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Projective and affine planes

Definition

A projective plane P = (P, L) consists of a set P of points and a set L
of lines (where lines are subsets of P) such that the following three axioms
are satisfied:

(J) Two distinct points can be joined by a unique line.
(I) Two distinct lines intersect in precisely one point.

(R) There are at least four points no three of which are on a line.

Removing a line and all of its points from a projective plane yields an
affine plane. Conversely, each affine plane extends to a unique projective
plane by adjoining in each line with an ‘ideal’ point and adding a new line
of all ideal points.
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Models of projective planes
Desarguesian projective planes are obtained from a 3-dimensional
vector space V over a skewfield IF. Points are the 1-dimensional vector
subspaces of V and lines are the 2-dimensional vector subspaces of V. In
case F is a field one obtains the Pappian projective plane over F.

There are many non-Desarguesian projective planes. One of the earliest
and very important class is obtain by the (generalized) Moulton planes.

B
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Ways to look at projective planes

Projective and affine planes have been studied under various aspects.

e Configurations that close in them (— Desargues and Pappus
configurations, ...);

e coordinatizing ternary fields (— nearfields, semifields, quasifields,
D)

e linearly transitive groups of central collineations (— Lenz-Barlotti
classification);

e admitting certain groups of collineations (— translation planes, ...);
o finitely many points and lines;

e points and lines sets carrying topologies.
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The real Desarguesian plane
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RZ
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The real Desarguesian plane as a topological plane

This model of the real Desarguesian plane on the 2-sphere shows that

e the point set P carries a Hausdorff topology with respect to which P
is connected, compact and 2-dimensional;

e the line set £ carries a Hausdorff topology with respect to which L is
connected, compact and 2-dimensional;

e joining two points by a line is continuous with respect to the
topologies on (P x P)\ Dp and L;

e intersecting two lines in a point is continuous with respect to the
topologies on (£ x £)\ Dz and P.
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Topological projective planes

Definition

A topological projective plane is a projective plane P = (P, L) where P
and L carry non-discrete Hausdorff topologies such that the two geometric
operations described in the axioms (J) and (1) are continuous with respect
to induced topologies.

A topological geometry is called connected or (locally) compact or
n-dimensional if the point space has the respective property.

By an n-dimensional projective plane we mean a topological, compact
n-dimensional projective plane. Such a plane is connected when n > 0.

Theorem (Léwen 1983)

A connected finite-dimensional projective plane is 2-, 4-, 8- or
16-dimensional.
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Collineations of projective planes

Definition

A collineation of a projective plane is a permutation of the point set that
takes lines to lines.

An automorphism of a topological projective plane is a continuous
collineation.

Theorem (Lowen 1976)

The automorphism group ¥ of a topological, connected, compact
projective plane P = (P, L) is a locally compact group with countable
basis when endowed with the compact-open topology. ¥ acts a topological
transformation group on P and L.

> is a Lie group if P is 2- or 4-dimensional. In this case ¥ has dimension
at most 4 - dimP.

Glinter Steinke Projective planes, Laguerre planes, generalized quadrangles GaG2018 8 /26



Collineations of 2-dimensional projective planes

Theorem (Salzmann 1959)
A collineation of a 2-dimensional projective plane is continuous.

Theorem (Salzmann, Groh et al 1950s-1980s)

All 2-dimensional projective planes whose automorphism groups ¥ are at
least 2-dimensional are known.

e /fdimX > 5, then the plane is the real Desarguesian plane.

e /fdimX = 4, then the plane is isomorphic to a proper Moulton plane.

There are 2-dimensional projective planes that admit no automorphism
other than the identity.
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Ovals in projective planes

Definition
An oval in a projective plane P is a set O of points such that

e every line in P intersects O in no more than two points, and

e every point p of O is contained in precisely one line that intersects O
only in p (tangent line to O at p).

An oval O in a topological projective plane is called topological if the map
L— LN O is continuous.

Every strictly convex, differentiable simply closed curve in the Euclidean
plane is a topological oval in the real projective plane
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Topological ovals in finite-dimensional projective planes

Theorem (Buchanan, Hahl, Léwen 1980)

e An oval in a connected, finite-dimensional projective plane is
topological if and only if the oval is a closed subset of the point set.

e If a connected, finite-dimensional projective plane contains a
topological oval then the plane is 2- or 4-dimensional.

Theorem (Polster, Rosehr, S. 1997)

For any three non-collinear points of a 2-dimensional projective plane there
is a topological oval passing through these three points.
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Laguerre planes

Definition

A Laguerre plane £ = (P,C,G) consists of a set P of points, a set C of
circles and a set G of generators (where circles and generators are both
subsets of P) such that the following five axioms are satisfied:

(G) G partitions P.
(C) Each circle intersects each generator in precisely one point.

(J) Three points no two of which are on the same generator can be
joined by a unique circle.

(T) The circles that touch a circle C geometrically at a point p of C form
a partition of P\ [p] where [p] is the generator that contains p.

(R) There are at least two circles and there is a circle that contains at
least three points nonparallel.
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Models of Laguerre planes
Ovoidal Laguerre planes are obtained as the geometry of non-trivial
plane sections of a cone, minus its vertex, over an oval in 3-dimensional

projective space over a field F. In case the oval is a conic one obtains the
Miquelian Laguerre plane over F.
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Derived incidence structures

The derived incidence structure £, at a point p of a Laguerre plane £ has
point set P\ [p] and lines the generators of £ not containing p and the
circles of £ containing p. This is an affine plane. In fact £ is a Laguerre
plane if and only if each £, is an affine plane.

Circles not passing through p induce ovals in the projective extension of
the affine plane £, at p by adding the point at infinity of ‘vertical’ lines
that come from generators of the Laguerre plane. Each of these ovals has
the line at infinity as a tangent. In £, one has the lines and a collection of
parabolic curves.

Conversely, given a collection of lines and parabolic curves one has to

amend each member by a point at infinity in order to obtain a Laguerre
plane. This may not be possible or may be possible in more than one way.
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Topological Laguerre planes

Definition

A topological Laguerre plane is a Laguerre plane L = (P,C,G) where P,
L and G carry non-discrete Hausdorff topologies such that the geometric
operations described in the axioms (C), (J), (T) and intersection of circles
are continuous with respect to induced topologies.

By an n-dimensional Laguerre plane where we mean a topological, locally
compact n-dimensional Laguerre plane. Such a plane is connected when
n> 0.

A circle not passing through the point p induces a closed oval in the
derived projective plane at p.

Corollary
A connected, finite-dimensional Laguerre plane is 2- or 4-dimensional.
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Automorphisms of topological Laguerre planes

Definition

A (geometric) automorphism of a Laguerre plane is a permutation of
the point set that takes generators to generators and circles to circles.
An automorphism of a topological Laguerre plane is a continuous
geometric automorphism.

Corollary
A (geometric) automorphism of a 2-dimensional Laguerre plane is
continuous.

Theorem (Fortsch 1982)

The automorphism group, endowed with the compact-open topology, of a
2s-dimensional Laguerre plane where s = 1,2 is a Lie group of dimension
at most 7s.
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2-dimensional Laguerre planes

Theorem (Groh 1970)

The 2-dimensional Laguerre planes are precisely the Laguerre planes on the
cylinder Z = S' x R all whose circles are graphs of continuous maps
St — R.

Theorem (Groh 1969)

A 2-dimensional Laguerre plane is ovoidal if and only if the kernel of the
plane (consisting of all automorphisms that fix each generator) is
4-dimensional.

There are many constructions for non-ovoidal 2-dimensional Laguerre
planes.

There are 2-dimensional Laguerre planes that admit no automorphism
other than the identity.
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Automorphism groups of 2-dimensional Laguerre planes

Theorem (Lowen, Pfiiller, S. 1980s-2000)

All 2-dimensional Laguerre planes whose automorphism groups ¥ are at
least 5-dimensional or whose kernels A are at least 3-dimensional are
known.

e /fdimX > 6, then the plane is the real classical Laguerre plane.

e /fdimX =5, then the plane is isomorphic to an ovoidal plane over a
skew parabola.

e /fdim A = 4, then the plane is ovoidal.

The classification of 2-dimensional Laguerre planes whose automorphism
groups X are 4-dimensional is almost complete. Those planes where X
fixes a generator or is point transitive are known. There are three families
of planes known where X fixes a circle and acts transitively on it.
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Central automorphisms and Kleinewillinghofer types

A central automorphism of a Laguerre plane is a (geometric)
automorphism that fixes at least one point and induces a central
collineation in the derived projective plane at this point.

e Laguerre homology: all points on a circle are fixed.

e Laguerre translation: all points on a generator are fixed and a
translation is induced one derived affine plane.

o Laguerre homothety: two non-parallel fixed points.
Kleinewillinghofer 1979 classified groups of automorphisms according to
the linearly transitive groups of central automorphisms contained in them.

She obtained a total of 46 combined types (with respect to Laguerre
homologies, Laguerre translations and Laguerre homotheties).
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Kleinewillinghofer types of 2-dimensional Laguerre planes

The Kleinewillinghofer type of a Laguerre plane is the type of its (full)
automorphism group.

Theorem (Polster, Schillewaert, S. 2004-2018)

A 2-dim. Laguerre plane is of one of the following 25 combined types
. A1, A2 B1 B3 Cl1,E1 E4 G1, H1, H11,
. A1, A2 E1, E4 G1,

. B.1, B.3, H.1, H.11,

IV. A1, A2

V. Al

VII. D.1, D.8, or K.13.

There are examples of 2-dim. Laguerre planes for each of the above types.
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Generalized quadrangles
Definition
A generalized quadrangle Q = (P, L) consists of a point set P, a line
set L whose elements are subsets of P such that

(J) Any two distinct points are on at most one line.

(P) For every line L and every point p not on L, there exist a unique point
q on L and a unique line M through p such that g € M.

(R) Every point is on at least two lines, and every line contains at least
two points.
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Models of generalized quadrangles

Let ¢ be a symmetric bilinear form of Witt index 2 in F"*! where F is a
field of characteristic # 2 and n > 4. Let Q be the associated quadric in
n-dimensional projective space PG(n,F) over F. If L is the set of lines of
PG(n,F) entirely contained in Q (2-dimensional totally isotropic subspaces
of F™*1 with respect to ¢), then Q(n,F, ) = (Q, L) is a generalized
quadrangle, called the orthogonal quadrangle (over F).

Let p be a symplectic polarity in a 3-dimensional projective space PG(3,F)
over . If P is the point set of PG(3,F) and L is the set of lines of
PG(3,F) fixed under p, then W(IF) = (P, L) is a generalized quadrangle,
called the symplectic quadrangle (over F).

The generalized quadrangles W(F) and Q(4,F) are dual to each other but
are not isomorphic.
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Topological generalized quadrangles
Definition
A topological generalized quadrangle is a generalized quadrangle
Q = (P, L) where P and L carry non-discrete Hausdorff topologies such
that the two geometric operations described in axiom (P) are continuous
with respect to induced topologies.
A compact generalized quadrangle with topological parameters (s, t)
is a generalized quadrangle such that all lines are homotopy equivalent to
s-spheres and all line pencils are homotopy equivalent to t-spheres.

Theorem (Knarr 1990, Kramer 1994)

If a compact generalized quadrangle has topological parameters (s, t) such
that s, t > 1, then either s+t is odd or s = t € {2,4}.

Theorem (Forst 1981)

The compact 3-dimensional generalized quadrangles are precisely the
compact generalized quadrangles with topological parameter 1.
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Lie geometry

Definition

The Lie geometry of a Laguerre plane L has points the points of L plus
the circles of L plus one additional point w at infinity. The lines of the Lie
geometry are the generators amended by w and the extended tangent
pencils, that is, the collections of all circles that touch a given circle at a
point p together with the point p. Incidence is the natural one.

Definition

A generalized quadrangle Q is called antiregular if for each triple of pair-
wise non-collinear points p, q, r the set p~ N g N r-, where x- is the set
of all points collinear with x, is either empty or contains precisely two
points.

Theorem (Forst 1981, Schroth 1995)

The Lie geometry of a 2s-dimensional Laguerre plane, s = 1,2, is an
antiregular compact generalized quadrangle with topological parameter s.
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Derivation of an antiregular generalized quadrangle

Definition

The derivation Q, at a point p of an antiregular generalized quadrangle
Q has point set p*\ {p} and circle set whose members are of the form
p N gt for points q not collinear with p.

For every point p of an antiregular generalized quadrangle Q the
derivation Q, is a Laguerre plane.

Theorem (Schroth 1995)

Each derivation of a compact antiregular generalized quadrangle with
topological parameter s is a 2s-dimensional Laguerre plane.

Up to duality every compact generalized quadrangle with topological
parameter s is the Lie geometry of a 2s-dimensional Laguerre plane.
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3-dimensional generalized quadrangles

Corollary (Forst 1981)

The automorphism group of a compact 3-dimensional generalized
quadrangle has dimension at most 10.

Theorem (Schroth 2000)

If the automorphism group of a non-Miquelian 2-dimensional Laguerre
plane L has dimension at least 4, then the automorphism group ¥ of the
generalized quadrangle Q obtained as the Lie geometry of L has
dimension 4 or 5.

Suppose ¥ is the automorphism group of a compact 3-dimensional
generalized quadrangle Q. If dimXx > 5, then Q is the real orthogonal
quadrangle or its dual.
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