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Abstract

This thesis begins by providing an introduction to different transformer

failures and the most effective condition monitoring techniques. Dif-

ferent failures are introduced and their corresponding fault diagnosis

methods are listed to have a better understanding of failure modes

and their consequence effects. An investigation into monitoring ma-

jor failures of transformers using dissolved gas analysis is then pre-

sented. Various conventional, dissolved gas analysis based, fault di-

agnosis techniques are presented and the drawbacks of these methods

are discussed. Intelligent fault diagnosis methods are introduced to

overcome the problems of the conventional techniques. An overview of

statistical and machine learning algorithms applied in this research is

also described.

Preliminary research results on transformer load tap changers fault

classification are reported. A hierarchical fault diagnosis algorithm for

transformer load tap changers using support vector machines is used,

in which, for each fault class, a unique single support vector machine

algorithm is employed. However, while the developed algorithm is rea-

sonably accurate, the shortcomings of applying single learning algo-

rithms are discussed and a proposal for developing a more robust and

generalised transformers condition assessment algorithm is made.

An intelligent power transformer fault diagnosis algorithm is then de-

veloped to classify faults of transformers. The proposed fault diagnosis

algorithm is an ensemble-based approach which uses different statisti-

cal and machine learning algorithms. In the first phase of the proposed

algorithm the most relevant features (dissolved gases) corresponding to



each fault class are first determined. Then, selected features are used

to classify transformer faults. The results of this algorithm show a

significant improvement, in terms of classification.

A time-series forecasting algorithm is developed to predict future values

of dissolved gases in transformers. The dataset for this algorithm was

collected from a transformer for a period of six months which consisted

of seven dissolved gases, a loading history, and three measured, ambi-

ent, oil, and winding, temperatures of transformer. The correlation

coefficients between these 11 time series are then calculated and a non-

linear principle component analysis is used to extract an effective time

series from highly correlated variables. The proposed multi-objective

evolutionary time series forecasting algorithm selects the most accurate

and diverse group of forecasting methods among various implemented

time series forecasting algorithms. The proposed method is also com-

pared with other conventional time series forecasting algorithms and

the results show the improvements over the different forecasting hori-

zons.
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Chapter 1

Introduction

1.1 General overview

Power transformers are one of the most significant and expensive pieces of equip-

ment in electrical networks. Monitoring the condition of these assets in order to

ensure reliable operation is of great interest to electric utilities and power compa-

nies. Thus, transformer condition assessment plays an important role in a trans-

former asset management scheme. An optimum condition assessment can help

power companies to manage their transformer fleet economically. In addition,

there is a large social and environmental impact, because an optimum condition

assessment activity can enhance the remaining useful lifetime of transformers and

consequently, can prevent widespread power outages and defer expenditure.

There are useful conventional standards and transformer fault diagnosis methods

which help to interpret the actual faults of transformers. However, they sometimes

suffer from the lack of interpretability and accuracy which leads to an incorrect

or non-detectable fault diagnosis using these methods. For example, Bacha et al.

(2012) reported a 23% (7/30) and 26.7% (8/30) non-detection rate for key gas and

ratio methods, which are two widely used conventional techniques described in

Chapter 2, respectively. Furthermore, in order to effectively apply these methods,

electric utilities and power companies should also consider the size, type, and

environmental conditions of their transformer fleet which is very challenging is

some cases.
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In the early 1990’s, new expert systems were used to diagnose incipient faults of

transformers (Lin et al., 1993; Tomsovic et al., 1993; Zhang et al., 1996). These

studies focused on addressing drawbacks of conventional methods. Since then, dif-

ferent intelligent algorithms have been proposed to assess the condition of trans-

formers and to overcome the disadvantages of conventional methods, such as un-

certainty in fault interpretation. With the growth in Machine Learning, Statistical

Learning and Artificial Intelligence fields, it is now possible to learn from the his-

torical data of transformers and predict their faults and future status.

Over the last decade, different machine learning methods have been applied in

power systems applications; especially transformer condition assessment. A com-

prehensive review of these studies are given in Section 5.2 and Section 6.2. In most

of these studies a single intelligent expert has been applied to diagnose transformer

faults. However, based on the no free launch theorem, selecting the best algorithm

is not always a straightforward process. The performance depends on the available

dataset and it can vary extensively for different electricity networks.

To develop a reliable and general intelligent transformer condition assessment

model, various intelligent single algorithms can be considered in order to create

an ensemble of the best algorithms. Thus, an intelligent data-driven approach can

be adopted, which can be used “in house” by electric utilities and power compa-

nies, regardless of the transformer type, size and technical conditions. However, it

should be noted that using these kind of models require a depth of knowledge on

how the developed algorithm functions in order to tune it properly.

1.2 Thesis objective

The objective of this thesis is to develop an intelligent data-driven transformer

condition assessment model. For this purpose, an ensemble technique was used

to develop an accurate and data-driven intelligent condition monitoring model to

be able to select the best group of statistical and machine learning algorithms,

automatically.

In order to achieve this objective, various classification and time series forecasting

algorithms were developed, and different evolutionary multi-objective optimisation
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(EMO) algorithms were used to select the most accurate and diverse ensemble of

algorithms.

1.3 Thesis contribution

The work in this thesis has led to the development of a state-of-the-art intelligent

transformer condition assessment tool. For this purpose, two different algorithms

have been developed;

• An intelligent, dissolved gas analysis (DGA) based, transformer fault diagno-

sis algorithm was developed using various statistical and machine learning al-

gorithms. All these algorithms were trained using an available DGA dataset.

Subsequently, an evolutionary multi-objective optimisation algorithm was

used to select a group of the most accurate and diverse classifiers/algorithms

to classify transformer faults on the new DGA samples.

• To forecast the value of dissolved gases in transformers, a forecasting model

was developed. The DGA dataset, along with some of the transformer’s

operating characteristics for a period of 6 months, were used to forecast the

dissolved gases one, two, three, and four days ahead.

1.4 Thesis outline

Chapter 2 provides an overview of transformer fault diagnosis, based on DGA.

This overview includes the importance of dissolved gas analysis in incipient

fault diagnosis. The possibility of on-line DGA monitoring, as an advantage to

diagnose or indicate abnormal operation of transformers, is also investigated.

In addition, a list of different transformer failures which could be diagnosed

using DGA are given. Furthermore, the drawbacks of conventional DGA based

fault diagnosis methods are explained.

Chapter 3 describes the basic theory behind the statistical and machine learning

algorithms used in this thesis. Two types of algorithms have been used in
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this research; classification and time series forecasting. In general, most of

the classification algorithms used for classifying faults of transformers were

tailored to be applied in dissolved gas forecasting.

Chapter 4 presents an example using support vector machines for fault clas-

sification of transformer load tap changers. The preliminary results show a

promising prospect of using statistical and machine learning algorithm on con-

dition assessment of power transformers. The shortcomings of single learning

algorithm, compared with an ensemble learning system, are also discussed.

Chapter 5 details developed evolutionary multi-objective fault diagnosis of trans-

formers. The algorithm is presented step by step and the obtained results

presented in detail. A comprehensive performance comparison between the

proposed algorithm and other conventional methods is also given in this chap-

ter.

Chapter 6 presents the details of the developed multi-objective ensemble trans-

formers’ dissolved gas forecasting model. The detail of selecting best forecast-

ing algorithms is discussed and the results of the forecasting model to predict

the future value of dissolved gases are presented. In addition, the results of the

proposed model are compared with other traditional time-series forecasting

techniques.

Chapter 7 concludes the thesis and discusses some possible directions for future

studies.
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Chapter 2

Dissolved Gas Analysis of Power
Transformers

2.1 Overview

This chapter begins by introducing different transformer condition monitoring and

condition assessment techniques. This is followed by an overview of the various

failure modes in power transformers and the importance of dissolved gas analysis

technique in diagnosing these failure modes. Various conventional methods for in-

terpreting dissolved gas results are then presented. A discussion on the drawbacks

of these methods to clarify the motivation behind this research is also presented.

2.2 Introduction

Today, power companies can deliver higher quality services to their clients by

performing intelligent asset management activities and reducing operating costs.

One of the most critical asset classes to deliver electric power is power and dis-

tribution transformers where the risk of failure increases with ageing (Zhang and

Gockenbach, 2008). A transformer failure usually results in a widespread outage

in the network. Replacing a power transformer is expensive. A unit can cost

up to 1 million dollars and long lead times are typical (Wang et al., 2002). It is

therefore imperative for any electricity company to manage such assets effectively.
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Electricity companies require new approaches, such as an intelligent fault diag-

nosing system, to reduce the operating costs and the failure rate of their assets

(Abu-Elanien and Salama, 2010).

Reducing operating costs, enhancing the reliability, and improving the quality of

services to clients are the major concerns for electric utilities. There is a high

risk to leave assets, such as distribution and power transformers, in service with-

out sufficient monitoring, as the probability of losing equipment with the ageing

of these assets increases. By changing approaches to achieve new techniques of

condition monitoring, condition assessment, and end-of-life estimation, electricity

utilities are working on reducing their operating costs and improving the reliability

of their assets.

Many transformer asset management activities have been developed during re-

cent years and different techniques have been introduced to deal with this issue.

The three main steps of a general asset management activity are failure modes

and mechanisms analysis, condition monitoring and condition assessment, and

scheduling appropriate maintenance plans. These techniques can be used for dif-

ferent equipment such as power transformers, circuit breakers, cables, etc. In

Figure 2.1, common condition monitoring and their corresponding condition as-

sessment techniques are shown for a power transformer (Abu-Elanien and Salama,

2010; Zhang and Gockenbach, 2008). This research focuses on transformer asset

management using dissolved gas analysis technique. However, brief explanations

of other condition assessment techniques are given below:

Thermal analysis : Since, a change in the thermal behavior of a transformer is a

common phenomenon during abnormal operation, thermal analysis can provide

useful insights about the condition of transformer. Overloading is one of the most

important abnormal conditions in transformers that can be detected by thermal

analysis (IEEE, 2012).

Vibration analysis : Vibration analysis is one of the relatively new methods for

transformer condition assessment. Vibration analysis is usually done on three

main parts of transformers, such as core, winding, and on-load tap changers (Rivas

et al., 2009; Shengchang et al., 2001).
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Figure 2.1: Schematic diagram of transformer asset management (Abu-Elanien
and Salama, 2010).

Partial discharge: Partial discharge is the result of the exceeded electric field

of the dielectric breakdown strength in the insulation medium of transformers.

Consistent partial discharge leads to major failures in the dielectric properties of

the transformer’s insulation (Judd et al., 2002; Strachan et al., 2005). There are

different very well-known techniques for detecting and measuring partial discharge

such as using ultra high frequency sensors (Judd et al., 2002, 2005), acoustic

sensors (Lundgaard, 1992; Najafi et al., 2013), and optical fiber sensors (Zargari

and Blackburn, 1998).

Frequency response analysis : Mechanical stresses in transformers are due to fault

currents which leads to winding movement and deformations. Different types

of failures, such as mechanical deformation, short-circuited turn-to-turn, short-

circuit-to-ground, ungrounded core, open-circuited, high contact resistance, bulk

movement, loose clamping structure etc., can be detected by measuring electrical

transfer functions of transformers over a wide frequency range using frequency

response analysis method. This method works based on the comparison between

frequency responses results of transformers before and after a failure (Islam, 2000;

Wang et al., 2002, 2005; Yousof et al., 2015a,b).
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Dielectric response analysis : Dielectric response analysis is one of the useful meth-

ods for measuring the content of moisture in transformer oil-paper insulation

medium. Moisture can move into the oil-paper insulation system from ambient

during the installation or repairing of transformers and can cause severe failures.

Generally, determining the moisture content can be used for end-of-life assess-

ment of transformers. Dielectric spectroscopy technique can be used in time and

frequency domain for estimating the quality of insulation systems of transform-

ers (Saha, 2003). Frequency domain spectroscopy is one of the most common

techniques for quality assessment of transformer insulation system (Yousof et al.,

2015a; Zaengl, 2003).

2.3 The importance of dissolved gas analysis

Dissolved gas analysis (DGA) is one the most useful and common techniques for

condition monitoring and condition assessment of power transformers. A wide

range of transformer failures can be detected and diagnosed using this technique.

The three major stress categories that a transformer may encounter during its life-

time are thermal, electrical, and mechanical. Table 2.1 lists the common failures

of transformers caused by these stresses and whether these failures can be detected

by DGA. Nowadays, real time monitoring is of great importance for electric util-

ities and power companies helping them to manage their fleet more effectively.

As illustrated in Table 2.1, almost all of the transformer failure modes can be

monitored online using the DGA technique. Therefore, electric utilities and power

companies use DGA as a convenient method for monitoring and incipient fault

diagnosis of transformers. Once the faults are confirmed for further investigation,

the most optimum maintenance process can then be planned. Further details of

each failure mode are given in the following subsections.

2.3.1 Insulation degradation

There are many different factors which effect transformer insulation degradation.

However, two major reasons are thermal and electrical stresses in the insulation

medium of transformers (cellulose and mineral oil).
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Table 2.1: Failure modes and corresponding condition monitoring techniques (CIG,
2003).

Failure mode Condition monitoring Online monitoring

Paper degradation

• DGA • Yes

• Furan analysis • Yes

• Power factor • No

• Insulation resistance • No

• Dielectric response analysis • No

• Moisture analysis • Yes

• Degree polymerisation • No

Oil degradation

• DGA • Yes

• Oil conductivity • Yes

• Power factor • No

• Insulation resistance • No

• Dielectric response analysis • No

• Moisture analysis • Yes

• Degree polymerisation • No

Partial discharge (PD)
• DGA • Yes

• PD analysis • Yes

Contact resistance

• DGA • Yes

• Frequency response analysis • No

• Winding resistance test • No

Load tap changers failure
• DGA • Yes

• Internal inspection • No

Short circuit turn to turn

• DGA • Yes

• Winding resistance test • No

• Frequency response analysis • No

• Transformer turns ratio • No

• Excitation current • No

Short circuit to ground

• DGA • Yes

• Power factor • No

• Frequency response analysis • No

• Insulation resistance • No
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Figure 2.2: The cellulose molecule.
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Figure 2.3: The effect of increasing moisture on voltage dielectric strength in
transformer oil (Miners, 1982).

Cellulose is a macro molecule which consists of interconnected glucose rings as

shown in Figure 2.2. The number of glucose rings per chain is called the degree

of polymerisation (DP). In normal condition, the number of glucose rings in the

chain can vary between 300 to over 1000. These long glucose chains may be broken

under thermal and electrical stresses and other ageing processes. The condition

of paper is deemed not acceptable for use in a power transformer if the number

of glucose rings is less than 200 (DP<200) because the paper loses its mechanical

properties and becomes brittle (Saha, 2003). Furthermore, cellulose oxidization

produces water in the paper and, as a consequence, the voltage dielectric strength

(VDE) of the paper is reduced significantly (Miners, 1982). Figure 2.3 shows the

effect of moisture on the VDE.
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Transformer oil consists of different hydrocarbon molecules. When electrical or

thermal stress occurs inside a transformer, these hydrocarbon molecules are bro-

ken into carbon-hydrogen and carbon-carbon bonds. Different gases are formed,

based on the amount of energy and temperature produced by the faults inside the

transformer. Dissolved gas analysis (DGA) is a common method for interpretation

of the produced gases in oil and different standards and techniques are available

for this purpose, such as the IEEE C57.104 and IEC 60599 standards (IEC, 2007;

IEEE, 2009). Transformer oil contains dissolved gases, even during normal opera-

tion when no faults occur in transformer. The level of these gases increases when

a fault occurs in transformers. The increasing amount/rate of these gases depends

on two important factors. The first is type and the second is the location of the

fault in transformer (IEC, 2007; IEEE, 2009). The generated gases can be divided

into three different groups:

• Hydrogen and hydrocarbons: H2, CH4, C2H2, C2H4, and C2H6.

• Carbon oxides: CO and CO2.

• No-fault gases: O2 and N2.

Research has shown there is also correlation between faults and dissolved gas con-

centration (Emsley and Stevens, 1994; IEC, 2007; IEEE, 2009; Singh and Bandy-

opadhyay, 2010). Arcing faults produce relatively large quantities of H2 and C2H2.

Temperatures in excess of 500 ◦C are required for the generation of C2H2. Ther-

mal decomposition of oil leads to increased concentration of C2H4, in combination

with CH4. The temperature required for generation of these gases is lower than

250 ◦C. An increase in concentration of H2 and CH4 is a sign for partial discharge

in the transformer’s oil. Generation of CO2 and CO indicates thermal ageing in

the cellulose insulation. The presence of H2 and O2 in the transformer oil, without

other hydrocarbon gases, verifies the presence of water (IEC, 2007). Figure 2.4

illustrates the generation rate of the most relevant gases to each fault type for

different temperatures.

In addition to the aforementioned problems, insulation degradation can cause sev-

eral other faults, such as short circuits, extra heating, partial discharge or arcing.
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Figure 2.4: Schematic diagram of dissolved gases generation in different tempera-
tures (Singh and Bandyopadhyay, 2010).

2.3.2 Partial discharge

Partial bridging of a transformer’s insulation system can be a simple definition

of partial discharge (PD). There are some phenomena which induce partial dis-

charge, such as degradation of a transformer insulation during its life time and

temporary over-voltage. Different defects in transformers, which may result in

partial discharges, are as follows (Boggs, 1990; Morshuis, 2005):

• Floating component.

• Bad contact.
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• Suspended particles.

• Rolling particles.

• Surface discharge.

• Protrusions.

Figure 2.5: An example of electrical treeing in power transformer insulation (Tree-
ing).

PD can deteriorate the electrical properties of the insulation, since PD pulses

cause formation of a carbonized channel in cellulose insulation, which long term

may lead to complete breakdown inside the dielectric. Figure 2.5 shows an electri-

cal breakdown of polymeric insulation of power transformers. This condition can

also affect the quality of oil insulation by producing chemical byproducts such as,

gases, acids, and water, which drastically reduce oil withstand strength (Ghaffar-

ian Niasar, 2015; Liao et al., 2011a).

As mentioned in Section 2.2, there are different PD detection methods. How-

ever, DGA as a cheap and straightforward technique can be also used to diagnose

PD in power transformers. In DGA based fault diagnosis techniques, which are

introduced in Section 2.4, hydrogen plays an important role as the key gas for

diagnosing PD. In Chapter 5, an intelligent method is proposed and implemented

to select the most relevant gases for diagnosing PD in power transformers.
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2.3.3 Load tap changer failure

Due to the mechanical mechanisms of load tap changers (LTCs), the failure rate

of LTCs is higher than other transformer parts, such as windings, bushing, and

the core (Zhang and Gockenbach, 2008). A common problem of LTCs is contact

cocking, which may cause increasing contact resistance and overheating (Duval,

2008). Although normal operation of LTCs produces dissolved gases due to arcing

during normal operation of LTCs, the levels of these gases are usually higher than

faulty transformers. Therefore, DGA can be used as an important measure for

LTCs fault diagnosis. The details of an intelligent LTCs fault diagnosis model,

which was developed during the course of this research, are presented in Chapter

4.

2.3.4 Other failure modes

The failure modes of transformers are not limited to the above-mentioned cate-

gories. There are also other failures, which have a low probability of occurrence,

but they can cause severe damage to a transformer. Some of these failure modes are

loss of sealing, blocking of pressure relief devices, and loss of core-clamping, which

can result in an insulation problem, explosion due to accumulated combustible

gases, or extra heat. In addition, to avoid extra heat within a transformer, fans,

pumps, and radiators should work without any problem to transfer heat properly.

2.4 Transformer incipient fault diagnosis using

DGA

Thermal and electrical stresses are two main reasons that result in the degrada-

tion of a transformer insulation and lead to the release of dissolved gases inside

transformers. The type of fault in the transformer can be determined by analysing

these gases. In order to classify the transformer incipient faults, several standards

and methods have been developed, such as IEEE (2009) and IEC (2007) stan-

dards. Several intelligent algorithms have been also introduced to improve the
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reliability of diagnosing faults using conventional methods. For example, fuzzy

logic and neuro-fuzzy systems (Duraisamy et al., 2007; Hooshmand et al., 2012;

Huang et al., 1997; Tomsovic et al., 1993), artificial neural network (Huang, 2003;

Miranda and Castro, 2005; Sarma and Kalyani, 2004), and statistical learning,

such as Support Vector Machine (Ganyun et al., 2005; Mirowski and LeCun, 2012;

wei Fei and bin Zhang, 2009; wei Fei et al., 2009) are the common machine learn-

ing methods, which have been applied to diagnose faults of in-service transformers.

Although, these algorithms are very powerful, they have some drawbacks too. For

example, in the fuzzy logic method, sometimes it is not easy to define the rules or

using neural networks requires a comprehensive and reliable dataset to train the

network.

2.4.1 DGA based fault diagnosis methods

In general, transformer faults are classified into four major classes as follows (IEC,

2007; IEEE, 2009):

1. Electrical arcing.

2. Electrical corona.

3. Overheating of cellulose.

4. Overheating of oil.

Table 2.2 shows the corresponding causes of these four major fault classes. As

is clear from Table 2.2, some of these fault classes have more than one cause in

transformers. Three major conventional transformer fault diagnosis techniques,

based on DGA, are briefly explained in the following subsections.

2.4.1.1 Ratio methods

There are different ratio based methods which use a group of defined dissolved gas

ratios. The most important ratios used in these methods are listed in Table 2.3.
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Table 2.2: Power transformers fault classes and their corresponding causes.

Causes
Fault classes

Arcing Corona Overheating of paper Overheating of oil

Short circuit turn to turn X X

Open circuit X X

Overloading X X

Moisture X X

Floating particles X X

Cooling system malfunction X

Load tap changers operation X

Winding displacement X X

Table 2.3: Dissolved gas ratios used in DGA ratio based methods.

Ratio CH4/H2 C2H2/C2H4 C2H2/CH4 C2H6/C2H2 C2H4/C2H6

Abbreviation R1 R2 R3 R4 R5

To evaluate the performance of the conventional ratio methods, three dissolved

gas samples are considered and the interpretation of each method is presented on

these samples in the following subsections. Table 2.4 shows the value of dissolved

gases for these samples and their corresponding actual faults, which are partial

discharge (PD), no fault (NF), and energy discharge (ED). The proposed method

in Chapter 5 was tested on this dataset to show the capability of the developed

intelligent transformer fault classification algorithm in this research.

Table 2.4: The diagnostic results of the conventional ratio methods on the three
dissolved gas samples.

No. Actual fault
Dissolved gases [ppm] Diagnostic methods

H2 CH4 C2H4 C2H6 C2H2 IEC Rogers Doernenburg Duval Key gas

1 PD 1076 95 4 71 231 Not diagnosed Not diagnosed Not diagnosed ED PD

2 NF 2501 1428 4963 4622 6998 PD Not diagnosed PD ED Not diagnosed

3 ED 1565 93 34 47 0 PD PD Not diagnosed TF PD

2.4.1.2 Doernenburg’s ratio method

In this method four ratios are used to classify three fault classes as listed in Table

2.5. To apply Doernenburg ratio method, three steps can be considered as follows:
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Table 2.5: Fault diagnosis using Doernenburg’s ratio method.

Fault class R1 R2 R3 R4

Thermal >1.0 <0.75 <0.3 >0.4

Low energy partial discharge (corona) <0.1 Non-significant <0.3 >0.4

High energy partial discharge (arcing) >0.1 & <1.0 >0.75 >0.3 <0.4

Table 2.6: Dissolved gases concentration limit for Doernenburg’s ratio validation
check.

Dissolved gas H2 CH4 CO C2H2 C2H4 C2H6

Concentration limit (ppm) 100 120 350 35 50 65

• The first step is called validity check. For this purpose, the level of at least

one gas used in the ratios in Table 2.5 should be twice the limits listed in

Table 2.6 and one of the other three dissolved gases should reach these limits.

• If the Doernenburg ratio is valid for the transformer, then the four ratios

(R1, R2, R3, and R4) can be computed.

• The calculated ratios should be checked whether they fall into the given

ranges in Table 2.5.

One of the main drawbacks of Doernenburg’s ratio technique is its high rate of

non-diagnosed cases, as this method can only be applied when a validation test

is passed (Bacha et al., 2012). As an example, Case 3 in Table 2.4 does not pass

the validation check and Doernenburg ratio method cannot be used for this DGA

sample. On the other hand, Case 1 falls into the highlighted area (A) in Figure 2.6,

which is actually an uncertainty (blank) zone, and Doernenburg’s ratio method is

not able to diagnose the corresponding fault. Lastly, Case 2 is incorrectly classified

as high energy PD using this method.

2.4.1.3 Rogers ratio method

Rogers ratio method is one of the most commonly used ratio methods. This

method is mainly recognised for better diagnosing of thermal fault class compared

to Doernenburg ratio method (Doernenburg and Strittmatter, 1974). Four gas
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Figure 2.6: Schematic diagram of Doernenburg ratio method for transformers fault
classification.

Table 2.7: Rogers ratio codes.

Ratio Range Code

R1

≤0.1 5

>0.1 & <1.0 0

≥1.0 & <3.0 1

≥3.0 2

R2
<0.5 0

≥0.5 & <3.0 1

≥3.0 2

R4

<1.0 0

≥1.0 1

>3.0 2

R5

<1.0 0

≥1.0 & <3.0 1

≥3.0 2

ratios are used in this method as listed in Table 2.7. To apply this method, first a

code is defined corresponding to each gas ratio level as shown in Table 2.7, then,

Table 2.8 can be used to make a final decision on the transformer’s fault.

The Rogers ratio method was so popular such that IEC 60599 standard (IEC,

2007) was proposed, based on this technique. However, this method is unable

to diagnosed faults correctly in some cases, which increases the uncertainty rate

(Bacha et al., 2012). In addition, the calculated ratios can be outside the defined

ranges in Table 2.7, which results in non-diagnosable cases and consequently higher
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Table 2.8: Fault diagnosis using Rogers ratio method.

Fault class R1 R2 R4 R5

No fault 0 0 0 0

Partial discharge 5 0 0 0

Thermal fault (T < 150 ◦C) 1-2 0 0 0

Thermal fault (150 ◦C < T < 200 ◦C) 1-2 0 1 0

Thermal fault (200 ◦C < T < 300 ◦C) 0 0 1 0

General conductor overheating 0 0 0 1

Winding circulating current 1 0 0 1

Core and tank circulating currents, overheated joints 1 0 0 2

Flashover without power follow through 0 1 0 0

Arc with power follow through 0 1-2 0 1-2

Continuous sparking to floating potential 0 2 0 2

Partial discharge with tracking (note CO) 5 1-2 0 0

rate of uncertainty. As given in Table 2.4, it is not possible to interpret DGA for

two DGA samples (Case 1 and Case 2) using Rogers ratio method. In addition,

case 3 is incorrectly classified as PD, while the actual fault is ED.

2.4.1.4 IEC ratio method

The IEC ratio is derived from the Rogers ratio method. The main difference

between these two methods is the number of ratios used in these methods. In

IEC method only three gas ratios (R1, R2, and R5) are used to diagnose six fault

classes. The IEC ratio codes and the interpretation of the IEC ratio codes are

summarized in Table 2.9 and Table 2.10, respectively (IEC, 2007). In general,

the accuracy of the IEC method is higher than the Rogers ratio and Doernenburg

ratio methods. For example, Muhamad et al. (2007) reported a 66% accuracy

for the IEC method compared to 45% and 41% for the Rogers and Doernenburg

ratio methods, respectively, for a dataset consists of 92 dissolved gas samples.

In other research, Ghoneim et al. (2016) reported a 49% accuracy for the IEC

method compared to 45% and 41% for the Rogers and Doernenburg ratio methods,

respectively. The DGA dataset used in their study consists of 418 samples.

To show the drawbacks of the IEC method, as given in Table 2.4, this method

is not able to interpret the DGA for Case 1 and the other two DGA samples
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Table 2.9: IEC ratio codes.

Ratio Range Code

R1

<0.1 1

≥0.1 & <1.0 0

≥1.0 & <3.0 2

≥3.0 2

R2

<0.1 0

≥0.1 & <1.0 1

≥1.0 & <3.0 1

≥3.0 2

R5

<0.1 0

≥0.1 & <1.0 0

≥1.0 & <3.0 1

≥3.0 2

Table 2.10: Interpretation of IEC ratio codes.

Fault class R1 R2 R5

No fault 0 0 0

Low energy partial discharge 1 Non-significant 0

High energy partial discharge 1 1 0

Low energy discharge 0 1-2 1-2

High energy discharge 0 1 2

Thermal (T < 150 ◦C) 0 1 2

Thermal (150 ◦C < T < 300 ◦C) 2 0 0

Thermal (300 ◦C < T < 700 ◦C) 2 0 1

Thermal (T > 700 ◦C) 2 0 2

are incorrectly diagnosed as PD. Figure 2.7 illustrates the interpretation of the

IEC ratio method for classifying three major fault classes, partial discharges (PD),

low/high energy discharges (DL & DH), and low, medium, and high thermal faults

(TL, TM, and TH) (IEC, 2007). It is clear that there are some blank zones in

Figure 2.7 and it is not possible to diagnose the correct fault of transformer if

a DGA sample were to fall into these blank zones such as Case 1 in the above

example.
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Figure 2.7: Schematic diagram of IEC ratio method for transformers fault classi-
fication (IEC, 2007; Wang, 2000).

2.4.2 Key gas and total dissolved combustible gas methods

In this method the main gases relevant to each fault type are used to diagnose

the fault of transformer. As shown in Figure 2.4, the quantity of the generated

dissolved gases in the transformer’s oil is different at varying temperatures. This

method uses the percentage of the key gases in the transformers to diagnose faults

of transformer. Table 2.11 summarizes the four major fault classes and their

corresponding key gas (Gray, 2009; Kelly, 1980).

The performance of the key gas technique is comparable with other conventional

methods. This method diagnoses case 1 in Table 2.4 as PD correctly, while case

3 is incorrectly classified as PD and case 2 is not diagnosable using the key gas

method.

Table 2.11: Fault diagnosis using key gas method.

Fault class Key gas Gas proportion

Arcing in oil C2H2 H2 (60%), C2H2 (30%), CH4 (5%), C2H4 (3%), C2H6 (2%)

Corona in oil H2 H2 (85%), CH4 (13%), C2H4 (1%), C2H6 (1%)

Thermal in oil C2H4 C2H4 (63%), C2H6 (19%), CH4 (16%), H2 (2%)

Thermal in cellulose CO CO (92%)
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Table 2.12: Dissolved gas concentration limits (ppm) used TDCG method.

Dissolved gas H2 CH4 C2H2 C2H4 C2H6 CO CO2 TDCG

Condition 1 100 120 1 50 65 350 2500 720

Condition 2 101-700 121-400 2-9 51-100 66-100 351-570 2500-
4000

721-
1920

Condition 3 701-
1800

401-
1000

10-35 101-200 101-150 571-
1400

4001-
10000

1921-
4630

Condition 4 >1800 >1000 >35 >200 >150 >1400 >10000 >4630

In IEEE standard C57.104 (IEEE, 2009), a different key gas approach called the

total dissolved combustible gas (TDCG) method was introduced. This method

considers the summation of the dissolved gases and the value of the individual

gases simultaneously to evaluate the condition of transformer. As stated in IEEE

(2009), it can be difficult to classify between normal and faulty condition using

concentration of dissolved gases. The four steps TDCG method is especially useful

when there are no historical DGA records for the transformer. In this method,

four different conditions of transformer based on the level of individual dissolved

gases and TDCG are defined as shown in Table 2.12. The CO2 value in Table 2.12

is not considered in TDCG value. The interpretation of transformer condition

evaluation using this method is given as follows:

• Condition 1 : If TDCG is below the 720 ppm, the transformer is in a healthy

condition. However, immediate investigation would be required if the value

of any individual dissolved gas exceeds the defined levels in Table 2.12.

• Condition 2 : TDCG between 721 ppm and 1920 ppm indicates greater than

normal dissolved gas concentrations. If any individual dissolved gas exceeds

the specified levels, an immediate investigation of the transformer is neces-

sary and a trend check is also required.

• Condition 3 : TDCG within this range is a symptom of a high level decom-

position. A prompt investigation is required if any individual dissolved gas

exceeds the thresholds in Table 2.12. The probability of existing fault(s) in

the transformer is high and a trend check action should be done immediately.
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• Condition 4 : TDCG within this range is a symptom of an excessive decom-

position. If the transformer remains in-service, it could leads to a complete

failure of the transformer.

2.4.3 Duval Triangle method

One of the most reliable methods for diagnosing faults in transformers is the

Duval Triangle, which was introduced by Michel Duval in 1974 (Duval, 1974).

This is a visual interpretation technique for DGA and it is based on using three

different hydrocarbon gases (CH4, C2H2, C2H4). Figure 2.8 shows the Triangle

used for diagnosing faults and its distinct zones corresponding to each fault class.

Each side of the Triangle represents the relative proportions of the three gases

(
CH4

CH4+C2H2+C2H4
× 100,

C2H2
CH4+C2H2+C2H4

× 100, and
C2H4

CH4+C2H2+C2H4
× 100).
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Figure 2.8: Duval Triangle.

Three major fault types can be diagnosed using this method, i.e., partial discharge,

high and low energy arcing, and overheating (thermal faults) of three different

temperature ranges. An additional zone is also considered in the Triangle which
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Table 2.13: Dissolved gases concentration and generation limit for Duval Triangle
validation check.

Dissolved gas H2 CH4 C2H2 C2H4 C2H6 CO CO2

Concentration limit (ppm) 100 75 3 75 75 700 7000

Generation limit (ppm per
month)

50 38 3 38 38 350 3500

is called the intermediate zone and symbolized by DT for a mixture of electrical

and thermal faults in transformers (Duval, 2002). The main drawback in applying

the Duval Triangle method is the validation step, as it is crucial to confirm that at

least one of the gases has reached its minimum and increasing rate limits, which

are listed in Table 2.13 (Duval, 2008; Muhamad et al., 2007).

The reported accuracies of the Duval triangle method in the literature are generally

higher than other conventional ratio methods. The accuracy of the Duval triangle

method reported in Muhamad et al. (2007) and Ghoneim et al. (2016) are 89% and

78.9%, respectively, which are higher than the accuracies of other ratio methods

mentioned in the previous sections for these two studies.

2.4.4 Intelligent DGA based fault diagnosis methods

Over the past decade, various intelligent power transformer condition assessment

methods have been developed using artificial intelligence, statistical, and machine

learning models. In these systems, data-driven approaches are used to extract

knowledge from the raw historical data in order to overcome the drawbacks of

the conventional methods. For example, Shintemirov et al. (2009) compared three

different classification algorithms and the overall accuracy of their method was

92.11%. A relatively high diagnostic accuracy is reported for another two in-

telligent transformer fault diagnosis methods where Ghoneim and Taha (2016)

designed an algorithm with 92.91% accuracy and Bacha et al. (2012) proposed an

intelligent fault classification method with 90% accuracy on their dataset. A com-

prehensive literature review on the intelligent models is given in Section 5.2 and

Section 6.2 respectively. However, before introducing the proposed state-of-the-

art transformer fault diagnosis and dissolved gas forecasting algorithms, a brief
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review on applied statistical and machine learning algorithms in this research will

be presented in Chapter 3.

2.5 Discussion

In this chapter different traditional DGA interpretation techniques were introduced

and the drawbacks of these methods were listed. The drawbacks and shortcom-

ings of these methods for transformers fault diagnosis were investigated using a

case study. Table 2.4 summarises the performance of different traditional fault

diagnosis methods on the three dissolved gas samples. As is clear from Table

2.4, most of these methods are not able to interpret DGA or diagnose faults for

these case studies, which is mainly because of the limited defined ranges of the

dissolved gas ratios used in these methods. To overcome this problem, an intel-

ligent transformer fault classification algorithm is proposed in this research. The

fault classification algorithm is able to define soft and non-linear boundaries be-

tween the fault classes regardless of wherever the dissolved gas samples were to

fall in the space. In other words, this algorithm can classify and interpret all the

dissolved gas samples with high accuracy and without any validation check step,

which there was in some traditional DGA methods. Another important feature of

the developed fault classification algorithm is assigning probabilities to each diag-

nosed case, which provides further insights to transformer fault diagnosis practice.

Sometimes, collecting DGA data is very expensive and sometimes a set of DGA

sensors can cost more than one hundred thousand dollars. The dataset used for

developing an intelligent data-driven algorithm in Chapter 5 is collected from dif-

ferent power transformers published in previous studies (Ganyun et al., 2005; Gao

et al., 1998; Sarma and Kalyani, 2004; Vanegas et al., 1997; Zhang et al., 1996).

This helps to develop a general fault diagnosing algorithm regardless of type and

size of transformers. Therefore, electric utilities can use the developed algorithms

in this study using their own dataset.
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Chapter 3

An Overview of Statistical and
Machine Learning Algorithms

3.1 Overview

An overview of some of the well-known statistical and machine learning algorithms

used in this research is presented in this chapter. These algorithms are used in the

following chapters to diagnose power transformer faults and to predict the value

of dissolved gases inside transformers. The chapter begins by introducing machine

learning frameworks, followed by a brief description of the algorithms used, and

concludes with a discussion on the merits and disadvantages of these algorithms.

The algorithms described in this chapter, which are then used in an ensemble

framework in the next chapters (Chapter 5 and Chapter 6), were chosen from

different machine learning algorithms families such that there is at least one can-

didate from each category. In addition, there are various well-developed packages

that can be used to implement these algorithms. Table 3.1 lists the algorithms

used in this research and their corresponding categories.

3.2 Machine Learning Frameworks

These methods are categorised as intelligent algorithms which can learn from the

dataset and perform classification, regression, clustering, and time series prediction
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Table 3.1: List of the used algorithms in this research and their corresponding
categories.

Category Algorithm(s)

Statistics based methods Decision Trees

Kernel based methods Support Vector Machines

Probabilistic models Naive Bayes

Distance based methods K-Nearest Neighbours

Regularization based methods Kernel Ridge Regression

Rule based methods Adaptive Network-based Fuzzy Inference Systems

Artificial Neural Networks

Feedforward Neural Networks

Radial Basis Function Networks

Cascade Forward Neural Networks

Echo State Networks

Random Vector Functional Link

Group Method of Data Handling

tasks properly. Generally, machine learning problems can be divided into three

main groups, which are:

• Supervised learning: In these problems some previously solved examples are

presented to the machine and the goal is to find a function (rule) that maps

inputs to outputs. The machine (algorithm) can learn from the training

dataset during the learning process and then predicts on a new example.

This is very similar to the learning process in the real world. For example,

students are given a set of examples and the corresponding answers in class

to practice, then they are asked about new questions in the exam, which are

similar to what they have learned in the class but not exactly the same.

• Unsupervised learning: In these cases the machine is left to find the hidden

pattern behind the data without any given examples.

• Reinforcement learning: The machine can interact with an external dynamic

environment, and accordingly, the system is either rewarded or punished

from the environment in order to learn an appropriate task over time.
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In this research, statistical and machine learning algorithms were used in a su-

pervised learning framework. Therefore, the following algorithms are described

using this assumption, i.e., a set of examples are first presented to the algorithm

to learn, which is called the training phase, then the trained algorithm is tested

on an unknown example.

3.3 Support Vector Machines

There are two different but similar Support Vector Machines (SVM) used for clas-

sification and regression problems (Friedman et al., 2001). Mathematically these

two algorithms, Support Vector Classification (SVC) and Support Vector Regres-

sion (SVR), are identical except for some minor differences. The main difference

between them is that the outputs of SVC are binary valued vectors of the predicted

class indices, while the outputs of SVR are real values of the predicted function or

time series data.

SVM is a learning algorithm based on the statistical learning theory which seeks

optimum hyper-planes in order to separate a dataset into different classes or ap-

proximate a function. An example of linear and non-linear classification for a two

class problem using SVM are shown in Figure 3.1.

Margin

Optimal 
hyper-plane

Support 
vectors

Class A
Class B

Feature 1

Feature 2

(a)

Optimal 
hyper-plane

Margin

Support 
vectors

Support 
vectors

Support 
vectors

Class A
Class B

Feature 1

Feature 2

(b)

Figure 3.1: An example of: (a) linear and (b) non-linear support vector classifiers.

Suppose that we have a dataset of N inputs and N targets as:
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Z = {(x1, t1), (x2, t2), . . . , (xN , tN)}, (3.1)

s.t. xn ∈ IRm, tn ∈ IR, (3.2)

where xi and ti are inputs vectors and targets, respectively.

The aim of this algorithm is to use this dataset to find the function f(x), which

maps inputs to targets, as follows (Cortes and Vapnik, 1995):

f(x) '
N∑

n=1

(wT · xn + b), (3.3)

where xn and wT denote inputs and transpose of the weights vectors, respectively,

and b is the bias term.

Figure 3.2 shows the core concept in SVM, which is to find w. This keeps the

error of prediction such that it will be less than ε, which is called the margin. So,

if a sample like a is outside the acceptable error region, ε, it is penalized as follows

(Cortes and Vapnik, 1995):

n



a

Model output
(y)

Target 
(t)

Figure 3.2: A graphical representation of penalizing a sample (a) that falls outside
of an acceptable margin (ε).
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Figure 3.3: A graphical representation of Vapnik loss function.

Lε(tn, yn) =

{
0, if |tn − yn| ≤ ε.

|tn − yn| − ε, otherwise.
(3.4)

where Lε is called Vapnik loss function, and yn are the outputs. The |tn − yn| ≤ ε

is considered as the acceptable region and Lε can be graphically shown in Figure

3.3. The ζn are called positive slack variables.

According to Figure 3.3 and Equation 3.4, the loss function can be rewritten as

follows (Cortes and Vapnik, 1995):





ζ+
n + ζ−n = Lε(tn, yn),

ζ+
n ζ
−
n = 0,

ζ+
n ≥ 0, ζ−n ≥ 0.

(3.5)

Therefore, in the SVM algorithm, an empirical risk should be minimized as (Cortes

and Vapnik, 1995):

min
1

2
‖ω‖2 + C

N∑

n=1

(ζ+
n + ζ−n ), (3.6)
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subject to

−ε− ζ−n ≤ tn − yn ≤ ε− ζ+
n , ∀n (3.7)

ζ+
n ≥ 0, ∀n (3.8)

ζ−n ≥ 0, ∀n, (3.9)

where C controls the trade-off between maximizing the margin and minimizing

the training error. Applying the Lagrangian principle to the defined problem in

Equation 3.6 results in:

LP (w, b, α) =
1

2
wTw + C

N∑

n=1

(ζ+
n + ζ−n )

−
N∑

n=1

α+
n (−tn + yn + ε+ ζ+

n )

−
N∑

n=1

α−n (tn − yn + ε+ ζ−n )

−
N∑

n=1

µ+
n ζ

+
n −

N∑

n=1

µ−n ζ
−
n , (3.10)

where αi are the Lagrangian coefficients. The optimal conditions is achieved by

(Cortes and Vapnik, 1995):





∂LP
∂w

= w−
N∑

n=1

(α+
n − α−n )xn = 0.

∂LP
∂b

=
N∑

n=1

(α+
n − α−n ) = 0.

∂LP
∂ζ+

n

= α+
n + µ+

n = C.

∂LP
∂ζ−n

= α−n + µ−n = C.

(3.11)
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By substituting Equation 3.11 in Equation 3.10, the dual problem is:

max − 1

2

N∑

n,m=1

(α+
n − α−n )(α+

m − α−m) xT
nxm

+
N∑

n=1

(α+
n − α−n )tn − ε

N∑

n=1

(α+
n + α−n ), (3.12)

subject to





N∑

n=1

(α+
n − α−n ) = 0,

0 ≤ α+
n ≤ C,

0 ≤ α−n ≤ C.

(3.13)

The set of support vectors are defined as follows:

S = {n|0 < α+
n + α−n < C ∧ α+

nα
−
n = 0}. (3.14)

From Equation 3.14 and Equation 3.11:

w =
N∑

n=1

(α+
n − α−n )xn. (3.15)

Subsequently, one can determine the bias term (b) in Equation 3.3 by:

tn =

f(x)︷ ︸︸ ︷
wTxn + b + [sign(α+

n − α−n )]ε, (3.16)

and,

b =
1

|S|
∑

n∈S
(tn −wTxn − [sign(α+

n − α−n )])ε.

Now, by replacing the inner product, 〈xn,xm〉, in Equation 3.12 with a kernel

function K(xn,xm) and following the same procedure described above, a non-

linear predictor can be obtained and Equation 3.12 can be rewritten as follows:
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max − 1

2

N∑

n,m=1

(α+
n − α−n )(α+

m − α−m) K(xn,xm)

+
N∑

n=1

(α+
n − α−n )tn − ε

N∑

n=1

(α+
n + α−n ), (3.17)

Some of the most common kernel functions are listed in Equation 3.18 (Cortes and

Vapnik, 1995; Schölkopf and Smola, 2002).





Linear kernel : K(xn,xm) = xT
nxm,

Polynomial kernel : K(xn,xm) = (xT
nxm + 1)P ,

Gaussian kernel : K(xn,xm) = exp

[−‖xn − xm‖2

2σ2

]
,

Sigmoid kernel : K(xn,xm) = tanh[γxT
nxm + β].

(3.18)

3.4 Group Method of Data Handling

The group Method of Data Handling (GMDH) was introduced by Ivakhnenko

(1971). This method is also known as a polynomial neural network. In GMDH, the

relationship between multiple inputs and outputs of the network can be modelled

as:

Ŷ (x) = a0 +
m∑

i=1

aifi(x), (3.19)

where x is the input vector, Y is the output, ai are coefficients, fi are the elemen-

tary functions, and m is the number of base function components in the GMDH

network.

In the GMDH algorithm, various subsets of Equation 3.19, which are called partial-

models, are defined. Then, the coefficients of these partial-models are determined
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using least-squares techniques (Ivakhnenko, 1971). The core concept of GMDH

is to find a model (network) with optimal complexity by gradually increasing the

partial-models. This research uses one of the most well-known base functions in

GMDH algorithms called the Kolmogorov-Gabor polynomial:

Ŷ (x) = a0 +
n∑

i=1

aixi +
n∑

i=1

n∑

j=i

aijxixj +
n∑

i=1

n∑

j=i

n∑

k=j

aijkxixjxk + . . . . (3.20)

In order to show the complexity of the network, consider the following; if the num-

ber of inputs is considered equal to 10, the number of coefficients, and subsequently,

the number of elementary functions, is equal to 1024. To overcome this problem,

the aforementioned partial-models are created in an intelligent self-organizing pro-

cess. Figure 3.4 shows an example of the process of creating partial-models in

the GMDH algorithm. For the sake of simplicity, and without loss of generality,

only four inputs (x1 − x4) are considered here. In the first hidden layer, a set of

elementary functions are defined. The elementary functions are considered as a

Kolmogorov-Gabor polynomial with the degree of two, as:

zij = c1 + c2xi + c3xj + c4x
2
i + c5x

2
j + c6xixj, (3.21)

where xi and xj are two selected inputs and the c’s are coefficients which are

determined using the least squares technique in the training phase. Then, the

defined zij’s in layer one is sorted and selected using the external criterion. One

popular external criterion is called Criterion of Regularity, which is a minimization

of least squares of the partial models using a separate part of a dataset which is

not used for estimating of coefficients. This process continues until a stopping

criterion is met.

3.5 Multi-Layer Perceptron, Radial Basis Func-

tion, and Cascade Forward Neural Network

A Multi-Layer Perceptron (MLP) is a fully connected feed-forward neural network

(Rumelhart et al., 1985). The basic structure of a MLP is shown in Figure 3.5.
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Figure 3.4: An example of GMDH network. In layer 1, first the polynomial with
the degree of two are created and then some of these are sorted and selected. This
process continues in the subsequent layers until a stopping criterion is met and the
output (Ŷ ) is reported.

The network aims to map inputs to targets properly. In Figure 3.5, yj denotes the

outputs of the jth neuron and sj is the weighted sum of the inputs for the jth neu-

ron. The nodes in hidden layers are called neurons and each node has a non-linear

activation function f(·). The two most popular non-linear activation functions,

called log-sigmoid and tan-sigmoid, are shown in Figure 3.6. The “weights” and

biases of the network are first initialised and then optimized to improve the per-

formance of the network. To evaluate the network performance, the mean square

error

+1

-1

0

f(sj)

Sj

+1

-1

0

f(sj)

Sj

(a) (b)

Figure 3.6: Two commonly used non-linear activation functions. (a) Log-sigmoid.
(b) Tan-sigmoid

(Equation 3.22) is used as a cost function.
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Figure 3.5: An example of MLP network.

MSE =
1

N

N∑

i=1

(Ŷ − Y )2, (3.22)

where Y and Ŷ are the target and network output, respectively, and N is the size

of the dataset or the number of samples in the dataset.

To tune the network parameters (weights and biases), the optimisation method

can use the gradient of the network performance with respect to the weights.

The backpropagation algorithm is one of the most popular techniques used in the

training phase of the MLP (Neural Networks). This algorithm minimises the

cost function in Equation 3.22 in each iteration by adopting the new parameters

(weights and biases) to the network. The network parameters are chosen by the

backpropagation algorithm in such way that the cost function has a maximum

decrease (Leung and Haykin, 1991).

The Radial Basis Function (RBF) is also a neural network and its structure is

very similar to MLP (Broomhead and Lowe, 1988). The main difference between

a RBF and a MLP is in the type of the activation function. In a RBF network,
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Figure 3.7: An example of RBF network.

a non-linear radial basis activation function is used. The most popular activation

function in a RBF is Gaussian, which is defined as:

f(s) = exp(−βj‖s− cj‖2), (3.23)

where βj is controlling the effectiveness of the jth neuron by adjusting the width

of the bell curve, cj is the centre of the jth neuron, and sj is the weighted sum

of the jth neuron’s inputs as shown in Figure 3.7 (Broomhead and Lowe, 1988).

The aim in a RBF network is to optimize βj, cj, and the network’s weights, in

order to minimize the error between the network’s output and the actual value

(target). The parameters of RBF network can be tuned using the backpropagation

algorithm, similar to MLP.

The cascade forward neural network (CFNN) was first introduced by Fahlman

and Lebiere (1989). The structure in these types of neural networks is similar to a

Feedforward Neural Network (FFNN) or MLP with an additional direct connection

from the previous layers to the output layer as shown in Figure 3.8. The network

parameters for updating is similar to MLP and RBF networks, which use the

backpropagation learning algorithm to find the optimum weights of the network.
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Figure 3.8: An example of CFNN network.

3.6 Classification and Regression Trees

The classification and regression trees (CART) algorithm (Breiman et al., 1984)

is one the most powerful and well-known data mining methods. These trees find

a model to predict the targets from the inputs, such that each time a new set of

decisions is followed from the root node down to leaf node as shown in Figure 3.9 to

partition the dataset. The decision trees are called regression trees if the responses

are numerical and they are considered as classification trees if the responses are

categorical.

In the developed CART algorithm by Breiman et al. (1984), which is a recursive

method, the decision trees are constructed by splitting the training set using pre-

dictors to create two leaf nodes repeatedly. To choose the best predictor, Breiman

et al. (1984) uses Gini impurity, which measures the chance of incorrect classifica-

tion of a randomly chosen sample from the set as follows:
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G(n) =
∑

x 6=y
p(x|n)p(y|n), (3.24)

where G(n) is the Gini impurity index at node n, and p(x|n) and p(y|n) are the

relative frequency of two classes (categories) at node n, respectively. The Gini

impurity index is equal to zero if all samples at one node belongs to one class. On

the other hand, in regression trees, the mean squared error (MSE) measure is used

Root node

Internal nodes

Leaf nodes

Figure 3.9: Decision tree diagram.

as the impurity index. Therefore, the CART algorithm for regression problems

utilizes a split to the minimize MSE of predictions, compared to the training

dataset.

3.7 Naive Bayes Classifier

Naive Bayes (NB) classifier uses Bayes’ theorem to classify the given samples (data

point) into different classes (Friedman et al., 2001). Bayes’ theorem can be defined

as:

P (A|B) =
P (B|A) · P (A)

P (B)
, (3.25)
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where P (A|B) and P (B|A) are posterior probability and likelihood, respectively,

P (A) is the prior probability, and P (B) is called evidence. Equation 3.25 presents

how often A happens, given that B happens, if it is known that how often B hap-

pens, given that A happens, and how likely A and B are happening independently.

The NB classifiers simply assumes that the input features (predictors) are indepen-

dent. Therefore, the algorithm estimates the probability of each predictor given

the corresponding class (Friedman et al., 2001):

P (Cj|xn) =

P (Cj) ·
M∏

m=1

P (xmn|Cj)

J∑

j=1

P (Cj) ·
M∏

m=1

P (xmn|Cj)
, (3.26)

where xn = {x1n, x2n, xMn}, which are the input features of the nth sample, and

Cj is the class label of xn. It is worth nothing that the class label of xn, CL, can

be determined by:

xN ∈ CL ⇔ L = argmax
j
{P (Cj|xn)}

= argmax
j

{
P (Cj) ·

M∏

m=1

P (xmn|Cj)
}
. (3.27)

3.8 Fuzzy K-Nearest Neighbor Classifier

The K-Nearest Neighbor (KNN) is categorized as one of the least complex but

important data mining algorithms. In a traditional KNN algorithm (Cover and

Hart, 1967) the inputs (sample data points) of the algorithm are set of predictors

and the outputs are class labels. In this algorithm, the distance between the new

sample and its K-nearest neighbors are calculated and a class is assigned using the

majority voting technique. So, the new sample belongs to the same class as the

majority of its K-nearest neighbors. This algorithm can also be used in regression
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problems and the predicted value of the new sample is the average of its K-nearest

neighbors. There are some improved versions of the KNN algorithm, such as

weighted KNN and fuzzy KNN (Stone, 1977). In a simple version of a weighted

KNN algorithm, some weights are assigned to the nearest neighbors and these

nearest neighbors will have more contribution in the classification or regression

task. A common weighting assignment technique utilizes a weighting factor equal

to 1
d
, where d is the distance between the sample and its corresponding nearest

neighbor.

In this research, a Fuzzy KNN (FKNN) algorithm was used. The main difference

between KNN and FKNN is that in FKNN, a class membership is assigned to a new

sample instead of simply assigning a binary class label (Keller et al., 1985). This

approach can be easily used in multi-class classification problems and the value

of each class membership can be considered a certainty measure. The higher the

certainty measure (membership value) of a class, the more likely the new sample

belongs to this class. As an example, in a classification with three classes, if the

membership values are 0.8, 0.1, and 0.1, one can confidently conclude that the

winning class is the first class. Alternatively, if the membership values are 0.4,

0.5, and 0.1, further investigation is needed between the first and second classes

to assign the correct class to the sample confidently.

To develop this algorithm, first the membership value of a new sample should be de-

termined. Suppose a dataset of N labeled samples is given as Z = {x1,x2, . . . ,xN}
and unp is the assigned membership value to the nth labelled sample for the pth

class. There are several ways to assign membership values to labelled sampled

(Keller et al., 1985), but one of the most popular and routine approaches will

be described here. The complete membership value can be assigned to the la-

belled samples in their correct class and zero membership value in other classes

(Keller et al., 1985). The membership value of the new unlabelled sample can be

calculated as (Keller et al., 1985):
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UP (x) =

K∑

n=1

unp ·
(

1

‖x−xn‖
2

m−1

)

K∑

n=1

(
1

‖x−xn‖
2

m−1

) , (3.28)

where K is the number of nearest neighbors and m controls the weight of the

distance between labelled samples and new unlabelled sample, which calculates

the membership value of the new sample. If m = 2, the membership value of each

K-nearest neighbor is weighted by the inverse distance of a corresponding member

from the new unlabelled sample.

3.9 Adaptive Network-based Fuzzy Inference Sys-

tem

The adaptive Network-based Fuzzy Inference System (ANFIS) network was intro-

duced by Jang (1993). It is actually a fuzzy system which has a network structure.

The two main learning algorithms used in ANFIS are called back propagation and

a hybrid algorithm. These learning algorithms search a feasible space to find the

best parameters of the network iteratively by minimising the cost function (Equa-

tion 3.22).

The ANFIS network consists of a number of nodes which are connected together

by directional links through different layers (Jang, 1993). The structure of the

ANFIS network is shown in Figure 3.10. There are two different types of nodes:

adaptive and fixed. The output of a fixed node is only dependent on the output

of the previous layer, i.e., the nodes of Layer 2, 3 and 5, whereas the output of an

adaptive node is also dependent on its input parameters, i.e., the nodes of Layer

1 and 4.

In general, the ANFIS network consists of five layers, connecting n inputs to one

output y. For the sake of simplicity and without loss of generality, we will assume

that the fuzzy inference system used in the ANFIS network has only two inputs x1
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Figure 3.10: An example of ANFIS network.

and x2 and one output y as shown in Figure 3.10. The Takagi-Sugeno type fuzzy

inferences used in the ANFIS network are as follows:

Rule 1: if x1 is A11 and x2 is A21, then y1 = p1 · x1 + q1 · x2 + r1, (3.29)

Rule 2: if x1 is A12 and x2 is A22, then y2 = p2 · x1 + q2 · x2 + r2, (3.30)

where A11, A12, A21, and A22 are membership functions, x1 and x2 are the inputs

and p’s, q’s, and r’s are the tunable network parameters.

The most commonly used membership functions are increasing, decreasing, trian-

gular and trapezoidal functions. Figure 3.11 represents a schematic diagram of

the fuzzy inference in the ANFIS network. The ω1 and ω2 are the t-norms of the

two pairs of membership values {µA11(x1), µA21(x2)} and {µA12(x1), µA22(x2)},
respectively.

In the ANFIS network, shown in Figure 3.10, the output of the first layer, called

the fuzzification layer, are the membership values. The membership functions

assign a value from the interval [0, 1] to each input. A membership function can

be defined as:

µF : U → [0, 1] (3.31)
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Figure 3.11: Schematic diagram of an ANFIS network.

In the implication layer (layer 2) the t-norms of the membership values are de-

termined as illustrated in Figure 3.11. In the third layer (aggregation layer) y1

and y2 are defined using three tunable parameters (p, q, and r) and are multiplied

by the t-norms of the membership values (ω1 and ω2). The outputs of the aggre-

gation layer are then normalised in layer four (normalisation layer). Lastly, the

normalised y1 and y2 are summed in the summation layer.

3.10 Random Vector Functional Link Network

The Random Vector Functional Link (RVFL) network was first introduced by Pao

et al. (1992a). The main drawbacks of feedforward neural networks, which use

back propagation optimisation algorithms, are slow to converge and can be easily

trapped in local minima. In the RVFL network, the weights from input layer to

the hidden layer (enhancement layer) can be randomly selected from a feasible

domain and are kept unchanged during the learning stage. The RVFL network

structure is shown in Figure 3.12. In the RVFL network, there are direct links

between the inputs and outputs, which help to improve the performance of the

network.

The random weights rij from the input layer to the hidden layer, as suggested in

(Alhamdoosh and Wang, 2014), are randomly generated from a uniform distribu-

tion, [-S, S], where S is called scale factor and should be set based on the training
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Figure 3.12: An example of RVFL network.

dataset. This ensures that the activation functions f(rT
j x + bj) will not saturate.

Thus, in the RVFL network, the output weights β should be determined during

the training stage. These output weights can be found by solving Equation 3.32.

yi = fT
i β, i = 1, 2, . . . ,m (3.32)

where m is the number of samples in the dataset, y is the target and f is the vector

of generated random weights and inputs.

In practice, regularized least squares is used to solve Equation 3.32. There are

two main reasons for using regularized least squares instead of the ordinary least

squares. The first one is that sometimes the number of variables are higher than the

number of samples, such that, the ordinary least squares problem is considered as

an ill-posed problem and the optimisation problem has infinite solutions (Hansen,

1998). Regularized least squares is also used to improve the generalisation of the

model by forcing the optimisation problem to find more sparse solution.

In general, there are two types of RVFL networks, iterative and closed-form. The

implemented RVFL network in this research is a closed-form RVFL network. In

a closed-form RVFL network, pseudo-inverse (Igelnik and Pao, 1995; Pao and

Phillips, 1995) approaches can be used to find a solution in a single learning step.

One of the most commonly used pseudo-inverse methods is called the Moore-

Penrose pseudo-inverse, which solves Equation 3.32 as (Pao and Phillips, 1995):

β = F+Y, (3.33)
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where F is the concatenated vector of generated random, weights and inputs for

all data samples and Y are the targets vector of all samples. The ‘+’ represents the

Moore-Penrose pseudo-inverse. An alternative approach to solve Equation 3.32 is

using ridge regression (or L2 norm regularized least square), which tends to solve

(Murphy, 2012),

∑

i

(yi − fT
i β)2 + λ ‖ β ‖, i = 1, 2, . . . ,m (3.34)

∴ β = F (FTF + λI)−1Y, (3.35)

where λ is the regularisation parameter which needs to be tuned properly.

3.11 Kernel Ridge Regression

Ridge Regression was first introduced by Hoerl and Kennard (1970). It is cate-

gorised as a shrinkage method because it imposes a constraint on the regression

coefficients and prevents them from being very large. In fact, in this method the

ridge coefficients (β̂ridge) minimise,

argmin
β

{
N∑

i=1

(yi − β0 −
p∑

j=1

xijβj)
2 + λ

p∑

j=1

β2
j

}
, (3.36)

where λ ≥ 0 and is called the penalty factor, and x and y are simply inputs and

targets, respectively.

If we rewrite the Equation 3.36 in matrix form, the residuals sum of squares (RSS)

is as follows (Hoerl and Kennard, 1970):

RSS(λ) = (y−Xβ)T(y−Xβ) + λβTβ, (3.37)

and the solution of Equation 3.37 is given by (Hoerl and Kennard, 1970),

β̂ridge = (XTX + λI)−1XTy, (3.38)

where I is the identity matrix. A geometric representation of the ridge regression

method is illustrated in Figure 3.13. Each ellipse represents its corresponding RSS.

The smaller the ellipse, the smaller the RSS. The circle shows the constraints in
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Figure 3.13: A geometric representation of ridge regression.

ridge regression. The ridge estimate point in the figure is achieved by minimising

the size of the circle and ellipses, simultaneously.

Ridge regression can be kernelised by replacing XXT with an appropriate kernel

function (K) in Equation 3.38. A list of commonly used kernel functions are given

in Equation 3.18. The kernelised form of Equation 3.38 is as follows Murphy

(2012):

β̂ridge = XT(K + I)−1y. (3.39)

However, the XT term still present in Equation 3.39. In order to remove this term,

we define a variable α as (Murphy, 2012):

α , (K + λI)−1y (3.40)

and Equation 3.39 can be rewritten as:

β̂ridge = XTα =
N∑

i=1

αixi. (3.41)
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Finally, a closed form for kernel ridge regression (KRIDGE) can be obtained by

looking at the predicted value, which is,

f̂(x) = β̂T
ridgex =

N∑

i=1

αix
T
i x =

N∑

i=1

αiκ(x, xi) (3.42)

3.12 Echo State Network

In Section 3.5, MLP was briefly described as one of the most commonly used

feedforward neural networks (FFNN). As illustrated in Figure 3.5, there are only

forward connections between the neurons. There is another type of neural network

referred to as the Recurrent Neural Network (RNN). The main difference between

the FFNN and RNN is the cyclical connections in the hidden layer of RNN as

shown in Figure 3.14. Different types of RNNs have been proposed, such as the

Echo State Network (ESN) (Jaeger, 2001), the Elman Network (Elman, 1990), the

Time Delayed Network (Lang et al., 1990), and Jordan Network (Jordan, 1990).

In this study, an Echo State Network (ESN) was used as a time series forecasting

algorithm. The ESN was first introduced by Jaeger (2001) and it is actually a

RNN with a fixed non-trainable sparse reservoir part and a linear readout.

1x

2x

nx

Ŷ

Input 
layer

Hidden 
layer

Output 
layer

Figure 3.14: An example of a RNN.
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Figure 3.15: An example of an ESN.

The ESN has K input units, N internal units (reservoir), and L output units.

Figure 3.15 represents the basic architecture of an ESN. It should be noted that,

for the sake of simplicity and without loss of generality, there are neither feedback

connections from the output units to the internal units nor from the inputs to the

outputs. Activations of input, internal, output units at time step t are given as

(Jaeger, 2001):

u(t) = (u1(t), u2(t), . . . , uK(t)), (3.43)

x(t) = (x1(t), x2(t), . . . , xN(t)), (3.44)

y(t) = (y1(t), y2(t), . . . , yL(t)). (3.45)

In addition, there are three weight matrices, input-internal, internal-internal, and

internal-output, which are denoted by Win
N×K , Wres

N×N , and Wout
L×N , respectively.

Equation 3.46 and 3.47 formulate the update phase of the internal units and com-

pute the linear readout, respectively (Jaeger, 2001).

x(t+ 1) = f(Win · u(t+ 1) + Wres · x(t)), (3.46)

y(t+ 1) = Woutx(t+ 1). (3.47)

where f is the reservoir activation function. The two most popular and commonly

used reservoir activation functions are tanh and sig.
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As mentioned earlier, the elements of two matrices, Win and Wres, are fixed, with

random numbers from a uniform distribution assigned before the network starts

training. In ESN the Wres matrix is scaled as follows (Jaeger, 2001):

Wres ← α ·Wres

|λmax|
, (3.48)

where |λmax| is the spectral radius of Wres and 0 < α < 1 which should be fine-

tuned. To train the ESN, first the Wres is scaled by α, then the Wout, which is

the trainable part of ESN, is computed using a simple linear regression model as

follows:

y = XWout + ε, (3.49)

where

X = [x(l), x(l + 1), . . . , x(l +N − 1)]T,

y = [y(l), y(l + 1), . . . , y(l +N − 1)]T,

and l is the index of the first training sample since the first (l − 1) samples are

not considered valid. Such initial transient are “washed” out of the network by

not including these values in processing, ε is zero mean Gaussian noise, and N

is the size of training set. One possible way to solve Equation 3.49 is to use the

pseudoinverse,

Wout = X†y = (XTX)−1XTy. (3.50)

The pseudo inverse was also applied in Section 3.11 (ridge regression), and such

regularisation methods can be used to achieve good generalisation. Therefore,

Equation 3.50 can be rewritten as:

Wout = (λI + XTX)−1XTy, (3.51)

where λ is the regularisation parameter. It should be noted that a cross-validation

technique can be used to estimate λ. The details of cross validation technique can

be found in Friedman et al. (2001).
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3.13 Discussion

All the individual algorithms introduced in this chapter have some advantages and

disadvantages.

For example, SVM can approximate complex nonlinear functions and works very

well with small training set but it suffers from a slow training phase on large

training sets. This is due to the computation complexity of the matrices of kernel

values in the training phase. In addition, there is no direct SVM for multi-class

classification problem and two-class SVMs must be combined to deal with these

kinds of problems.

As an advantage, unlike many other algorithms, the KNN algorithm makes few

assumptions about the dataset. The only assumption is proximity, which means

similar instances (samples) should have similar labels. This method is also a

non-parametric approach, which means there is no need to fit a distribution to

the dataset. Downsides include in the situation of missing values, the algorithm

does not work is sensitive to outliers irrelevant attributes. Furthermore, the KNN

algorithm is computationally expensive because there is no learning phase for this

algorithm and the algorithm is just storing all the training instances and then

doing comparisons at the time of testing, which typically needs lots of storage and

time to do the comparisons. The rate of incorrect classification for this algorithm

on high dimensional problem is also high.

Naive Bayes classifier is one of the simplest algorithms to implement and it is also

easy to understand, however the main drawback of this method is the unrealistic

assumption of feature independence. Another problem is due to an imbalanced

dataset, which results in skewed probabilities (Rennie et al., 2003). To obtain

desirable results, and to be comparable with other algorithms, a large training set

should be used, which is sometimes impossible to collect in practice.

The main advantages of neural networks are the ability of this method to approx-

imate almost all nonlinear functions and its robustness to outliers. However, it is

sometimes difficult to fine-tune an algorithm and to avoid the overfitting problem.
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Finding the optimum topology of the network is not always a straightforward pro-

cess. Since neural networks require a lot of data for training, its training phase

takes a long time.

To overcome the shortcomings of single learning algorithms, and to make a robust

classification or time series forecasting algorithm, an ensemble approach is intro-

duced in Chapter 5 and Chapter 6 to develop fault classification and dissolved

gas forecasting algorithms. Figure 3.16 shows a generic diagram of an ensemble

learning model with N learners. Each learner is trained individually using input

X to estimate the function f such that minimize the error of the prediction. Then,

the outputs of all ensemble members are combined to make a decision. There are

several approaches to build and combine an ensemble (Polikar, 2006; Ren et al.,

2016).

Input

Learner 1

Learner 2

Learner n

Ensemble Combination Output

f1(x)

f2(x)

fn(x)

Ensemble 
learning

x

Figure 3.16: A generic diagram of an ensemble learning model.
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Chapter 4

Condition Assessment of
Transformers Load Tap Changers
Using Support Vector Machine

4.1 Overview

In this chapter, a single classifier is used to classify the faults of transformer load

tap changers using dissolved gas analysis. A SVM classifier is used to diagnose the

faults of transformer load tap changers. The results of the developed algorithms

are compared with a well-known transformer load tap changers fault diagnosis

technique called modified Duval Triangle, which is similar to the original Duval

Triangle technique discussed in Section 2.4.3.

4.2 Introduction

As mentioned in Section 2.3, one of the most widely used tests to diagnosis incip-

ient faults in transformer load tap changers (LTCs) is dissolved gas in oil analy-

sis (DGA). Several standards and diagnosing techniques (i.e. International Elec-

trotechnical Commision (IEC) 60599 (IEC, 2007) and Institute of Electrical and

Electronics Engineers (IEEE) C57.104 standards (IEEE, 2009)) have been devel-

oped to detect faults in transformers, but not specifically in oil-type LTCs. The
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main problem in applying these conventional methods for assessing the condition

of LTCs is due to the arcing in oil through the normal operation of load tap chang-

ers. The arcing tends to produce hydrocarbons in the oil such as hydrogen and

acetylene, which leads to incorrect diagnosing by these methods. Duval (2008)

proposed an alternative method for this purpose by developing the modified Du-

val Triangle method to diagnose faults in LTCs. In this chapter, one of the most

powerful machine learning algorithms for classification problems, called support

vector machine (SVM), is applied to the modified Duval Triangle method to clas-

sify LTCs faults. The developed algorithms are first trained using DGA samples

for LTCs and then the trained models are used for diagnosing LTCs faults on the

testing set. The main motivation for using SVM in this study was the size of the

DGA dataset. The DGA dataset for LTCs was not large enough to reliably train

an ANN to an acceptable degree of accuracy or to extract comprehensive rules

using fuzzy logic methods. So, because of the capability of the SVM in dealing

with classification problems with small training set, this method was chosen to

classify faults of LTCs.

4.3 Transformers load tap changers fault diag-

nosis

As mentioned in Section 2.4.3, one of the most commonly used conventional meth-

ods for diagnosing faults of transformers is the Duval Triangle method (Duval,

1974). A modified version of this technique for LTCs has been proposed in (Du-

val, 2008). This is also a visual technique for LTCs fault diagnosis using DGA.

Figure 4.1 shows the modified Triangle used for diagnosing faults and the dis-

tinct zones corresponding to each fault. Each Triangle coordinate is determined

as follows:

%CH4 =
x

x+ y + z
× 100, (4.1)

%C2H2 =
y

x+ y + z
× 100, (4.2)
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Figure 4.1: Modified Duval Triangle for LTCs (Duval, 2008).

%C2H4 =
z

x+ y + z
× 100, (4.3)

where x, y, and z are the amount of CH4, C2H2, and C2H4 in ppm, respectively.

Table 4.1 indicates the fault types corresponding to each zone. Four major fault

types can be diagnosed using this method, i.e., the discharge of low energy (D1),

the discharge of high energy (D2), and overheating (thermal faults) over two dif-

ferent temperature ranges: T2 (300 ◦C 6 T 6 700 ◦C) and T3 (T > 700 ◦C).

In this study, the DGA test results for LTCs have been extracted from (Duval,

2002). The distribution of the DGA samples across all the classes are given in

Table 4.2.

In this study, three different SVM structures are used to classify faults of trans-

formers LTCs. The two well-known (default) SVM modes, one-versus-one and

one-versus-all, are compared with a rather complicated method as shown in Fig-

ure 4.2. To identify the five states (normal, T3, T2, D1, and D2), four SVM
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Table 4.1: Fault zones and corresponding fault types in modified Duval Triangle
for LTCs.

Fault zone Fault type

N Normal operation

T3 Thermal fault (T > 700 ◦C), severe coking

T2 Thermal fault( 300 ◦C 6 T 6 700 ◦C), light coking

X3 Thermal faults (T3 and T2) are in progress, severe arcing (D2)

D1 Discharge of low energy

X1 Discharge of low energy (D1) and thermal fault are in progress

Table 4.2: Number of DGA samples for each fault class.

Fault types No fault Thermal (T2, T3, X3) Arcing (D1, D2, X3)

# of samples 6 31 16

classifiers are used in Figure 4.2. The order of tree based SVM method (Fig-

ure 4.2) for transformers LTCs fault diagnosis is inspired by conventional DGA

fault diagnosis methods. The implemented fault diagnosis algorithms using SVM

consists of six main steps, which are described as follows:

1. Normalization: All the DGA samples are first normalized to zero mean and

unit standards deviation.

2. Divide dataset : The DGA dataset is then divided into training and test set.

The test set is set aside and it is not used for anything except reporting the

accuracy of the models.

3. Select the best kernel function: As listed in Equation 3.18 (page 33), there are

four popular kernel functions. Since the Gaussian kernel function performed

a better classification task on the available dataset, this kernel was chosen

to be used in the SVM algorithms to classify faults of transformers LTCs.

4. Find the best parameters : There are two parameters in the SVM algorithms

that need to be fine tuned properly. It should be mentioned that all the

SVM algorithms are implemented in MATLAB 2016b using fitcsvm func-

tion which applies a heuristic procedure using subsampling to find the opti-

mum values for hyper-parameters. These are the C parameter in Equation
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DGA test results

Faulty states Normal operation

SVM1

SVM2

Arcing of low energy (D1) Other faulty states
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Thermal fault (T3) Thermal fault (T2)

Arcing of high energy (X3) Thermal faults

SVM4
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-1

-1

1

1

1

Figure 4.2: SVM classifiers for LTCs fault diagnosis.

3.6 (page 30) and the σ parameter of the Gaussian kernel function (Equa-

tion 3.18) are selected using a heuristic approach. The heuristic procedure

used here is very similar to Randomized Parameters Optimization in Python

scikit-learn package which uses a randomized search over feasible set of pa-

rameters (Pedregosa et al., 2011).

5. Train SVM algorithms : The SVM algorithms are trained using selected pa-

rameters on the training set.

6. Test SVM algorithms : Lastly, the trained SVM algorithms are examined on

the testing set and the classification accuracy are reported.

The aforementioned procedure is applied for one-versus-rest and one-versus-one

SVM algorithms and for training all four SVM classifiers in Figure 4.2. As illus-

trated, SVM1 is trained to diagnose the normal operation state from other faulty

states and the output of SVM1 is set to +1 for normal operation and -1 for other

cases. SVM2 and SVM3 are separately trained for diagnosing discharge of low and
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high energy classes, respectively. The output of these two SVMs are set to +1 for

D1 and D2 cases in SVM2, and SVM3 and -1, otherwise. SVM4 is also trained to

diagnose thermal faults of T2 from T3 in a similar way.

4.4 Comparison of different SVM models

Fifteen DGA samples of LTCs, which are given in Table 4.3, were considered as

a testing set. In the following, the capability of the four SVMs in Figure 4.2 for

classifying faults of these samples is investigated.

Table 4.3: The actual value of dissolved gas samples as testing set.

No. Actual fault
Dissolved gases [ppm]

H2 CH4 C2H4 C2H2 C2H6

1 No fault 1215 5386 6400 35420 963

2 No fault 43 8 11 61 2

3 Low energy arcing 1084 188 166 769 8

4 Low energy arcing 47 12 17 144 31

5 Low energy arcing 1317 608 2278 8739 841

6 High energy arcing 391 164 293 736 14

7 High energy arcing 9083 3279 9606 8527 1136

9 Thermal fault T2 69 450 329 41 137

10 Thermal fault T2 859 843 3574 5155 843

11 Thermal fault T3 591 6088 11433 193 2626

12 Thermal fault T3 1312 39981 120319 774 35146

13 Thermal fault T3 19700 117000 142000 3490 44600

14 Thermal fault T3 217 749 1754 33 171

15 Thermal fault T3 2217 53434 235024 1633 55535

All SVMs were tested for classifying different classes and the output of the clas-

sifiers are summarised in Table 4.4. SVM1 was tested for diagnosing the normal

operation cases from other faulty ones. This classifier (SVM1) was able to diag-

nose all the normal cases correctly, and these instances are represented by 1 in the

output pattern of the algorithm. However, there is one false positive case where
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Table 4.4: Outputs of four SVM classifiers on testing set.

Fault type Output pattern of SVM classifiers DCa DIb NDc

Normal SVM1=[1 1 -1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1] 2 1 0

D1 SVM2=[1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1] 2 0 1

D2 SVM3=[1 1 1 1 -1 -1 -1 -1 -1 -1] 4 0 0

T3 SVM4=[1 1 1 1 -1 -1] 4 0 0

aDiagnosed correctly
bDiagnosed incorrectly
cNot diagnosed

a low energy arcing (D1) faulty case was classified incorrectly as a normal opera-

tion case. Further investigation revealed that this sample is actually located very

close to the D1 fault zone on the Duval Triangle and this misclassification may be

addressed by using a larger training set, which leads to a more accurate decision

boundary. Figure 4.3 graphically shows the Duval triangle fault diagnosis on the

testing set. As is clear from Figure 4.3, the misclassified case in SVM1 (case 5)

lies very close to the boundary between D1 and normal zones.

SVM2 classifies the low energy arcing (D1) from other faulty cases. As it is shown

in Table 4.4, there is only one case which is not diagnosed correctly as D1. This is

the case number 6 on Figure 4.3, which is very close to the normal operation zone

and SVM2 was not able to classify it correctly.

SVM3 was tested to diagnose high energy discharge (D2) cases and the output pat-

tern of this classifier in Table 4.4 shows a successful fault classification. The output

of SVM4 for diagnosing thermal faults of T2 and T3 confirms that a successful

fault classification of these two classes can be obtained by using this classifier.

Table 4.5 compares the overall classification performance of transformers LTCs

using different SVM models with the modified Duval Triangle technique. The

classification accuracy is calculated as:

Accuracy =
TP + TN

Number of test samples
, (4.4)
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Figure 4.3: Graphical representation of the testing dataset on the Duval triangle.
It should be noted that sample 8 is for a LTC with large numbers of operations
resulting in a severe hot spot.

Table 4.5: Comparison between classification accuracy of SVM models and the
modified Duval Triangle method.

Method Overall classification accuracy (%)

Modified Duval triangle 73.33

Tree based SVM 86.67

one-versus-all SVM 90.67

one-versus-one SVM 80

where TP and TN are the number of true positives and true negatives respectively,

which represent the capability of the classifier in correctly classifying DGA samples

either they belong to the “positive” class or the “negative” class.

As given in Table 4.5, all the developed algorithms outperform the Modified Duval

triangle technique. The one-versus-all SVM fault diagnosis method shows a higher

classification accuracy compared to other SVM structures. The main shortcoming

of the Duval Triangle technique to diagnose transformers LTCs is in diagnosing

normal operation from low energy discharge cases (D1) (Figure 4.1), which has the
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maximum error in diagnosing D1 fault class. In addition, Figure 4.3 shows that

the D1 zone on the triangle is small and very close to the normal operation zone,

which results in misclassification between D1 and Normal fault classes.

4.5 Summary and discussion

In this chapter, a statistical method, which is called support vector machine

(SVM), has been used to diagnose faults of transformers load tap changers, in-

telligently. First, the algorithm was trained by a training dataset based on the

modified Duval Triangle method and then the algorithm was tested using a sep-

arate dataset. The numerical results show the capability of the SVM to improve

the interpretation accuracy, compared with traditional methods. Fault diagnosis

of transformer LTCs using DGA depends on various factors, such as type of LTCs

and other environmental conditions, and it may be different from utility to utility.

So, applying intelligent methods such as SVM can be a reliable method to improve

the accuracy of applied diagnostic techniques.

Although, the fault classification accuracy of the simple proposed algorithms dis-

cussed here showed some improvements over other conventional techniques, there

are still some questions which needed to be further investigated, namely:

• What if we have a large noisy/imbalanced dataset?

• How can the proposed model be effectively generalised to deal with a new

dataset?

• Is it possible to select the best learning algorithm among the various statis-

tical and machine learning algorithms to achieve optimal results?

One of the most popular approaches to achieve high accuracy within a generalised

learning system is Ensemble Learning (EL). Ensemble learning enables us to take

advantage of using different learning algorithms and to create a more accurate and

reliable learning model. There are some very well known ensemble learning algo-

rithms such as Random Forests and AdaBoost. In this research, an evolutionary
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multi-objective ensemble learning approach was developed to overcome the short-

comings of a single learning algorithm. In the next two chapters, the details of

the two developed EL algorithms for fault classification and time series forecasting

with an application to power transformers are presented.
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Chapter 5

Evolutionary Multi-Objective
Fault Diagnosis of Power
Transformers

5.1 Overview

In this chapter a two step algorithm for fault diagnosis of power transformers (2-

ADOPT) is introduced using a binary version of the multi-objective particle swarm

optimization (MOPSO) algorithm. Feature subset selection and ensemble classi-

fier selection are implemented to improve the diagnosing accuracy for dissolved

gas analysis (DGA) of power transformers. First, the proposed method selects the

most effective features in a multi objective framework and the optimum number

of features, simultaneously, which are used as inputs to train classifiers in the next

step. The input features are composed of DGA performed on the oil of power

transformers along with the various ratios of these gases. In the second step, the

most accurate and diverse classifiers are selected to create a classifier ensemble.

Finally, the outputs of selected classifiers are combined using the Dempster-Shafer

combination rule in order to determine the actual faults of power transformers.

In addition, the obtained results of the proposed method are compared to five

other scenarios: 1) multi-objective ensemble classifier selection without any fea-

ture selection step which takes all the features to train classifiers and then applies

MOPSO algorithm to find the best ensemble of classifiers, 2 & 3) a well-known
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classifier ensemble technique called random forests with standard axis align de-

cision tree splits and KNN as the weak classifiers, 4) another powerful decision

tree ensemble which is called oblique random forests, and 5) an ensemble method

called AdaBoost with decision stumps as the weak classifier. The comparison re-

sults were favourable to the proposed method and showed the high reliability of

this method for power transformers fault classification.

5.2 Introduction

Currently, most electricity companies rely on expert individuals to analyse data

gathered from transformers and to make a decision about the status of their trans-

formers using conventional methods. This can be difficult when the experts con-

cerned are unavailable. Besides, conventional methods are sometimes unable to

generate comprehensive results. Thus, we are developing an intelligent fault diag-

nosing system that will help electricity companies manage their transformer fleet

intelligently (Peimankar and Lapthorn, 2015).

Up to now, most power transformers fault diagnosis and condition assessment mod-

els have placed emphasis on single classification algorithms (learning algorithms).

Ganyun et al. (Ganyun et al., 2005) used a multi-layer support vector machine

(SVM), that consists of three SVM classifiers, to diagnose faults of transformers

using the relative content of the five dissolved gases, plus the amount of the most

abundant gas, as an input feature vector. Fei et al. (wei Fei and bin Zhang,

2009) proposed a Genetic Algorithm (GA)-based SVM to detect faults of power

transformers, which can tune the parameters of a support vector machine. In (wei

Fei and bin Zhang, 2009) and (wei Fei et al., 2009) the possibility of forecasting

the ratios of dissolved gases has been studied by applying GA-based SVM and

PSO-based SVM, respectively. These two studies can enhance the reliability of

transformers by providing useful information about the rate of failures in a short

and medium period of time. Illias et al. (Illias et al., 2015) proposed a successful

PSO based artificial neural network algorithm to diagnose faults of transformers

based on DGA. In another study, Illias et al. (Illias et al., 2016) implemented an

artificial neural network based method for classifying faults of transformers called
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hybrid modified evolutionary particle swarm optimization-time varying accelera-

tion coefficient-artificial neural network (MEPSO-TVAC-ANN). In this study, they

modified the particle swarm optimization algorithm to achieve a better searching

behavior. Souahila et al. (Souahlia et al., 2012) developed a fault diagnosis algo-

rithm using a multi-layer perceptron artificial neural network. They applied a cross

validation (Golub et al., 1979) technique to determine the parameters of the model

using the value of dissolved gases as inputs. In (Wang et al., 1999) the authors

combined a feedforward neural network with an expert system to diagnose the

fault of power transformers. They have implemented a two level detection system

in which they first classified normal/abnormal cases, and then diagnosed the faults

of abnormal transformers. Prior to this, Lin et al. (Lin et al., 1993) had developed

a rule-based expert system using fuzzy logic. Another research using fuzzy logic

technique for fault diagnosis of power transformers is reported in (Su et al., 2000),

which defines several fuzzy rules corresponding to each fault class. In (Guardado

et al., 2001) a neural network was trained using five different set of ratios of DGA

as input features. Each network was trained twice with two different number of

neurons in the hidden layer. Flores et al. (Flores et al., 2011) designed an expert

system for fault diagnosis of power transformers using type-2 fuzzy logic systems.

In their algorithm, besides the value of dissolved gases, the oil chemical characteris-

tics are also considered as inputs to achieve more comprehensive knowledge about

the status of the transformer. Ma et al. (Ma et al., 2015) developed a multi-agent

system to monitor and assess the condition of transformers. Their study reported

that an SVM classifier has better interpretation accuracy for DGA of power trans-

formers, compared to a radial basis function network. Ashkezari et al. (Ashkezari

et al., 2014) investigated the effect of feature selection techniques on improving

the classification accuracy of an SVM. Two different feature selection techniques,

called correlation based and minimum-redundancy-maximum-relevance, were used

to select the most correlated features and assign a health index to each transformer

using SVM.

All of the aforementioned works implemented a single objective framework to di-

agnose faults of power transformers. Although the aforementioned diagnosing

algorithms have been well trained, there are still some questions that need to be

65



investigation such as: 1) How the diagnosing algorithm can be generalized to deal

with a new dataset, and 2) how can we choose the most accurate classification

algorithm which results in maximizing the accuracy?. The purpose of this chapter

is to develop an intelligent multi objective framework using machine learning tech-

niques to design a reliable fault diagnosis system that will overcome inaccuracies

and uncertainties that exist in conventional diagnosis methodologies.

In machine learning, feature selection techniques are commonly used for dimen-

sionality reduction and finding the most relevant features in order to enhance clas-

sification capability (Liu and Motoda, 2007). They have been used in a wide range

of real-world applications such as biomedical studies (Mohapatra et al., 2016), face

recognition (Panda et al., 2011), and medicine (Bellazzi and Zupan, 2008). In re-

cent years, evolutionary algorithms (EA) have been of great interest to researchers

for use as a search algorithm to find the best subset of features in feature selection

problems (Alba et al., 2007). Traditionally, most of the feature subset selection

approaches use a single objective search algorithm (Li et al., 2004). In this chap-

ter, feature selection is dealt with as a multi-objective optimization problem (Deb,

2001). There is not a single solution for a multi-objective optimization problem

that could optimize all objectives simultaneously. Therefore, in multi-objective op-

timization problems the strategy is not finding an optimal solution but selecting

efficient solutions which are called non-dominated solutions in the objective space.

Non-dominant solutions have superior performance in all objectives over all other

solutions. A single non-dominated solution can be found in each simulation run

of a multi-objective algorithm. Since it is desired to find several non-dominated

solutions in each run, population-based EAs is one of the best choices for solving

multi-objective optimization problems.

Particle swarm optimization (PSO) is categorised as a population-based meta-

heuristic algorithm developed by Kennedy and Eberhart (Eberhart and Kennedy,

1995). Generally, swarm intelligence predicates agents that are not able to han-

dle a problem individually and try to achieve a unique goal in a swarm. Unlike

other evolutionary algorithms, such as the genetic algorithm (GA) (Goldberg and

Holland, 1988) and the Ant Colony Optimization algorithm (ACO) (Dorigo and

Gambardella, 1997), the mechanism of PSO gives the ability to make a well-balance
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between local and global optima to achieve an efficient exploration and exploita-

tion in shorter computation time compared to its counterparts. However, one of

the drawbacks of PSO is the high sensitivity of this algorithm in terms of pa-

rameters, which need to be fine tuned. Some research was done to address this

problem and to suggest a way for a better convergence of PSO algorithm (Ghosh

et al., 2012; Jiang et al., 2007; van den Bergh and Engelbrecht, 2006). However,

the single objective PSO algorithm has been successfully applied in power systems

engineering applications (Chaturvedi et al., 2008), fault diagnosis (Chenglin et al.,

2011), and reliability engineering (Nieto et al., 2015).

A multi-objective version of PSO, named MOPSO, has been applied to multi-

objective optimization problems Coello and Lechuga (2002). In a subsequent study,

an archive based MOPSO is introduced by Coello et al. (2004) in 2004. This algo-

rithm is inspired by a traditional PSO algorithm (Eberhart and Kennedy, 1995) to

deal with multi-objective problems. Since its introduction, the literature continues

to show MOPSO improvements which handle multi-objective problems (Elhossini

et al., 2010; Leong and Yen, 2008; Mostaghim and Teich, 2003, 2004; Tripathi et al.,

2007; Wang and Yang, 2009; Zhao and Suganthan, 2011). The MOPSO algorithm

has shown competitive performance in multi-objective optimization problems com-

pared to the non-dominated sorting genetic algorithm (Deb et al., 2002b), which

is a multi-objective version of GA, multi-objective evolutionary algorithm based

on decomposition (Zhang and Li, 2007), and the strength Pareto evolutionary

algorithm (Zitzler et al., 2001).

In the first phase of the proposed method (2-ADOPT), the multi-objective PSO

selects the best subset of features corresponding to each fault class of power trans-

former. Then, in the second stage, advantage is taken of ensemble learning sys-

tems to classify actual faults of transformers. Using ensemble learning increases

the chance of selecting more accurate classifiers by avoiding selection of a single

weak classifier (Polikar, 2006). Ensemble learning systems are frequently used for

decision making in various applications, such as financial (West and Qian, 2005),

biomedical (Shi and Qian, 2011), and power engineering (Abraham and Das, 2010;

Hu et al., 2012; Peimankar et al., 2016). Generally, all ensemble learning systems

consist of three main steps (Polikar, 2006):
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1. Sampling from a dataset to make a training set,

2. training a group of classifiers,

3. combining the output of classifiers.

There are five major techniques for classifier selection which are: i) Classifier Fu-

sion, ii) Static Classifier Selection (Kuncheva et al., 2000), iii) Static Ensemble

Selection (Yang, 2011), iv) Dynamic Classifier Ensemble (Woods et al., 1996),

and v) Dynamic Ensemble Selection (Ko et al., 2008). In this chapter a Static

Ensemble Selection approach using the MOPSO algorithm is applied to diagnose

faults of power transformers. To classify faults of transformers, two criteria are

considered to design a diverse classifier ensemble to classify faults of transformers.

First, three types of neural networks (NN) as unstable classifiers, which can define

different decision boundaries by selecting different parameters, are used in the en-

semble (Brown et al., 2005a). Second, different classifiers are used as base learners,

which are Support Vector Machine (SVM) (Cortes and Vapnik, 1995), Fuzzy K-

Nearest Neighbour (FKNN) (Keller et al., 1985), Naive Bayes (NB) (Rish, 2001),

Kernel Ridge Regression Classifier (KRIDGE) (Murphy, 2012), Random Vector

Functional Link (RVFL) (Pao et al., 1992b, 1994; Zhang and Suganthan, 2016b)

, Cascade-forward Neural Network (CFNN) and Feed-forward Neural Network

(FFNN) (Hornik et al., 1989). Each of these unique classifiers is trained with

different parameter settings and training functions. The ensemble is therefore

composed of thirty classifiers. A list of classifiers used in this research is given in

section 5.3.2. In addition, Dempster-Shafer theory is used as a combination rule

for combining the outputs of the classifiers.

The remainder of this chapter consists of 9 sections. In section 5.3, feature subset

selection and ensemble classifier selection using MOPSO are explained. Pareto

optimality in multi-objective optimization and MOPSO algorithm are explained

in section 5.4 and section 5.5, respectively. Section 5.6 gives a brief explanation

about Dempster-Shafer theory for combining outputs of classifiers. The two phase

proposed method for diagnosing faults of power transformers is introduced in sec-

tion 5.7. Common performance metrics to evaluate binary classification are listed
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in section 5.8. Section 5.9 presents experimental results, and lastly, Section 5.10

provides a summary of this chapter.

5.3 Multi-objective feature subset selection and

ensemble classifier selection

5.3.1 Feature subset selection

Fourteen different features (dissolved gases and their ratios) are defined to clas-

sify a fault in transformers, which are listed in Table 5.1. The solutions to each

multi-objective feature subset selection are binary vectors whose lengths equal the

number of features. Figure 5.1 shows an arbitrary particle in which the selected

features are shown with 1’s, while 0’s represents the corresponding features are

not selected.

Table 5.1: Feature used for fault diagnosis of power transformers.

Features # Dissolved gases and ratios

F1-F5 H2
a CH4 C2H4 C2H6 C2H2

F6-F10 C2H2/C2H4 CH4/H2 C2H4/C2H6 C2H6/C2H2 C2H2/CH4

F11-F13 CH4/TGCb C2H4/TGC C2H2/TGC

F14 H2+CH4+C2H4+C2H6+C2H2

aall gas values are in [ppm]
b(TGC = CH4+C2H4+C2H2)

In multi-objective feature subset selection, we try to minimse the error of fault

classification by selecting the best subset and the optimum number of features. In

order to calculate a reliable error estimation, a 5-fold cross validation technique

is applied. The details of the cross validation technique can be found in (Polikar,

2006). Generally, the classification ability can be measured by a fitness function

which is defined as follows:

Fitness =
1

k

k∑

i=1

(
1

n

n∑

j=1

(ŷij − yij)2), (5.1)
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Figure 5.1: An example of a particle for feature subset selection in MOPSO. The
1’s represent the corresponding selected features.

where k is the number of folds for cross validation, n is the number of samples, ŷ

is the target value for each sample, and y is the binary output of the diagnosing

algorithm.

The multi-objective feature subset selection model is

Minimize Err = (ωtr · Fitnesstr) + [(1− ωtr) · Fitnessval], (5.2)

Minimize Nf , (5.3)

where ωtr is a weighting factor for training set in cross validation and is set to 0.8

here. It should be noted that to achieve a reliable weighted fitness function, ωtr

should be at least equal to 0.63. The term Fitnesstr gives the classification error

on the training set, Fitnessval refers to the classification error on the validating

set, and Nf is the number of selected features. Equation 5.2 is applied to minimize

the classification error on the selected subset of features. Equation 5.3 is applied

to minimize the number of selected features to reduce the complexity of the fault

diagnosing system.

5.3.2 Ensemble classifier selection

Thirty different classification algorithms have been used to classify faults of trans-

formers . A list of the classification algorithms used to create a diverse classifier
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Table 5.2: The list of the classifiers used in the ensemble.

No. Classifier Description

1-6 FFNN Feedforward neural network classifiers trained using Levenberg-
Marquardt, scaled conjugate gradient, and Bayesian regularization op-
timization algorithm with 10 and 20 hidden layer size.

7-12 CFNN Cascade-forward neural network classifiers trained using Levenberg-
Marquardt, scaled conjugate gradient, and Bayesian regularization op-
timization algorithm with 10 and 20 hidden layer size.

13, 14, and 15 SVM Support vector machine classifiers with radial basis, linear and polynomial
kernel functions. The kernel scale parameters are selected using a heuristic
approach during the training step of classifiers.

16, 17, and 18 FKNN Fuzzy K-nearest neighbours classifiers trained using 2, 5, and 10 nearest
neighbours parameters, respectively.

19 NB Naive Bayes classifier with standard normal kernel density function and
a probability density function.

20-22 KRIDGE Kernel Ridge Regression classifier with radial basis, polynomial, and linear
kernel functions.

23-30 RVFL Random Vector Functional Link classifier trained using “sigmoid” and
“hardlim” activation functions and with Moore-Penrose pseudoinverse
and ridge regression for computing of the output weights. Each network is
also trained with direct link from input to output layer and with/without
bias in the output layer (Zhang and Suganthan, 2016a).

ensemble is given in Table 5.2. Each of these classifiers is trained with the selected

input features from the feature selection phase.

In a multi-objective ensemble learning system the best group of classifiers is se-

lected based on two important factors, which are considered as objective functions.

One is selecting diverse classifiers and the second factor is accuracy (correct classi-

fication rate) which also needs to be taken into account to achieve a more accurate

ensemble selection (Ren et al., 2016).

There are two different approaches to measure the diversity of the selected classi-

fiers: pairwise and non-pairwise (Kuncheva and Whitaker, 2003). In this study, a

pairwise measure is used which is called Q-statistic and is calculated by Equation

5.4 (Kuncheva and Whitaker, 2003):

Qij =
(tt)(ff)− (tf)(ft)

(tt)(ff) + (tf)(ft)
, (5.4)

where tt is the number of correctly classified samples by the pair of classifiers i

and j ; ff is the number of incorrectly classified samples by the pair of classifiers
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i and j ; tf is the portion of dataset correctly classified by the ith classifier and

incorrectly classified by the j th classifier; ft is the reverse of tf. The range of

this Q-statistic measure is between -1 and 1. The lower the measure, the better

the diversity is. The value of Q-statistic measure is equal to 0 for statistically

independent classifiers. It should be noted that the Q-statistic measure is positive

if an instance is classified into the same class (Kuncheva and Whitaker, 2003).

To achieve a reliable error estimation and, consequently, an accurate model, a

5-fold cross validation is also applied in the ensemble classifier selection stage.

Therefore, all 30 classifiers are trained with the selected non-dominated subset of

features corresponding to each fault class using 5-fold cross validation.

The multi-objective ensemble classifier selection model is to:

Minimize Fitnesstr =
1

k

∑k
i=1(

1

n

∑n
j=1(ŷtr − ytr)2), (5.5)

Maximize Div = exp(
2

L(L− 1)

∑L−1
i=1

∑L
j=i+1Qij), L ≥ 2, (5.6)

where k is the number of folds for cross validation, n is the number of training

samples, ŷtr is the target value for each training sample, and ytr is the binary

output of the diagnosing algorithm, L is the number of selected classifiers by multi-

objective ensemble classifier selection algorithm and Qij is calculated by Equation

5.4. Equation 5.5 is applied to minimize the classification error on training set.

Equation 5.6 (Kuncheva and Whitaker, 2003) is applied to maximize the diversity

measure of the selected group of classifiers. Note that the number of selected

classifiers (L) should be always greater than 1. The procedure of the proposed

algorithm is discussed in section 5.7 in detail.

5.4 Pareto optimality in multi-objective optimiza-

tion

Pareto optimality (efficiency) is the most important concept in multi-objective

optimization (Jin and Sendhoff, 2008). Therefore, it is necessary to introduce

Pareto optimality briefly before presenting the multi-objective framework for fault

diagnosing of power transformers.
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Mathematically, a multi-objective optimization problem with P objectives and N

constraints can be formulated as follows (Coello et al., 2004; Deb, 2001; Zitzler

and Thiele, 1999):

Minimize H(x) = [h1(x), h2(x), . . . , hP (x)]T , (5.7)

s.t. gn(x) ≤ 0, n = 1, 2, . . . , N, (5.8)

where x is a m-dimensional decision variable vector from a feasible region, H(x)

is the vector of P objective functions, and gn(x) are the N inequality constraints.

Objective functions may be any linear or nonlinear function.

In almost all multi-objective optimization problems, multiple objectives are in con-

flict. To satisfy the contradiction between the objectives, multi-objective optimiza-

tion problems determine Pareto optimal solutions which are called non-dominated

solutions (efficient solutions). To clarify the concepts of dominance and Pareto

optimality, they are mathematically defined for a minimization problem as follows

(Deb, 2001; Zitzler and Thiele, 1999):

• Dominance: A vector u = (u1, u2, . . . , uL) is said to dominate vector v =

(v1, v2, . . . , vL) (denoted by u � v) if and only if ∀i ∈ {1, 2, . . . L}, ui ≤
vi ∧ ∃i ∈ {1, 2, . . . L} : ui < vi.

• Pareto optimal : A solution x∗ ∈ Θ is said to be a Pareto optimal (non-

dominate solution) if and only if there is no x ∈ Θ for which H(x) =

[h1(x), h2(x), . . . , hP (x)] dominates H(x∗) = [h1(x∗), h2(x∗), . . . , hP (x∗)]

Figure 5.2 graphically represented the Pareto solutions for an arbitrary multi-

objective optimization problem which belongs to two different Pareto sets (1 and

2). Solution P23 is not dominated by any other members of both Pareto sets. Thus,

P11, P12, P23, and P13 are the Pereto optimal solutions (non-dominated solution)

on the Pareto front.
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Figure 5.2: An example of a Pareto front.

5.5 Multi-objective PSO optimization

To implement a multi-objective feature subset selection and ensemble classifier

selection, a MOPSO algorithm is used in the proposed power transformer fault

diagnosis system. Understanding MOPSO requires some background about the

PSO algorithm. In the PSO algorithm, each particle represents a possible solution

for an optimization problem and every movement of the particles towards a new

position within a defined space could be a new solution. In each iteration the

PSO algorithm is updated, based on 3 rules: 1) continue in the same direction of

the latest movement (inertia term); 2) move towards the best personal solution

(nostalgia term); and 3) move towards the best solution which has been found

so far by all the particles (global best). These three rules used for updating the

position of the particles in PSO are formulated as follows (Kennedy, 2011):

vi (k) =

inertia term︷ ︸︸ ︷
ω · vi (k − 1) +

nostalgia term︷ ︸︸ ︷
c1 · r1 · (xpbesti − xi(k)) +

global term︷ ︸︸ ︷
c2 · r2 · (xgbesti − xi(k)),(5.9)

xi (k) = xi (k − 1) + vi (k) , (5.10)
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where ω is the inertia weight, xpbesti is the best position that particle xi has

experienced so far, xgbesti is the position of the best particle among the swarm, r1

and r2 are two uniformly distributed random numbers in the range of [0,1], and c1

and c2 are the learning factors to control the effect of nostalgia and global terms,

respectively. In this study c1 = c2 = 2 and ω = 0.8 (Shi et al., 2001).

The general pseudo-code for PSO can be described as follows:

• Initialise the position and the velocity of the swarm.

• Select the best particle (xgbest) among the swarm as leader.

• Repeat the following steps while the terminate criteria has not been reached.

– Update velocity (Equation 5.9).

– Update position (Equation 5.10).

– Find new xpbest for each particle.

– Find new xgbest (leader).

– Evaluate fitness function.

• Report the best found particle as an optimum solution for the problem.

The main difference between PSO and MOPSO algorithms is the global best con-

cept. However instead of using global best, in the MOPSO algorithm, a repository

(“hall of fame”) (Engelbrecht, 2007) is defined, which stores an archive of the

non-dominated solutions. The repository also approximates the best Pareto opti-

mal (Alvarez-Benitez et al., 2005). So, unlike the PSO algorithm, the global best

is not unique and particles can select members from the repository as a leader

without any preferences, since they are all non-dominated solutions. Although

this approach is simple to implement, it may decrease the convergence rate of

the algorithm. To tackle this problem, a region-based selection system (Coello

and Lechuga, 2002; Coello et al., 2004; Knowles and Corne, 2000) is used which

divides the search space into several subregions. Then, the least number of non-

dominated solutions in a subregion, the more likely the global best is selected from

that subregion. This selection approach helps to increase the diversity in selecting
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non-dominated solutions as a global best. The region-based selection is performed

in the following way:

ni ≤ nj ⇔ Pi ≥ Pj, (5.11)

s.t. Pk =
exp(−βnk)∑

k

(exp(−βnk))
, k = 1, 2, . . . , K (5.12)

where ni and nj are the number of non-dominated solutions in the ith and jth

subregion, respectively, Pi and Pj are the selection probabilities of the ith and jth

subregion, K is the number of subregions, and β is called the selection pressure

parameter. The larger the β, the higher the diversity of selecting the leader (global

best) is. Note that if there is more than one non-dominated solution in the selected

subregion, one of them is randomly selected as the global best.

The fast speed of convergence is one of the main advantages of the PSO algorithm.

So, in order to avoid a premature convergence and, consequently, selecting a false

Pareto optimal, a mutation operator was implemented that has been described in

(Coello et al., 2004) in detail.

The pseudo-code of the MOPSO algorithm used in this research is shown in Algo-

rithm 1. First, each particles position and velocity are randomly initialised. The

first Pareto optimal set is created from the non-dominated particles. Then, each

particle selects a leader (global best) using region-based selection and the position

and velocity of each particle are updated using Equation 5.10 and Equation 5.9. In

addition, the mutation operator is applied. After the mutation, the pbest of each

particle is checked whether it is dominated by the mutated or new particles. The

non-dominated particles are added to the Pareto optimal set. To avoid exceeding

the predetermined size of the repository (Pareto optimal set), only non-dominated

leaders are kept. Obviously, the size of subregions is updated, too. In line 1 of the

MOPSO algorithm (Algorithm 1) some parameters need to be set. These are as

follows:

• nPop; population size,
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• MaxIt ; maximum number of iteration,

• nRep; repository size,

• µ; mutation rate,

• β; leader selection pressure,

• nRegion; number of subregions,

• c1 and c2; learning factor (coefficient),

• ω; inertia weight.

Algorithm 1: MOPSO algorithm.

1 Set the values of MOPSO parameters
2 Initialize the position and velocity of the swarm
3 Evaluate objective values on initialized particles
4 Select non-dominated solutions as leader gbest
5 for it← 0 to MaxIt do
6 for n← 0 to nPop do
7 Select a leader for particle n
8 Update the velocity and position of particle n
9 Apply mutation on particles’ position

10 end
11 Evaluate objective values
12 Add non-dominated particles to the repository
13 Determine domination of new repository members
14 Keep only non-dominated members in the repository
15 Remove members from occupied sub-region if repository is full (nRep)

16 end
17 Report Pareto optimal set (non-dominated solutions)

5.6 Dempster-Shafer combination rule

In order to determine the degree of certainty of the proposed fault classification

method, the outputs of the classifier ensemble need to be combined. The best
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approach is to achieve a single probability value that shows how likely the fault

occurs inside the transformers.

The Dempster-Shafer theory (DST) is a powerful method for combining informa-

tion from different sources, which is an extension of Bayesian inference (Shafer

et al., 1976). One advantage of this method is the capability of capturing and

combining whatever certainty exists in the information sources (Klein, 2004). An

overview of DST is briefly given here.

There are three main functions in DST: a mass probability function (m), a belief

function (Bel), and a plausibility function (Pl). The mass probability function is

the most important function in the DST as the rule of combination, which meets

the following conditions (Klein, 2004):

m : 2X → [0, 1] ,

m (∅) = 0,
∑

A⊆X
m(A) = 1, (5.13)

where X is the universal set and ∅ is the empty set. For this application, the

universal (X) is X = {No fault, partial discharge, energy discharge, overheating

fault}.

DST is able to combine independent evidences (mass probability functions), m1

and m2, to produce more informative evidence, which is shown by m1

⊕
m2 and

is calculated as follows:

(m1

⊕
m2)(A) =

1

1−K
∑

B∩C=A 6=∅
m1(B) ·m2(C),

where K =
∑

B∩C=∅
m1(B)m2(C). (5.14)

It should be noted that the outputs of the classification algorithms used in the

2-ADOPT algorithm (described in the following sections) are types of normalised

mass functions between 0 and 1, so it is possible to consider them as mass proba-

bility functions.
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5.7 Two phase MOPSO transformer fault diag-

nosis framework

Figure 5.3 shows the flowchart of the proposed fault classification method, which

consists of two main phases (feature subset selection and ensemble classifier selec-

tion). The proposed framework utilizes the advantages of a MOPSO algorithm to

select the best subset of features in the first phase. The non-dominated solutions

of the first phase, which are the best selected features corresponding to each fault

class, are considered as inputs to train the classifiers in the second phase. Then,

in the second phase of 2-ADOPT, the MOPSO algorithm is used again to select

the most accurate and diverse group of classifiers.

2-ADOPT algorithm is described in ten main steps as follows:

1. Normalization: All input features are first normalized to zero mean and unit

standard deviation.

2. Separate the testing set from a non-testing set : The DGA dataset is randomly

divided into two sets; a non-testing dataset to train and validate the model,

and a testing dataset to test the proposed model.

3. Create a synthetic dataset : Since transformers are well-maintained during

their operation the fault rate of these assets is generally low. Thus, la-

belled data for training the classification algorithms are not sufficient for

some classes. So, the probability of biased classification using this imbal-

anced dataset increases, which in turns leads to a higher error rate on the

minority fault classes (He et al., 2008). To tackle an imbalanced dataset,

adaptive synthetic over-sampling technique (ADASYN) is applied to enable

the classification algorithms to achieve their desirable performance He et al.

(2008). The ADASYN algorithm comprises three major steps: i) compute

the degree of class imbalance to calculate the number of synthetic samples

for the minority class; ii) calculate Euclidean distance to find the K nearest

neighbours in a minority class; and iii) generate the synthetic dataset for the

minority class by Equation 5.15.

di = xi + (xki − xi)× λ, (5.15)
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Figure 5.3: Flowchart of 2-ADOPT.

where xi is a minority sample, xki is a randomly chosen sample from the

determined K nearest neighbors, and λ is a random number in the range of

[0, 1].

4. Cross validation: A 5-fold cross validation is performed to estimate a reliable

error for the model.

5. Using MOPSO to find non-dominated solutions for the first phase (FSS-

MOPSO): In this step, as described in section 5.3.1 a multi-objective feature

subset selection is applied using MOPSO.
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6. Train all classifiers using selected features : From this step, the second phase

of the algorithm starts. In each iteration, all the classifiers are trained with

the selected non-dominated feature vectors on the Pareto optimal set (repos-

itory) of the first phase. Then, the MOPSO algorithm is called to select the

most accurate and diverse group of classifiers. This procedure is repeated

for all non-dominated selected input feature vectors.

7. Use MOPSO to select the best group of classifiers (ECS-MOPSO): Following

the multi-objective ensemble classifier selection approach in Section 5.3.2,

the use of MOPSO enables us to find the most accurate and diverse group

of classifiers.

8. Evaluate the best selected solutions on the validation set : In this step, all

non-dominated solutions on the Pareto optimal set for the ensemble classifier

selection phase are tested on the validation set to rank them. Then, the non-

dominated solution with the highest performance within the validation set

is selected.

9. Examine the best solution within the testing set : So far, a group of the best

classifiers have been selected. In this step, the test set is provided to each

selected classifier to make predictions. The outputs of the classifiers on the

test samples are actually assigned probabilities corresponding to each fault

class. As an example, assume two classifiers have been selected and they

have assigned probabilities of 0.9 and 0.85 to the test sample number one

to be a NF class, respectively. Now, these two assigned probabilities should

be combined to make a final prediction on this test sample (# 1) using a

combination method, which is explained in the next step.

10. Combine the outputs of the classifiers : The DST is used to combine the

assigned probabilities to each test sample as described in Section 5.6. For

instance, in the example of Step 9, the two assigned probabilities to the

test sample number one are combined using Equation 5.14. Therefore, the

final prediction of the 2-ADOPT algorithm for this test sample is NF class

with the probability of 0.981. This procedure is repeated to compute the

prediction probabilities of all samples in the test set.
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Figure 5.4: Schematic diagram of a generic power transformer fault diagnosis
system.

The proposed method is applied for all four fault classes as illustrated in Figure

5.4. Performing the two phase multi-objective fault diagnosis method for each class

separately results in selecting the best subset of features and the most accurate

and diverse classifiers corresponding to each fault class.

5.8 Binary classification performance metrics

One of the key issues in evaluating the performance of a classification approach

is the capability of correct classification of new examples. The classification per-

formance of two class problems, as in this case, can be interpreted in a confusion

matrix as shown in Table 5.3.

The most commonly used measure to evaluate the performance of a classifier is
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Table 5.3: Confusion matrix for a two class problem.

Predicted positive Predicted negative

Actual positive True positive (TP) False negative (FN)

Actual negative False positive (FP) True negative (TN)

accuracy rate as given in Equation 5.16.

Acc =
TP + TN

TP + FN + FP + TN
. (5.16)

Other measures that can be derived from Table 5.3 to evaluate the performance

of classification algorithms are listed as follows (Baldi et al., 2000):

• True positive rate or recall: TPR =
TP

TP+FN
.

• False positive rate: FPR =
FP

FP+TN
.

• Positive predictive value (Precision): PPV =
TP

TP+FP
.

In addition, two other important metrics for evaluating binary classification can

be deduced from Table 5.3 which are called F-score and Matthews correlation

coefficient.

• F-score (Baldi et al., 2000): As a weighted harmonic mean of recall and pre-

cision, F-score (F-measure) considers both the precision and recall measures

to analyse the accuracy of a binary classification (Equation 5.17).

F =
(
1 + β2

)
· precision · recall

(β2 · precision) + recall
. (5.17)

when β is equal to 1 the measure is called balanced F-score (F1 score) which is

the harmonic mean of precision and recall and takes both precision and recall into

account equally.

• Matthews correlation coefficient (MCC) (Baldi et al., 2000): MCC can be

used as a quantitative measure of the quality of a binary classification. In
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statistics, it is also known as the phi coefficient. Actually, this measure

interprets the correlation between the target and prediction in a two class

classification. The value of MCC is between -1 and +1 in which +1 shows the

highest classification ability and -1 represents the lowest classification ability

or total conflict between prediction and target. MCC can be formulated by

Equation 5.18:

MCC =
TP × TN − FP × FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
. (5.18)

• Receiver operating characteristics (ROC) curve (Fawcett, 2006): ROC curve

is used as a qualitative and quantitative evaluation measure. It shows the

true positive rate (TPR) versus false positive rate (FPR) regarding different

threshold settings (cutoff points) which graphically visualises the trade-off

between TPR and FPR. In fact, the ROC curve tries to plot the cumulative

distribution function of known probability distribution for both true and

false detected cases in the y-axis against x -axis, respectively. Furthermore,

one can evaluate the classification ability by calculating the area under the

curve (AUC) as a scalar measure. The higher the value of the area under

each curve, the better the classification is.

The performance of the proposed fault classification method was evaluated using

the above mentioned metrics, then the proposed method is compared with three

other ensemble fault diagnosis techniques reported in section 5.9.2.

5.9 Experimental validation

In this study, the imbalanced DGA dataset is composed of 101 samples from

confirmed field data for transformers which are given in (Ganyun et al., 2005;

Gao et al., 1998; Sarma and Kalyani, 2004; Vanegas et al., 1997; Zhang et al.,

1996). The number of instances for the four classes are presented in Table 5.4.

These four classes are typically used by electrical utilities to assess the condition of

their transformers fleet based on DGA. After creating synthetic data, the number
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Figure 5.5: Scatter plots of DGA dataset for two arbitrary features in logarithmic scale. (a)
Imbalanced. (b) Synthetically balanced.

of cases for all classes were distributed equally (Table 5.4). Distribution of the

imbalanced and balanced DGA dataset for two arbitrary features (H2 and CH4)

are plotted in Figure 5.5a and Figure 5.5b, respectively. This shows how synthetic

data are distributed regarding two dissolved gases (H2 and CH4). In addition,

Figure 6.2 shows to what extent the classification problem would be challenging,

if, like conventional techniques and standards, one only used prespecified features

to classify power transformer faults.

Table 5.4: Number of DGA samples for balanced and imbalanced datasets.

Fault classes No fault Over heating Partial discharges Energy discharges

Number of cases (imbalanced) 56 21 6 18

Number of cases (balanced) 71 70 69 72

As mentioned in Section 5.3, there are 14 different features. In the Multi-objective

feature subset selection phase, we find non-dominated feature vectors correspond-

ing to each fault class, which can be used as input features to train the classifiers.

For instance, the fault diagnosis procedure of energy discharge (ED) class is de-

scribed in the following section.

85



5.9.1 Verifying the performance of 2-ADOPT algorithm
for diagnosing ED fault class

The five non-dominated solutions (S1, S2, S3, S4, and S5) for the feature subset

selection phase are presented in Figure 5.6a. Each of these five solutions is a vector

of the best features to classify energy discharge fault class with a high accuracy

on testing set. In the second phase, firstly, each of the five selected feature vectors

are used to train the classifiers, then MOPSO selects a group of the most accurate

and diverse classifiers. In Table 5.5 the fault classification error using 5-fold cross

validation for each of the five non-dominated feature vectors (S1, S2, S3, S4, and

S5) on the validation set is given.

Table 5.5: Four non-dominated feature vectors and their corresponding error on
the validation set.

Non-dominated feature vectors Error on the validation set

S1 0.1015

S2 0.0782

S3 0.0451

S4 0.093

S5 0.1508

Here, the ensembles created using S3 as a feature vector resulted in better fault

diagnosing performance on the validation set. Therefore, solution S3 was selected

as the best feature vector for classifying ED fault class. Table 5.6 lists the best

features corresponding to each fault class. Next, we need to choose one of the

solutions on Figure 5.6b, i.e., Pareto front (A, B, C, and D) as the best ensemble.

To do this, all four solutions were evaluated on the validation set and, as reported

in Table 5.7, solution C had a better classification performance on the validation

set. As a result solution C was nominated to diagnose ED faults. The selected

Table 5.6: Selected features for each fault class.

Fault class Selected feature vector

No fault F1, F2, F3, F4, F6, F7, F9, F12

Partial discharges F1, F4, F5, F6, F12

Energy discharges F2, F4, F5, F6, F10, F11

Over heating F1, F2, F3, F4, F5, F7, F8, F11
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Table 5.7: Three non-dominated solutions and their corresponding error on the
validation set for ED fault class.

Solutions Selected classifiers # Error

A 2, 3, 4, 5, 7, 10, 13, 17, 19, 20, 22, 27, 28, 29 0.266

B 4, 5, 6, 8, 10, 11, 12, 15, 18, 24, 29, 30 0.0922

C 1, 4, 6, 11, 12, 13, 14, 15, 17, 19, 21, 27, 28, 31 0.063

D 3, 4, 8, 9, 11, 12, 13, 18, 19, 20, 25, 28, 29 0.078
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Figure 5.6: Pareto optimal set for (a) feature selection phase and (b) ensemble classifier selec-
tion phase. Solutions in red represent the non-dominated solutions.

classifiers corresponding to the four non-dominated ensembles are also given in

Table 5.7. Clearly, the highest classification accuracy on the validation set belongs

to solution C. Although, for the training set (Figure 5.6b) the accuracy of solutions

D is higher than C, solution C performs better on the validation set. In addition,

computationally, there is no preference between solution C and D because both

use approximately equal number of classifiers. Also, the value of diversity measure

(Q-statistics) for solution C is equal to 0.11 which represents a diverse selected

group of classifiers.

5.9.2 Comparison with other ensemble approaches

The performance of the proposed method (2-ADOPT) was compared with that of

multi-objective ensemble classifier selection using MOPSO without feature subset

selection phase (MOECS) and four other common ensemble learning techniques:
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random forests with KNN and axis align decision tree as the weak learners, Ad-

aBoost, and oblique random forests (Breiman, 2001; Friedman et al., 2001; Menze

et al., 2011; Zhang and Suganthan, 2015).

In the case of MOECS the same type of classifiers as utilized in 2-ADOPT and

listed in Table 5.2 are trained, and MOPSO selects the most accurate and diverse

group of them to classify the fault of the transformers. The main difference between

MOECS and 2-ADOPT is training the classifiers with all fourteen features (Table

5.1), instead of applying a feature subset selection phase.

In the case of K-NN random forests (KNN-RF), the input feature vector also con-

sisted of all fourteen features. Here, the K-nearest neighbour (K-NN) (Friedman

et al., 2001) and random subspace (Ho, 1998) are used as the classifier and en-

semble algorithm, respectively. A 5-fold cross validation is also applied to find the

optimum number of nearest neighbours, input features, and classifiers in the en-

semble. Figure 5.7a shows the number of nearest neighbours against the estimated

classification error using 5-fold cross validation. The minimum cross validation er-

ror has been achieved with four nearest neighbors (NNs). Furthermore, ensembles

were created for 4-NN classifiers with a different number of features, to find the

desired number of features as represented in Figure 5.7b. Clearly, the ensembles

that use four features result in the lowest cross validation error, which is equal to

0.05. Finally, the optimum number of classifiers in an ensemble using 4-NN and

four predictors, which lead to the lowest cross validation error, was investigated.

Figure 5.7c confirms that it is possible to have good classification accuracy with

50 classifiers. Therefore, the final ensemble was constructed using the optimum

parameters: 4-NN, four selected features, and 50 classifiers.

For axis align-aligned RF (AA-RF), a 5-fold cross validation is also applied to

find the optimum number of trees and maximum number splits. In Figure 5.8,

each plot shows the 5-fold cross validation errors for versus number of tree for

various tree complexity levels (MaxNumSplits). For example, as shown in Figure

5.8, the model with 22 trees and MaxNumSplits equals 9 results in minimum

cross validation error for NF class. Therefore, the final ensemble for NF class was

constructed using the following parameters: 22 trees and maximum 9 splits. This

procedure were repeated for all other classes.
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Figure 5.7: Adjusting the optimum numbers of (a) nearest neighbours, (b) features (predictors),
and (c) learners for random forests ensemble method using 5-fold cross validation error.

On the other hand, the oblique random forests (ORF) method was implemented

in R (R Core Team, 2013) using the obliqueRF package (Menze and Splitthoff,

2012). The following parameters were used for training the oblique random forests

algorithm (Menze et al., 2011):

• Number of selected features used in each node of decision trees =

max(sqrt(# offeatures), 2),

• Training method = ridge regression,

• Number of trees in the ensemble = 50.
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Figure 5.8: Adjusting the optimum parameters of axis aligned RF for four different
fault classes.

A 5-fold cross validation is also used to estimate the classification accuracy of the

oblique random forests.

For finding the optimum number of learning cycles in AdaBoost algorithm, a 5-

fold cross validation is used. Figure 5.9 represents the optimum number of learning

cycles corresponding to each fault class. As an example, the lowest cross validation

error for PD fault class is obtained with 76 learning cycles.

The classification ability of these six methods (2-ADOPT, MOECS, KNN-RF,

AA-RF, ORF, and AdaBoost) are evaluated using the measures listed in section

5.8. The overall classification accuracies, F1 score, and MCC measures of these

three methods for diagnosing faults of transformers are given in Table 5.8.
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Figure 5.9: Adjusting the optimum learning cycles of AdaBoost for four different
fault classes.

Table 5.8: Comparison of the classification measures at 0.9 cutoff point among
2-ADOPT, MOECS, KNN-RF, AA-RF, ORF and AdaBoost.

Method
Accuracy rate (%) F1 score MCC

NF PD ED OHF NF PD ED OHF NF PD ED OHF

2-ADOPT 100 97 94 100 1 0.92 0.81 1 1 0.97 0.8 0.99

MOECS 94 88 88 94 0.95 0.8 0.61 0.93 0.85 0.62 0.6 0.91

KNN-RF 91 91 85 79 0.91 0 0.43 0.43 0.85 0 0.52 0.25

AA-RF 100 94 94 100 1 0.9 0.81 1 1 0.97 0.8 0.91

ORF 97 94 85 85 0.96 0.2 0.43 0.625 1 0.1 0.5 0.59

AdaBoost 100 91 91 100 1 0.33 0.88 1 0.96 0.9 0.5 0.91

KNN-RF and ORF show almost random behaviour for classifying the PD fault

class with the F1 score equal to 0 and 0.2, respectively, and a poor classification for

the ED fault class, with the F1 score equal 0.43. However, the 2-ADOPT algorithm

is capable of boosting the F1 score for both classes to 0.92 and 0.81, respectively.

On the other hand, AA-Rf algorithm is comparable with 2-ADOPT algorithms

which is only outperformed for PD fault class. This can also be concluded from

MCC values, where the values corresponding to, the 2-ADOPT algorithm are closer

to 1. The performance of AdaBoost algorithm is also comparable with 2-ADOPT

and AA-RF algorithms on NF and TF fault classes. In addition, the accuracy

rate, F1 scores, and MCC in different cutoffs are compared in Figure 5.10. The
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Figure 5.10: Comparison of classification accuracy, F1 score, and MCC measure
at different cutoff points.

graphs confirm that the 2-ADOPT algorithm has better classification capability

in almost all cutoffs.

The computed class probabilities of diagnosed faults on the testing set are com-

pared in Figure 5.11. Here, diagnosing probabilities can be considered as certainty

measures for the diagnosed faults of transformers; the black dashed threshold line

indicates the 0.9 cutoff point. Considering this, the threshold point led to 8, 19,

4, 15, and 21 misclassification cases for MOECS, KNN-RF, AA-RF, ORF, and

AdaBoost respectively, while there are only two false negative (FN) diagnoses for
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Figure 5.11: Comparison of diagnosing probabilities on the testing set.

2-ADOPT (case 19 and 20). In addition, the results of diagnosed probabilities of

the proposed algorithm (2-ADOPT) on the testing set for all four fault classes are

given in Table 5.9. At 0.9 cutoff point, there are two false negative (FN) cases for

energy discharges fault class and one true negative (TN) case for partial discharges

fault class, which are shown in bold in Table 5.9. Overall, 2-ADOPT performs very

well on no fault and over heating cases, while there are minor uncertainties when

diagnosing the other two fault classes.

The four aforementioned fault diagnosis algorithms were evaluated on a Windows

8 PC with Intel Core i7 CPU and 8GB RAM. The CPU processing time of these

algorithms are compared in Table 5.10. Although the processing time of the pro-

posed method is longer than the other diagnosing algorithms, the accuracy of the

diagnosing algorithm is much more important than its speed for utilities and power

companies, especially when it comes to assess one of the most critical assets such

as power transformers.

To compare the results of the proposed method with the previously developed

intelligent fault diagnosing algorithms, the results of some of these algorithms are

reported in Table 5.11. Since the DGA dataset used in these studies are not

available to the public, there is no opportunity for benchmarking here. However,

the proposed method in this chapter can be compared, in terms of number of fault

classes and the overall accuracy of the diagnosing algorithm. Generally speaking,
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Table 5.9: The actual value of 33 dissolved gas samples as testing set and their
corresponding diagnosed probabilities.

No. Actual fault
Dissolved gases [ppm] Diagnosed probabilities

Predicted fault
H2 CH4 C2H4 C2H6 C2H2 NF PD ED OHF

1 NF 14.7 3.8 10.5 2.7 0.2 1 0 0 0 NF

2 NF 8.5 7.2 4.3 3.9 3.51 1 0 0 0 NF

3 NF 22 0 0 14 0 1 0 0 0 NF

4 NF 3 1 1 2 1 1 0 0 0 NF

5 NF 27 30 2.4 23 0.1 1 0 0 0 NF

6 NF 0 19.3 0 57.2 0 1 0 0 0 NF

7 NF 9 4 0 11 0 1 0 0 0 NF

8 NF 561 389 365 238 273 1 0 0 0 NF

9 NF 2501 1428 4983 4622 6996 1 0 0 0 NF

10 NF 5 21 63 19 0 1 0 0 0 NF

11 NF 20 18 3 4 0 1 0 0 0 NF

12 NF 218 965 682 75 309 1 0 0 0 NF

13 NF 11 11 58 17 1 1 0 0 0 NF

14 PD 240 20 5 28 96 0 1 0.08 0 PD

15 PD 650 53 34 20 0 0 1 0 0.0125 PD

16 PD 1076 95 4 71 231 0 1 0 0 PD

17 ED 1565 93 34 47 0 0 0.03 1 1 ED

18 ED 300 240 14 160 140 0 0 0.997 0 ED

19 ED 212 38 15 47 0 0 0.317 0.677 0 Not diagnosed

20 ED 24 13 5 43 319 0 0.484 0.596 0 Not diagnosed

21 ED 858 1324 208 2793 7672 0 0 0.923 0 ED

22 ED 1249 370 56 606 1371 0 0.862 0.998 0 Not diagnosed

23 TF 199 770 217 1508 72 0 0 0.109 1 OHF

24 TF 2754 16615 3657 31476 613 0 0 0 1 OHF

25 TF 266 584 328 862 1 0 0 0.651 1 OHF

26 TF 80 619 326 2480 0 0 0 0.169 1 OHF

27 TF 231 3997 1726 5584 0 0.025 0 0.221 1 OHF

28 TF 65 61 16 143 3 0 0.022 0 0.993 OHF

29 TF 137 369 144 1242 16 0 0 0.488 1 OHF

30 TF 56 286 96 928 7 0 0 0 1 OHF

31 TF 86 110 18 92 7.4 0 0 0 1 OHF

32 TF 42 97 157 600 0 0 0 0 1 OHF

33 TF 73 520 140 1200 6 0 0 0.282 1 OHF

Table 5.10: Average CPU processing time for 25 runs of 2-ADOPT, MOECS,
KNN-RF, AA-RF, ORF, and AdaBoost algorithms.

Algorithm 2-ADOPT MOECS KNN-RF AA-RF ORF AdaBoost

Time (s) 680.59 388.91 194.65 238.57 86.8 375.27

overall accuracy of the proposed method is higher than the listed algorithms in

Table 5.11. Furthermore, the number of diagnosed fault classes in the proposed

method (2-ADOPT) is more than most of the methods in Table 5.11.

In order to graphically compare the TPR and FPR between the proposed method
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Table 5.11: Comparison of the recent state-of-the-art transformers fault diagnosis
algorithms based on DGA.

Reference
Number of samples Accuracy (%)

NF PD ED OHF NF PD ED OHF

(Dong et al., 2008) 60a 88.3b

(Ghoneim et al., 2016) 56 32 146 184 48.2 75 97.3 94.8

(Shintemirov et al., 2009) 26 18 54 69 92.11b

(Morais and Rolim, 2006) 180 10c 22 85.56 50c 63.63

(Ghoneim and Taha, 2016) 240a 92.91b

(Tang et al., 2008) 168d 80.2d

(Bacha et al., 2012) 30a 90b

(Souahlia et al., 2012) 40a 85b

aall classes
boverall
c(PD + ED)
d(OHF + ED)

Table 5.12: Comparison of the AUC and pAUC among 2-ADOPT, MOECS, RF,
and ORF.

Method
AUC pAUC

NF PD ED OHF NF PD ED OHF

2-ADOPT 1 1 0.99 1 0.1 0.1 0.09 0.1

MOECS 0.97 0.97 0.95 0.98 0.07 0.07 0.06 0.08

KNN-RF 0.97 0.96 0.9 0.96 0.07 0.06 0.08 0.08

AA-RF 1 0.96 0.99 1 0.1 0.07 0.09 0.1

ORF 0.99 0.97 0.91 0.97 0.1 0.07 0.07 0.09

AdaBoost 1 0.94 0.95 1 0.1 0.05 0.09 0.1

and other methods, receiver operating characteristics (ROC) curves are plotted

in Figure 5.12. These colorised ROC curves helps to give an informative view of

TPR versus FPR at various cutoff points. For example, the first false positive of

ED fault class in 2-ADOPT (Figure 5.12c) occurs at the probability equal to 0.6.

Moreover, the area under curves (AUCs) and partial AUC at FPR equal to 0.1 are

reported in Table 5.12. It should be noted that the maximum value of AUC and

pAUC for a perfect classification are equal to 1 and 0.1, respectively.
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Figure 5.12: ROC curves with colorized cutoff points to compare the proposed method (2-
ADOPT), and two other ensemble methods (MOECS and random forests) for: (a) No fault, (b)
Partial discharge (c) Energy discharge, and (d) Over heating fault classes.

5.10 Summary

Fault diagnosis of transformers depends on various factors, such as the type of

transformers and environmental conditions, and these may differ from utility to

utility. Therefore, applying intelligent methods to diagnose the faults of transform-

ers increases reliability and accuracy of applied diagnostic techniques. The DGA

dataset in this study was collected from various ranges and types of transformers.

So, unlike other conventional methods, the proposed method is not highly depen-

dent on the transformer type, and environmental and technical conditions. In

other words, the proposed algorithm is an intelligent data-driven method. In this

research, a two phase evolutionary multi-objective technique to diagnose faults

of power transformers was proposed. First, a feature subset selection using the

MOPSO algorithm was carried out to select the most relevant features for each
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fault class. The feature vectors on the best Pareto optimal were considered as

inputs to train the classification algorithms in the second phase, accordingly. Sub-

sequently, the MOPSO algorithm was again applied to find the best group of

classifiers among 30 single trained algorithms, in terms of accuracy and diversity

measures as objective functions. The selected solutions (group of classifiers) by

MOPSO were examined on a validation set of DGA to find the best ensemble (so-

lution) to classify power transformer faults. In addition, the proposed method was

compared with three other scenarios; a multi-objective PSO based ensemble classi-

fier selection without feature subset selection, random forests and oblique random

forests ensemble techniques, where it consistently outperformed these scenarios

over several performance metrics.

The proposed method can also be used “in house” by electric utilities and power

companies to diagnose faults of their assets.
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Chapter 6

Multi-Objective Ensemble
Forecasting of Dissolved Gases in
Power Transformer

6.1 Overview

In this chapter an ensemble time series forecasting algorithm using evolutionary

multi-objective optimization algorithms to predict dissolved gas contents in power

transformers is presented. In this method, the correlation between each individual

dissolved gas and other transformer features, such as temperature characteristics

and loading history, is first determined. Then, a non-linear principal component

analysis (NLPCA) technique is applied to extract the most effective time series

from the highly correlated features. Subsequently, the forecasting algorithms that

support a cross validation technique are used for training. In addition, evolution-

ary multi-objective optimization algorithms are used to select the most accurate

and diverse group of forecasting algorithms to construct an ensemble. Finally, the

selected ensemble is examined to predict the value of the dissolved gases on the

testing set. The results of one day, two day, three day, and four day ahead fore-

casting are presented, which show higher accuracy and reliability of the proposed

method compared with other statistical methods.
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6.2 Introduction

Thus far, most dissolved gas prediction models have placed emphasis on single

forecasting algorithms. In (Fei and Sun, 2008) a Support Vector Machine (SVM)

algorithm has been used to forecast the ratio of dissolved gases. A genetic algo-

rithm (GA) has been also applied to find the optimum hyper parameters of the

SVM through its training procedure. In another research, Fei et al. (Fei et al.,

2009) investigated the forecasting of dissolved gases using SVM and using a par-

ticle swarm optimization (PSO) algorithm to adjust the hyper parameters of the

SVM algorithm. In (Wang, 2004) the possibility of forecasting incipient faults of

power transformers using grey-extension method has been studied. Ghunem et al.

(Ghunem et al., 2012) applied multi-layer perceptron feed forward neural networks

to predict the transformer oil furan contents. They also used a stepwise regression

method to select the most effective inputs (features) using neural networks. In

Liao et al. (2011b) the authors proposed a least squares support vector regression

method to forecast dissolved gases in power transformers. A parameter tuning

procedure using a PSO algorithm was used during the training phase of the least

squares support vector regression algorithm. Furthermore, there are various pro-

posed methods in the context of artificial intelligence and statistical modelling for

forecasting time series (Chandra, 2015; Kavousi-Fard et al., 2016; Li et al., 2012;

Miranian and Abdollahzade, 2013; Quan et al., 2014; Taieb and Atiya, 2016).

All of the aforementioned studies implemented a single objective framework to

forecast the dissolved gas contents in power transformers. Although all these

forecasting algorithms have been well trained, there are some questions that need

to be further investigated:

• How can a prediction (forecasting) algorithm can be generalized to deal with

new data sets?

• Which prediction (forecasting) algorithm is the most accurate method to

apply for predicting dissolved gases in power transformer ?
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In this chapter, a method to address these questions will be presented, which

uses a multi-objective ensemble selection technique to overcome inaccuracies and

uncertainties that exist in conventional DGA forecasting methodologies.

In machine learning, ensemble learning techniques are widely used to enhance the

capability and accuracy of the classification and regression algorithms by avoiding

the selection of a single weak technique (Polikar, 2006). In recent years, ensem-

ble learning has been of great interest to researchers and is used in classification,

regression, time series forecasting, and remaining useful lifetime estimation appli-

cations (Araujo and New, 2007; Kim and Kang, 2010; Kourentzes et al., 2014;

Lariviere and Vandenpoel, 2005; Lim et al., 2017; Peimankar et al., 2016, in press;

Wang and Chiang, 2011; Yan, 2012; Zhang et al., 2016). A key question however

is how to effectively create a diverse and accurate ensemble in ensemble learning

(Ren et al., 2016).

Three different Evolutionary Multi-Objective Optimization (EMO) algorithms were

used to select the most accurate and diverse time series forecasting algorithm,

among a group of previously trained algorithms. These include, Multi-Objective

Particle Swarm Optimization (MOPSO) (Coello et al., 2004), Non-dominated Sort-

ing Genetic Algorithm (NSGA-II) (Deb et al., 2002a), and the Strength Pareto

Evolutionary Algorithm (SPEA-II) (Zitzler et al., 2001). Firstly, Non-Linear Prin-

cipal Component Analysis (NLPCA) (Scholz et al., 2005) was used to extract an in-

formative time series from highly correlated inputs. Secondly, different time series

forecasting algorithms were trained as base predictors, such as Support Vector Re-

gression (SVR) (Cortes and Vapnik, 1995), Regression Trees (RT) (Breiman et al.,

1984), Group Method of Data Handling (GMDH) (Ivakhnenko, 1971), Radial Ba-

sis Function (RBF) (Chen et al., 1991), Adaptive Network-based Fuzzy Inference

System (ANFIS) (Jang, 1993), Echo State Networks (ESN) (Jaeger, 2001), Kernel

Ridge Regression (KRIDGE) (Murphy, 2012), Cascade Forward Neural Network

(CFNN) (Fahlman and Lebiere, 1989), and Feed Forward Neural Network (FFNN)

(Hagan et al., 1996). Each of these unique time series forecasting algorithms was

trained with different parameter settings and training functions. Thirdly, an EMO

algorithm selects the most accurate and diverse group of algorithms. Lastly, the
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outputs of the selected algorithms in the ensemble are combined to forecast the

content of dissolved gases in power transformers.

6.3 Time series extraction using NLPCA

The data for this study were collected from sensors installed on the power trans-

formers. Our dataset consisted seven measured dissolved gases (H2, CH4, C2H2,

C2H4, C2H6, CO, and CO2) from the insulation oil of a power transformer, followed

by the load history, ambient temperature, oil temperature, and winding temper-

ature of the transformer. Loading history and, as a consequence, the thermal

characteristics of transformers, have significant effects on the level of dissolved

gases in power transformers. Therefore, it becomes very important to consider

these factors when forecasting the dissolved gases. Furthermore, a dissolved gas

in transformer oil, as a member of the hydrocarbon gases, is sometimes correlated

with the level of other dissolved gases. The pairwise Pearson’s correlation coeffi-

cients (CC) were calculated (Dowdy et al., 2011) of these input time series. As

general rule, two variables are said to be positively correlated if 0.5 ≤ CC ≤ 1

and are negatively correlated if −1 ≤ CC ≤ −0.5. However, there is not a general

rule to set this threshold accurately and the best solution is using a statistical test

to confirm if there is a significant correlation between variables (time series). For

this purpose, a post hoc right tailed test is used for testing the null hypothesis of

no correlation, against the alternative of significant positive correlation between

variables. Figure 6.1 illustrates the Pearson’s pairwise correlation coefficients.

The scatter plots of the pair variables are also shown and the slopes of the least

squares fitted lines is equal to the correlation coefficient. It should be noted that

the time series (variables) are normalized to zero mean and unit standard devia-

tion. The histograms of each time series are also plotted. The asterisks indicate

if the correlation between variables are statistically significant. The larger and

higher number of asterisks show that the two corresponding variables are more

significantly correlated. Therefore, corresponding to each variable, the positively

correlated variables with three large asterisks are selected as highly correlated vari-

ables. Since there are multiple comparisons, a correction method called Bonferroni
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correction is performed to adjust the significant level in Figure 6.1. However, the

adjusted significance values are not changed much.
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Figure 6.1: The Pearson’s pairwise correlation coefficients along the scatter plots
of the pair variables and the histogram of the variables. The slopes of the least
squares fitted lines are equal to the correlation coefficient. The larger and more
asterisks show the more significant correlation between variables.

After determining the highly correlated time series, NLPCA was used to extract

an effective time series from the highly correlated variables. Principle Component

Analysis (PCA) is a well-known technique in statistics and machine learning to

extract the best features (principle components). PCA is a linear approach but

there are different non-linear PCA techniques, such as kernel based PCA and auto-

associative based PCA. An auto-associative based NLPCA is also applied, which

is shown in Figure 6.2 (Scholz et al., 2005). The xi and Z are the inputs and

extracted time series, respectively. The network of the extraction phase (solid

lines) is stored to be used in the generation phase (dashed lines) in the next step

of the algorithm to reconstruct the targeted time series. The NLPCA approach is

implemented using the nonlinear PCA toolbox in MATLAB (Scholz, 2014).
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Figure 6.2: Architecture of NLPCA. The x and Z are the correlated time series
as inputs and the extracted most informative time series (principle component),
respectively. The feature generation network (dashed lines) is used to reconstruct
the predicted time series x̂.

6.4 Stationarity analysis

Developing a successful time series forecasting model requires the provision of a

model with a stationary series as input. In general, a time series consists of three

distinct components: 1) non-seasonal trend component, 2) seasonal component,

and 3) stochastic component. To make a non-stationary series stationary, one

needs to remove the trend and seasonality components from the series. In other

words, the desired time series should have a zero mean and variance such that only

the stochastic term remains.

The DGA time series in this study are non-stationary series with non-seasonal

trend components. One of the most common techniques to ensure a time series is

stationary is to apply a differencing method. Differencing is defined as (Bowerman

et al., 2005):

s(t) = s (t0)− s (t0 − 1) , (6.1)

where s(t) and s(t0) are the original and differenced time series, respectively. The

differenced time series (s(t)) along with the autocorrelation function (ACF) and

103



0 500 1000 1500

−
20

0
10

30

First differenced of CO2

Time (3 hour)

C
O

2 (
pp

m
)

0 5 10 15 20 25 30−
0.

2
0.

2
0.

6
1.

0

Lag

A
C

F

0 5 10 15 20 25 30

−
0.

2
0.

2
0.

6

Lag

P
ar

tia
l A

C
F

Figure 6.3: First differenced of CO2 time series with its ACF and PACF analyses
over a time period of six months (July 2015 - January 2016).

partial autocorrelation function (PACF) are plotted in Figure 6.3. From the ACF

and PACF (Figure 6.3), the appropriate inputs for the time series forecasting

model can be determined. With the trial and error method, the daily DGA time
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series, which consists of eight lags (every three hours), was selected as inputs

for the forecasting algorithms. In addition, the ACF and PACF were used to

determine the orders (p and q) of the autoregressive integrated moving average

(ARIMA(p,d,q)) model in Section 6.8 to compare with the proposed algorithm

discussed in this chapter.

6.5 Multi-objective ensemble time series forecast-

ing

There are 23 time series forecasting algorithms, as listed in Table 6.1, which are

trained using the extracted time series data by NLPCA. In the multi-objective

optimization algorithm, solutions are found which are binary vectors whose lengths

equal the number of selected time series forecasting algorithms. An example of a

solution for the multi-objective optimization algorithm is shown in Figure 6.4. In

this binary vector, 1’s represent the selected algorithms to forecast the time series,

while 0’s show that the corresponding algorithms are not selected.

0 1 0 1 1 0 0 0 1 0 1 0 1 1 0 0 0 1 0 0 0 01

Models M1 – M23

Figure 6.4: An example of a solution in a multi-objective evolutionary optimization
for selecting time series forecasting algorithms. The 1’s represent the corresponding
selected forecasting algorithms.

In multi-objective ensemble learning, we need to carefully define our objective

functions to select a group of the most accurate and diverse algorithms. Diver-

sity can significantly improve the performance of the ensemble by alleviating the

over-fitting problem and create a generalized model. Although the accuracy can

be easily formulated, the diversity measure is still an open issue in classification,
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Table 6.1: The list of the time series forecasting algorithms used to create the
ensemble.

No. Model Description

1 rTree Binary regression decision tree.

2-4 SVR Support vector regression with radial basis function, linear and Gaussian
kernel functions. The kernel scale parameters are tuned using a heuristic
approach during the training phase.

5-7 GMDH Group method of data handling with 5 layers and 10, 20, and 50 maximum
neuron size in hidden layers, respectively.

8-10 RBF Radial basis network with 10, 50, and 100 neurons in the RBF layer, respec-
tively.

11 ANFIS Adaptive network-based fuzzy inference system with Sugeno type fuzzy infer-
ence and using fuzzy c-means clustering (Bezdek, 2013) to generate clusters.
The optimum number of clusters are determined using the subtractive clus-
tering technique (Chiu, 1994).

12-14 ESN Echo state network with 10, 50, and 100 internal units, respectively.

15-17 KRIDGE Kernel Ridge Regression with radial basis, polynomial, and linear kernel func-
tions.

18-20 CFNN Cascade forward neural network using Levenberg-Marquardt as optimization
algorithm with 10, 50, and 100 hidden layer size, respectively.

21-23 FFNN Feedforward neural network using Levenberg-Marquardt as optimization al-
gorithm with 10, 50, and 100 hidden layer size, respectively.

regression, and time series forecasting ensemble learning (Kuncheva and Whitaker,

2003; Ren et al., 2016). For classification problems, different diversity measures

have been defined (Kuncheva and Whitaker, 2003). Whereas, for regression/time

series forecasting problems, the diversity of the ensemble can be meet by consid-

ering the covariance between the base predictors (Brown et al., 2005b).

Suppose a dataset of N input and target vectors is given by,

z = {(x1, t1), (x2, t2), . . . , (xN , tN)}. (6.2)

It should be noted that each data point is sampled from an unknown distribution

p(x, t). The problem is to find an estimator g that maps the inputs to targets in
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order to minimize the cost function (Friedman et al., 2001),

err(g) =

∫
(g(x,w)− t)2p(x, t)d(x, t). (6.3)

where ω are the parameters of the estimator function g(.). Since p(x, t) is an

unknown distribution, Equation 6.3 should be inevitably substituted with a sum-

mation,

err(g) ≈ 1

N

N∑

n=1

(g(xn,w)− tn)2, (xn, tn) ∈ z. (6.4)

There are two important issues that need to be taken into consideration. First, if

the ω parameters of the estimator g are tuned to achieve an absolute zero value

for err, the model will suffer from over-fitting which leads to poor performance

on a future dataset because the true distribution of p(x, t) is unknown. On the

other hand, if the ω parameters are not tuned properly to their optimum values,

the model will suffer from under-fitting which again leads to poor performance on

future datasets. Geman et al. (1992) formulated Equation 6.4 in a bias-variance

decomposition,

E{(g(xn,w)− t)2} = (E{g(xn,w)} − t)2 + E{(g(xn,w)− E{g(xn,w)})}
= bias(g(xn,w))2 + variance(g(xn,w)), (6.5)

where E{.} is the expectation operator, which is used as a substitute for summation

in Equation 6.4. In an ensemble with M members, the bias-variance decomposition

can be defined as follows:

E{(g − t)2} = (E{g} − t)2 + E{(g − E{g})},

s.t. g =
1

M

M∑

i=1

gi(x,wi). (6.6)

To achieve a trade-off between accuracy and diversity in an ensemble, a bias-

variance-covariance decomposition was defined by Ueda and Nakano (1996). For

this purpose, three terms: average bias, average variance, and average covariance
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of the ensemble were defined, as follows:

Bias =
1

M

M∑

i=1

(E{gi} − t). (6.7)

Var =
1

M

M∑

i=1

E{(gi − E{gi})2}. (6.8)

Covar =
1

M(M − 1)

M∑

i=1

M∑

j=i+1

E{(gi − E{gi})(gj − E{gj})}. (6.9)

Subsequently, the bias-variance-covariance decomposition can be formulated as:

E{(g − t)2} = Bias
2

+
1

M
Var + (1− 1

M
)Covar. (6.10)

In addition, Krogh et al. (1995) introduced another approach to provide diversity

in an ensemble, which is called ambiguity decomposition, and is formulated as

follows:

(g − t)2 =

average error of predictors︷ ︸︸ ︷
1

M

M∑

i=1

(gi − t)2 −

ambiguity term︷ ︸︸ ︷
1

M

M∑

i=1

(gi − g). (6.11)

From Equation 6.10 and Equation 6.11, we can also derive:

E

{
1

M

M∑

i=1

(gi − t)2 − 1

M

M∑

i=1

(gi − g)

}
= Bias

2
+

1

M
Var + (1− 1

M
)Covar. (6.12)

In other research, Brown et al. (2005b) showed that the two terms in Equation

6.12 can be divided as follows:

E

{
1

M

M∑

i=1

(gi − t)2

}
= Bias

2

+

Θ︷ ︸︸ ︷

Var +
1

M

M∑

1

(E{gi} − E{g})2 .[15pt] (6.13)
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E

{
1

M

M∑

i=1

(gi − gi)2

}
=

Θ︷ ︸︸ ︷

Var +
1

M

M∑

1

(E{gi} − E{g})2

−
[

1

M
Var + (1− 1

M
)Covar

]
. (6.14)

The term Θ confirms the fact that the diversity measure (Equation 6.14) cannot

be individually maximized without any effect on the average mean squared error

of the ensemble (Equation 6.13). Therefore, Equation 6.13 and Equation 6.14 are

considered as objective functions for the multi-objective optimization evolution-

ary algorithms. It is proposed that finding an optimum trade-off between these

two objective functions will guarantee the most accurate and diverse ensemble of

forecasting algorithms for predicting the value of dissolved gases in power trans-

formers.

To minimise the forecasting error, whilst simultaneously maximising the diversity

of the selected ensemble, a multi-objective time series model with the following

constraints is applied:

Minimize CF1 = 1
M

∑M
i=1(gi − t)2. (6.15)

Maximise CF2 = 1
M

∑M
i=1(gi − gi)2. (6.16)

Equation 6.15 is applied to minimize the forecasting error, and simultaneously,

Equation 6.16 is used to maximize the diversity of the selected ensemble. The

proposed multi-objective time series selection method for the forecasting of power

transformer’s dissolved gases is discussed in Section 6.7.

6.6 Evolutionary multi-objective optimization al-

gorithms

The two objective functions to find the most accurate and diverse group of time se-

ries forecasting algorithms were formulated in Section 6.5. In this section, the three

evolutionary multi-objective optimization algorithms, which are used to achieve

109



an optimum trade-off between accuracy and diversity, are described. These al-

gorithms are categorised into population-based algorithms. MOPSO is a multi-

objective version of the PSO algorithm (Eberhart and Kennedy, 1995) which is

a meta-heruristic algorithm developed by Coello et al. (2004) in 2004. Generally,

in swarm intelligence, agents are appointed to handle a problem and to achieve

a unique goal, which is not able to be handled by individual agents. The details

of MOPSO algorithm can be found in Section 5.5. The NSGA-II is also a very

well-known evolutionary multi-objective optimization algorithm, which was intro-

duced by Deb et al. Deb et al. (2002a). Similarly, this algorithm is inspired by the

single objective Genetic Algorithm (Goldberg and Holland, 1988). The third evo-

lutionary multi-objective optimization algorithm is called SPEA-II (Zitzler et al.,

2001). In this algorithm an index is assigned to each solution that measures the

strength of the corresponding solution compared with others in order to find the

non-dominated solutions. A common concept among all the aforementioned evolu-

tionary multi-objective optimization algorithms is called Pareto optimality, which

is explained in Section 5.4. The details of NSGA-II and SPEA-II algorithms are

described in the following section.

6.6.1 NSGA-II algorithm

As mentioned in Section 6.6, NSGA-II is a multi-objective version of the GA.

So, in order to have a deeper understanding, first we review the main steps in

GA which are: 1) create an initial main population; 2) use binary tournament

selection to create a parent population; 3) apply crossover and mutation operators

to the parent population to produce child and mutated populations, respectively;

4) create a new population from main, child, and mutated populations.

The main difference between GA and NSGA-II algorithms is in step 4, where a

new population should be created. Figure 6.5 illustrates the procedure of the GA

over one iteration. The sorting concept in NSGA-II is revised using a two step

sorting technique. These steps are called non-dominated sorting and crowding

distance. In non-dominated sorting, each solution in the population is compared

with others to count the number of dominations (ndom) of each solution. Solutions
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Figure 6.5: Schematic diagram of GA.

with ndom = 0 are considered as the first Pareto front (F1). Then, the solutions

on F1 are removed from the population and a similar procedure is repeated to

find the F2. This procedure continues until all solutions are categorized into their

corresponding Pareto fronts. The details of the non-dominated sorting algorithm

are given in Deb et al. (2002a). Figure 6.6 illustrates how the solutions are sorted

using a non-dominated sorting algorithm.

min f2

min f1

F1

F2

F3

F4

Figure 6.6: Schematic diagram of non-dominated sorting.
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Figure 6.7: Schematic diagram of CD.

Similar to other evolutionary multi-objective optimization algorithms, the non-

dominated solutions may not be able to be selected based on only one factor,

e.g., non-dominated sorting ranking, because of the archive size limitations. So,

the crowding distance is used as a second ranking criteria in the NSGA-II algo-

rithm. The crowding distance helps to select non-dominated solutions from the

more sparse solutions to increase the exploration of the algorithm. The crowding

distance (CD) concept is graphically shown in Figure 6.7 and is also formulated

as,

dji =
|f i−1
j − f i+1

j |
fmaxj − fminj

,

di = d1
i + d2

i + . . .+ dMi =
M∑

j=1

dji , (6.17)

where dji is the CD of the ith solution for the jth objective function. Figure 6.8

illustrates the sorting and non-dominated solutions selection steps in NSGA-II. As
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Algorithm 2: Pseudo-code of NSGA2 algorithm.

1 Set the values of NSGA-II parameters
2 Initialize the population pop
3 Evaluate objective values on initialized populations
4 Select non-dominated solutions as leader gbest
5 for it← 1 to MaxIt do
6 for itc ← 1 to nc do
7 Apply crossover to create popc
8 end
9 for itm ← 1 to nm do

10 Apply mutation to create popm
11 end
12 Merge nPop, nm, and nc
13 for itPop ← 1 to nPop do
14 Apply non-dominated sorting
15 end
16 Calculate crowding distance of solutions on each front
17 Sort population

18 end
19 Report Pareto optimal set (non-dominated solutions)

(npop)

(nc)

(nm)

NS

npop + nc + nm

CD npop
Population

Crossover

Mutation

F1

F2
F3

Removed

Removed

F1
F2

F'3

|F1 + F2 + F'3| 

Figure 6.8: Schematic diagram of NSGA-II.

shown, the solutions on F1 and F2 are directly selected after NS ranking but some

of the solutions in F3 are rejected to enter the archive set after applying CD sorting

on them. The pseudo-code of the NSGA-II algorithm is given in Algorithm (2).

The two main operators of any GA algorithms are crossover and mutation which
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help searching new solutions and generate a new set of solutions for the optimi-

sation problem. The crossover technique used in this study is called single point

crossover to generate a new solution (a “child”) from a pair of “parent” (Srinivas

and Patnaik, 1994). For the mutation operator, a unique process is done such

that some of the values in the chromosome are randomly replaced. For example, if

length of chromosome is 20 and the mutation rate is set to 20%, four values in the

chromosome are randomly replaced. The chromosomes here consist of a binary

string which represent the selected forecasting algorithms as shown in Figure 6.4.

The chances of occurring crossover and mutation are also given using crossover and

mutation probabilities. Before the main loop of the algorithm some parameters

should be set, which are:

• population size (nPop) = 300,

• maximum number of iteration (MaxIt) = 100,

• crossover probability (pc) = 0.7,

• the number of solutions for crossover (nc) = 2× round(pc×nPop
2

),

• mutation probability (pm) = 0.4,

• the number of solutions for mutation (nm) = round(pm × nPop),

• mutation rate (µ) = 0.2,

6.6.2 SPEA-II algorithm

The Improved Strength Pareto Evolutionary Algorithm (SPEA-II) was introduced

by Zitzler et al. (2001) in 2001. This multi-objective evolutionary based algorithm

also utilizes genetic operators such as mutation and crossover. The strength Pareto

term is the key concept of this algorithm. This is a relative index that shows to

what degree a solution is close to being a non-dominated solution or a member of

the Pareto optimal set. This index is defined as follows (Zitzler et al., 2001):

S(i) = |{j | j ∈ Pt ∪ Pt ∧ i � j}|, i ∈ Pt ∪ Pt (6.18)
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where i and j are two arbitrary solutions, Pt and Pt are the population and archive

sets at the tth iteration, respectively, and the |.| is the cardinality operator such

that |Pt| = N and |Pt| = N . The next definition is called the raw fitness and is

calculated as follows (Zitzler et al., 2001):

R(i) =
∑

k∈Pt∪Pt,k�i

S(k), i ∈ Pt ∪ Pt, (6.19)

where the R(i) is always an integer number. The smaller the R(i), the better the

solution.

Ideally, the corresponding R(i) for non-dominated solutions is equal to zero. Figure

6.9 shows an example of the assigned R(i) in the tth iteration using the SPEA-II

algorithm. For instance, solution A, which is a non-dominated solution, dominates

two other solutions (K and I), so S(A) = 2 and R(A) = 0. On the other hand,

solution K is dominated only by solution A and R(K) = 2.

min f2

min f1

A[2,0]

B[5,0]
C[2,0]

K[1,2] I[0,19]

E[4,5]

F[2,9]

G[0,9]

H[1,11]

D[2,0]

Pareto optimal

Dominated

[x,y] = [S(i),R(i)]

Figure 6.9: An example of assigned R(i) and S(i) in SPEA-II algorithm.

Two scenarios can be considered here: 1) if |P t+1| < N , some of the dominated

solutions should also be included in the archive set at the (t+ 1)th iteration; 2) if

|P t+1| > N , the additional member of the archive should be truncated, such that
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the unique solutions, which are in a more sparse space, are kept to increase the

exploration of the algorithm. For example, let us firstly assume N = 7. So, the

first seven selected solutions are [A, B, C, D, E, K] and one needs to choose either

solution F or solution G as the last archive member. In this example, the raw fitness

of both dominated solutions (G and F) are equal to 9. Therefore, it is not possible

to choose a solution from these two pairs based on only raw fitness, and another

selection criterion should be taken into consideration. In the second scenario, we

assume N = 3. So, three out of four non-dominated solutions should be selected

in the (t + 1)th iteration. Since the raw fitness for all non-dominated solutions is

equal to 0, similar to the first case, another selection criterion is necessary to be

considered here. To tackle this problem, a density function D(i) is defined:

D(i) =
1

σki + 2
, 0 < D(i) ≤ 1

2
. (6.20)

where σki is the distance of the ith solution from its kth nearest neighbor. The

value of k, as recommended in the K-NN algorithm (Silverman, 1986), is set to√
N +N . The density function is calculated for all solutions. Subsequently, a

new fitness function can be formulated as follows:

F (i) = R(i) +D(i). (6.21)
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Algorithm 3: Pseudo-code of SPEA-II algorithm.

1 Set the values of SPEA-II parameters

2 Initialize a population (P0) and allocate an empty set as archive (P 0)
3 Evaluate the objective values on initialized population and rank them
4 for t← 1 to T do
5 for n← 1 to (N +N) do
6 Calculate the fitness values for all solutions (Pt ∪ P t) using Equation

6.21

7 Select non-dominated solutions of Pt ∪ P t

8 if |P t+1| < N then
9 Choose some of the dominated solutions to fill the archive

10 else if |P t+1| > N then
11 Remove additional solutions from non-dominated solutions

(Pareto optimal) using Equation 6.22

12 else
13 Copy all non-dominated solutions to P t+1

14 end

15 end
16 Check the stopping criteria; Use binary tournament selection to choose

solutions from P t+1 for the mating pool
17 Apply mutation and crossover operators to the mating pool and create

Pt+1

18 end
19 Report Pareto optimal set (non-dominated solutions)

Subsequently, in case 1, D(G) = 0 and D(F ) = 2, which results in F (G) = 9 <

F (F ) = 11, and solution G is selected. In case 2, to select from non-dominated

solutions, a removal procedure is conducted using Equation 6.22 which is also based

on selecting the solutions from the more sparse space to increase the exploration

of the optimization algorithm. Therefore, solutions A, B and D are selected here.

The non-dominated solutions selection process is formulated as:

i � j ⇔ ∃1 ≤ k ≤ |P t+1| : [(∀1 ≤ l ≤ k : σli = σlj) ∧ σki < σkj ],

∨ ∀ 1 ≤ k ≤ |P t+1| : σki = σlj, (6.22)

where i is the non-dominated solution, which is chosen to be removed from the

archive set at the (t+1)th iteration, and j is a member of non-dominated solutions
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(Pareto optimal) at the (t + 1)th iteration. The pseudo-code of the SPEA-II

algorithm is described in Algorithm (3). The parameters of SPEA-II algorithm

should be first set, which are: 1) population size (N); 2) archive size (N); and 3)

the maximum number of iterations (T ).

6.7 Proposed methodology

Figure 6.10 shows the schematic diagram of the proposed ensemble method for

forecasting of dissolved gas contents in power transformers. The proposed method

takes advantage of EMO algorithms to create an accurate and diverse ensemble of

time series forecasting algorithms. The proposed method is described in ten main

steps as follows:

1. Normalization: All input time series are first normalized to zero mean and

unit standard deviation. This step should be done before running the NLPCA

algorithm as it is very sensitive to the scale of the data.
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Figure 6.10: Schematic diagram of the proposed forecasting method.
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3. Separate the testing set from a non-testing set : The collected time series

dataset is divided into two sets. The non-testing set is used to train and

validate the forecasting models and the testing set is used to evaluate the

proposed algorithm.

4. Extract time series : The NLPCA is applied to extract a higher level of time

series from the highly correlated time series inputs.

5. Cross validation (CV): A rolling window CV technique is performed to

achieve a reliable error estimation. As it is shown in Figure 6.10, the non-

testing dataset is divided into six folds and each time one fold is added to

the training set and the last fold is considered as validation set. Since the

DGA dataset is for a period of six months (July 2015 - January 2016), this

type of CV can help to consider the seasonal effect in training the forecasting

algorithms.

6. Train all the single forecasting algorithms using extracted time series : All

the listed forecasting algorithms in Table 6.1 are trained and their training

and validation errors are reported.

7. Apply evolutionary multi-objective algorithms to select the best group of fore-

casting algorithms : The evolutionary multi-objective algorithms using two

objective functions defined in Section 6.5 utilize the most accurate and di-

verse ensembles.

8. Evaluate the solutions on Pareto optimal/archive set : Each solution on the

Pareto front is a vector of selected single forecasting algorithms (Figure 6.4).

They are all non-dominated solutions and one of them should be considered

to forecast dissolved gas contents on the testing set. In this step, all non-

dominated solutions are evaluated and ranked on the validation set.

9. Forecast the dissolved gas contents using the selected ensemble on testing

set : The best non-dominated solution selected in the previous step is used

to forecast the dissolved gas contents on the testing set.
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10. Generate time series : The forecasted time series is used as an input for the

stored NLPCA network in step 3 to generate the targeted time series.

11. Evaluate the performance: The accuracy of the proposed forecasting method

is evaluated using two metrics discussed in Section 6.8.1.

6.8 Results and discussion

In this chapter three multi-objective ensemble approaches were used to forecast

the dissolved gas contents in power transformers: MOPSO based ensemble time

series forecasting, NSGA-II based ensemble time series forecasting, and SPEA-

II based ensemble time series forecasting. In addition, these methods are com-

pared with four different techniques: 1) weighted ensemble method which assigns

a normalised weight to each forecasting algorithm using validation accuracy; 2)

autoregressive integrated moving average (ARIMA) (Box et al., 2015); 3) simple

exponential smoothing (SES) (Holt, 2004); and 4) the persistence model (PER)

(Polikar, 2006). All seven aforementioned approaches are evaluated on a collected

dataset of dissolved gas contents, load history, and three temperature readings

over a period of six months (July 2015-January 2016). The dissolved gas contents

were measured every 3 hours, while temperatures and load history were measured

every 3 minutes. Figure 6.11 presents the proportion of the data used to train,

validate, and test the forecasting methods.

Four forecasting time horizons were considered which are 8 steps ahead (one-day),

16 steps ahead (two-day), 24 steps ahead (three-day), and 32 steps ahead (four-

day).

6.8.1 Time series forecasting performance metrics

Two metrics are employed to evaluate the performance of the time series fore-

casting methods: 1) RMSE (Root Mean Squared Error); and 2) MAPE (Mean

Absolute Percentage Error). These two error measures are calculated as follows:

RMSE =

√∑T
t=1(yt − ŷt)2

T
, (6.23)
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Figure 6.11: Number of samples used in training, validation, and testing phase.

MAPE =
1

n

T∑

t=1

|yt − ŷt
yt
|, yt 6= 0, (6.24)

where T is the number of samples, and yt and ŷt are the actual and the forecasted

values of the dissolved gases, respectively.

6.8.2 Performance comparison of dissolved gases forecast-
ing models

The multi-objective based ensemble methods were compared with four benchmark

models using a non-parametric statistical test called the Friedman test, as shown

in Figure 6.12. The Friedman test ranks the forecasting models on predicting

different dissolved gases and the Nemenyi post hoc test determines if there is a

significant difference between these forecasting models. Figure 6.12 shows the re-

sults of the Friedman test and the average ranks of forecasting models. In this

figure the models without significant difference are connected. For this purpose,

the Friedman’s critical value qα, at a 0.05 significance Demšar (2006) level for the

seven forecasting models and employing the seven dissolved gases dataset, was cal-

culated the 2.948. Based on the obtained critical value, there are some significant
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Figure 6.12: Comparison of forecasting methods using Nemenyi post hoc test and
the average rank of different methods for: (a) 8 steps ahead (one day), (b) 16 steps
ahead (two day), (c) 24 steps ahead (three day), and (d) 32 steps ahead (four day)
dissolved gas contents forecasting. The methods without significance performance
difference are connected.

differences between the forecasting methods especially when we go further into

the future. For example, the mean rank difference between the MOPSO based

ensemble forecasting method, and three benchmark models (ARIMA, SES, and

PER) for all time horizons, are greater than the 3.4041 and there is also a sig-

nificant performance difference between MOPSO and WENS for four day ahead

forecasting. However, the performances of the three multi-objective approaches

are comparable.

To group the methods between those that showed no significant differences, a post

hoc Nemenyi test is employed. The MATLAB toolbox for Nemenyi post hoc test

was obtained from (Kourentzes, 2013). A critical distance (CD) is then calculated

as follows :

CD = qα

√
k(k + 1)

6b
, (6.25)
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where k and b are the number of methods and datasets, respectively (both equal

to 7 here), and qα = 2.948. Therefore, in this experiment, CD = 3.4041. In Figure

6.12, the methods with the mean rank difference smaller than the calculated CD

are connected. Therefore, there is no significant performance difference between

them.

The two computed error metrics, MAPE and RMSE, of the forecasting methods

over all time horizons, are given in Table 6.2. The lowest MAPE and RMSE values

in Table 6.2 are in bold, which confirms the better performance of the multi-

objective approaches. According to Figure 6.12, three of the four benchmark

models (ARIMA, SES, and PER) have the lower mean rank in almost all four

forecasting time horizons, and among them, the persistence model, which states no

change for the future steps compared to the last observed point that has the lowest

rank. From Table 6.2, the multi-objective based ensemble forecasting methods

outperform the WENS, ARIMA, SES, and persistence models as we go further

into the future (three and four day ahead forecasting horizons). From Figure 6.12,

the MOPSO-based ensemble algorithm achieved the highest rank among all the

models to forecast the dissolved gases. Therefore, the percentage improvement of

the MOPSO-based ensemble algorithm, compared with WENS, ARIMA, SES, and

persistence models, was investigated. The percentage improvement is calculated

as follows:

Benchmark performance− proposed performance

Benchmark performance
× 100 (6.26)

The percentage improvement of MOPSO-based ensemble performance compared

with four benchmarking models (WENS, ARIMA, SES, and PER) over all seven

dissolved gas time series forecasting are presented in Figure 6.13. In almost all

cases, the proposed method improved forecasting compared with the three bench-

mark models ARIMA, SES, and PER by more than 50%, while the average per-

centage improvement over all DGA datasets for weighted ensemble model (WENS)

is more than 20%.

Multi-objective based ensemble methods utilize more than one algorithm to fore-

cast the dissolved gas contents, which improves the forecasting accuracy signifi-

cantly. Figure 6.14 shows the selected time series forecasting algorithms in the
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Figure 6.13: MOPSO-based ensemble forecasting percentage improvement com-
pared with three benchmark models for four day ahead forecasting.
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Figure 6.14: Selected time series forecasting algorithms for each ensemble using
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names represent the maximum number of neurons in the hidden layer except for
ESN which is the size of internal units.

multi-objective based ensemble approaches. The outputs of selected forecasting

algorithms in the chosen ensemble are averaged on each sample to predict the

value of dissolved gases.

Since the MOPSO based ensemble method performs better than other methods,
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Figure 6.15: The predicted values of CO2 dissolved gas and their corresponding ac-
tual values for four forecasting horizons using MOPSO based ensemble forecasting.
The bar plots of errors are also represented for each forecasting horizon.

the results of this algorithm for forecasting CO2 are presented to verify the perfor-

mance of the proposed multi-objective ensemble dissolved gas forecasting method.

Figure 6.15 shows the forecasted values (outputs) using the MOPSO based ensem-

ble method on the test set. The patterns of the forecasting errors at the bottom of

each subfigure in Figure 6.15 show that as over a longer time horizon is forecasted,

the error increases. The histograms of the errors are represented in Figure 6.16

overlaid by density curves. The error mean and the error standard deviation (StD)

of each time horizon forecasting are also given in Figure 6.16. The error mean of

one day, two day, and three day ahead forecasts are close to zero (perfect forecast-

ing). Moreover, the error mean of four day ahead forecast are actually within a

reasonable range for this relatively long-term forecasting.

Furthermore, another metric was used to show how well the MOPSO based ensem-

ble method forecasts the CO2 contents, which is called coefficient of determination

(R2) Draper and Smith (2014). Figure 6.17 illustrates how close the forecasted

values are to the actual values of CO2. The higher the R2 value, the better the

forecasting method. The R2 value can vary between 0 and 1 where R2 = 1 for per-
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Figure 6.16: Density curve and histogram of error values of CO2 dissolved gas
forecasting using MOPSO based ensemble forecasting for four forecasting horizons.
The error mean and error standard deviation for each forecasting horizon are also
reported.
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Figure 6.17: Linear regression of forecasted values relative to actual values of
CO2 dissolved gas forecasting using MOPSO based ensemble forecasting for four
forecasting horizons. The red dashed lines represent the perfect forecasting where
the forecasted values are exactly the same as actual values.
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fect forecasting. The red dashed lines in Figure 6.17 represent perfect forecasting.

If the fitting line (solid blue line) perfectly masks the dashed line, the forecasting

method has a maximum accuracy (100%).

6.9 Summary

Forecasting dissolved gases of power transformers depends on different factors, such

as the value of dissolved gas itself, the load history of the power transformers, and

the ambient, oil, and winding temperatures. Considering all these factors, the

contents of each dissolved gas helps to create an accurate and reliable forecasting

model. In addition, the type and environmental conditions of power transformers

vary widely. Therefore, utilizing an intelligent framework to forecast the dissolved

gases is of great interest to electric utilities and power companies in order to achieve

a better predictive based maintenance scheme. An effective time series from input

variables was first extracted using a non-linear PCA method to train the forecast-

ing algorithms. Then, evolutionary multi-objective optimization algorithms are

applied to find the most accurate and diverse group of the forecasting algorithms

among 23 trained algorithms. Subsequently, the selected non-dominated solutions

were examined on the validation set to rank them and choose the best solution

(group of the algorithms). The obtained results of the proposed method on the

testing set were also compared with other conventional techniques. The proposed

method outperformed the conventional methods in all forecasting time horizons.

In addition, among three multi-objective ensemble forecasting methods (SPEA2,

NSGA2, and MOPSO), the performance of the MOPSO algorithm was slightly

higher. The prototype dissolved gas forecasting method can be used “in house” by

electric utilities to accurately predict the trend of dissolved gases and to diagnose

incipient faults of transformers.
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

In this thesis, firstly, some basic background about the different transformers faults

were presented and their corresponding condition monitoring and condition as-

sessment techniques were investigated. One of the most commonly used condition

monitoring techniques in practice, which is called dissolved gas analysis, was re-

viewed in detail. This method is widely used by power companies and electric

utilities to assess the condition of their transformer fleet. In addition, some of the

most important conventional DGA based fault diagnosis methods were introduced

and the main drawbacks of each method were discussed. The uncertainty of the

traditional dissolved gas analysis base methods in classifying the correct faults of

transformers was the main motivation of this research. To overcome these short-

comings, an intelligent condition assessment method was proposed using various

statistical and machine learning techniques.

Some of the basic theory of statistical and machine learning algorithms used in this

research were presented and discussed in Chapter 4. Each algorithm was explained

to make it possible for the interested readers to understand these methods. Most

of these algorithms were to be fine-tuned and implemented in both developed

algorithms in this research for fault classification and dissolved gas forecasting in

Chapter 5 and Chapter 6.
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An intelligent load tap changers fault diagnosis algorithm was first developed using

a single classifier learning system. In this algorithm a support vector machine

classifier was used. Although, the preliminary results of this algorithm showed

some improvements over other conventional techniques such as the modified Duval

triangle for load tap changer fault diagnosis, there were still some concerns about

the limitations of the proposed algorithm as listed in Section 4.5. The performance

of the proposed hierarchical fault diagnosis algorithm for a classification between

normal and faulty cases was better than the conventional method. However, the

size of the available load tap changers dataset was small and the reported diagnostic

accuracies may change on a larger dataset. The shortcomings and challenges of the

single classification algorithm were the main motivations of developing an ensemble

fault diagnosis algorithm for power transformers.

A model was developed for classifying faults of power transformers. The proposed

algorithm used different classification algorithms in a multi objective ensemble to

identify incipient faults of power transformers using dissolved gases in transformer

oil. A multi objective particle swarm optimisation algorithm was utilised to select

the most accurate and diverse group of classification algorithms and also the most

relevant dissolved gases to each fault class. The chosen group of classifiers were

then tested on unknown DGA samples to evaluate the accuracy of the proposed

method. The accuracy of the proposed fault classification algorithm was compa-

rable with the previous reported studies. The proposed algorithm is actually a

data-driven method which is able to classify faults of transformers regardless of

the environmental and technical conditions of transformers. The DGA samples

used in this algorithm were collected from different published studies and from

various ranges and types of transformers. The results of this method were also

compared with other ensemble approaches which showed some improvements over

these methods.

In addition to the fault classification algorithm, a time series forecasting algorithm

was developed in Chapter 6, which utilised a multi objective ensemble to predict

the future state of the dissolved gases in power transformers. For this purpose,

three evolutionary multi-objective optimisation algorithms were applied to choose

the most accurate and diverse group of time series forecasting algorithms. The
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result of this study confirmed that the multi-objective particle swarm optimisa-

tion algorithm performed better on selecting an ensemble of the best single fore-

casting algorithms compared with other optimisation approaches. The predicted

dissolved gases using the proposed algorithm were also benchmarked against other

traditional time series forecasting methods and showed some improvements over

the desired forecasting horizons. Finally, a number of options for future research

and development were presented.

7.2 Future Work

The research presented in this thesis can be further investigated in some aspects:

• Adding more intelligent condition assessment modules using various condi-

tion monitoring techniques.

• Developing an anomaly detection agent to alarm the abnormal operation of

the transformers.

• Improving accuracy and reliability of the DGA forecasting algorithm using

more advanced machine learning methods.

• Building a general asset management tool to estimate the remaining useful

life of power transformers.

Following are the possible ways for further development of the listed suggestions.

As shown in Figure 2.1, despite the DGA based fault classification, which was

studied in this research, it is also possible to develop five more condition assess-

ment algorithms. The algorithm would be a general condition assessment tool for

power transformers. For this purpose, different single intelligent algorithms can

be implemented and trained using the available dataset obtained from each con-

dition monitoring technique. The main challenge is to collect historical data for

each condition monitoring technique. Then, based on the decision of each condi-

tion assessment agent, a reliable and comprehensive decision can be made on the

transformer faults.
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The anomaly detection agent can be developed using online measured data from

the sensors installed on the transformer. Some the anomaly detection units are as

follows:

• Top oil temperature monitoring : An intelligent algorithm that receives load-

ing history and the ambient temperature of the transformer as inputs can be

developed to predict the top oil temperature. The agent can send an alarm

in the case of abnormal operation when the value of top oil temperature is

higher than a fixed threshold.

• Dissolve gasses trend monitoring : The trend of the dissolved gasses can

be monitored to identify the sudden increase or decrease which may be a

symptom of occurring faults inside the transformer.

The main problem in applying traditional machine learning techniques for time

series forecasting tasks is to choose the most appropriate delays in the time series

as inputs for the learning algorithm. For this purpose, in the proposed algorithm

in Chapter 6, a maximum delay of eight was chosen by trial and error. In addition,

the ESN algorithm as an architecture for recurrent neural network, which provides

a short-term memory in the reservoir units, was also used in the ensemble of

forecasting algorithm and helped to improve the forecasting results. However,

using deep learning for forecasting tasks is very popular nowadays (Kur, 2014; Hu2,

2016; Qiu et al., 2014). One of the most promising deep learning architectures is

called Long-Short Term Memory (LSTM), which is also a recurrent neural network

(Gers et al., 2000; Hochreiter and Schmidhuber, 1997). LSTM has not only the

short-term memory feature like other RNN architectures, but also make it possible

to remembering time series values for a longer period of time. These properties

can enhance the dissolved gas forecasting accuracies.

Since different failure modes (faults) can be determined by different condition as-

sessment techniques, each diagnostic method can assign a value that shows its

degree of certainty about a specific failure mode. These values can be consid-

ered as diagnostic probabilities of different condition assessment methods for each

failure mode. The overall assessment can be done based on the assign values of
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different diagnostic methods. The current status of the transformer (e.g., normal,

minor fault, major fault, and failed) can be determined based on the vector of

assigned diagnostic probabilities by different diagnostic methods. Furthermore,

a probabilistic approach such as hidden Markov model (HMM) can be used to

estimate the failure rate and consequently remaining useful life of the transformer.
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Appendix A

Ensemble Classifier Selection
Using Multi-Objective PSO for
Fault Diagnosis of Power
Transformers

The content of this appendix is based on the published conference paper during the

course work of this research in the 2016 IEEE World Congress on Computational

Intelligence (IEEE CEC 2016).
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A. Peimankar, S. J. Weddell, T. Jalal, A. C. Lapthorn
Ensemble classifier selection using multi-objective PSO for fault diagnosis of power transformers 
2016 IEEE Congress on Evolutionary Computation (CEC), p. 3622-3629
Abstract: This paper presents a binary version of the Multi-Objective Particle Swarm Optimization 
(bi-MOPSO) algorithm to classify the faults of power transformers. The proposed method selects the 
most accurate and diverse classifiers, simultaneously. Then, the selected classifiers are combined to 
diagnose the actual faults of power transformers using dissolved gas analysis (DGA) performed on 
the oil of power transformers. The obtained results are compared to other scenarios such as 
combining the outputs of all classifiers or using only the most accurate classifier to diagnose the 
faults. The comparison reveals that the proposed method is highly reliable and useful for diagnosing 
the faults of power transformers.
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