.5 Incorporation of EMD

Method validation results presented in Section ?? demonstrated that the novel input-output

modal parameter identification technique may result in relatively large modal damping estima-

tion errors, especially for the lower modes. In addition, the same study in Section ?? demon-

strated that large mode shape coefficient identification errors are possible for signals with poor

signal-to-noise ratios. A number of studies [70, 117, 118] demonstrated the potential of empir-

ical mode decomposition (EMD) in alleviating signal noise effects, enabling an increase in the

robustness of system identification methods. Thus, future work could attempt to increase the

robustness of the proposed input-output modal identification method by incorporating EMD to

develop a hybrid identification method.

9.6 Comparison to other identification methods

The proposed modal parameter identification extends the application of modal SHM to non-

linear cases and enables identification using the response of relatively short earthquake events.

The majority of well established existing modal SHM methods are generally capable of identi-

fying linear structures subjected to white noise excitations. Hence, the performance of proposed

modal identification technique should be thoroughly compared with other SID methods for lin-

ear structures excited by white noise loads.
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9.7 Further validation with HLA

Chapter 5 and 7 demonstrated the effect of modal filtering on the reconstruction of single mode

dominant hysteresis loops. The validation studies demonstrated the hysteresis loops recon-

structed using mode decomposed data are easier to interpret visually than raw hysteresis loops,

which have a significant contribution from the higher modes. However, a comparison study

in Chapter 7 has shown that subsequent application of HLA on mode decoupled hysteresis

loops had a marginal improvement on identification accuracy compared to HLA applied to raw

hysteresis loops for the analysed test case. Hence, the application of modal identification in

conjunction to HLA should be further validated for the test cases, which have a significant

contribution from the higher modes.
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[107] Hilmi Luş, Raimondo Betti, and Richard W. Longman. Obtaining refined first-order

predictive models of linear structural systems. Earthquake Engineering and Structural

Dynamics, 31(7):1413–1440, 2002.

[108] D Benedetti and C Gentile. Identification of modal quantities from two earthquake re-

sponses. Earthquake engineering & structural dynamics, 23(4):447–462, 1994.

[109] Dionysius M Siringoringo and Yozo Fujino. Seismic response analyses of an asymmetric

base-isolated building during the 2011 Great East Japan (Tohoku) Earthquake. Structural

Control and Health Monitoring, 22(1):71–90, 2015.

[110] Peter Van Overschee and B L De Moor. Subspace identification for linear systems:

Theory—Implementation—Applications. Springer Science & Business Media, 2012.

[111] Bart Peeters and Guido De Roeck. Stochastic System Identification for Operational

Modal Analysis: A Review. Journal of Dynamic Systems, Measurement, and Control,

123(4):659, 2001.

195



[112] Bart Peeters and Guido De Roeck. Reference-Based Stochastic Subspace Identifica-

tion for Output-Only Modal Analysis. Mechanical Systems and Signal Processing,

13(6):855–878, 1999.

[113] Edwin Reynders and Guido De Roeck. Reference-based combined deterministic-

stochastic subspace identification for experimental and operational modal analysis. Me-

chanical Systems and Signal Processing, 22(3):617–637, 2008.

[114] Bart Peeters, Herman Van der Auweraer, Frederik Vanhollebeke, and Patrick Guillaume.

Operational Modal Analysis for Estimating the Dynamic Properties of a Stadium Struc-

ture during a Football Game. Shock and Vibration, 14(4):283–303, 2007.

[115] L Mevel, M Basseville, and M Goursat. Stochastic subspace-based structural identi-

fication and damage detection- application to the steel-quake benchmark. Mechanical

Systems and Signal Processing, 17(1):91–101, 2003.

[116] Rodrigo Astroza, Hamed Ebrahimian, Joel P. Conte, José I. Restrepo, and Tara C.
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