
An Animated Pedagogical Agent
for SQL-Tutor

Honours Project

Pramuditha Suraweera

Supervisor

Dr. Antonija Mitrovic

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UC Research Repository

https://core.ac.uk/display/212407865?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Contents

Abstract 1

1 Introduction 2
1.1 Project aims ..2

1.2 Report Structure ..3

2 Background 4
2.1 Intelligent Tutoring Systems ..4

2.2 Web-based ITS..5

2.3 SQL-Tutor ..6

2.3.1 Domain ..6

2.3.2 Learning environment...7

2.3.3 Diagnosis and Feedback..8

2.4 Animated Pedagogical Agents ...9

2.4.1 Desirable characteristics ...10

2.4.2 Examples..10

2.4.3 Types of interactions...12

2.4.4 Architectures ..13

3 Development of the agent 15
3.1 Deficiencies in the original SQL-Tutor ..15

3.2 Expected benefits of introducing an agent ..16

3.3 Design...16

3.3.1 Architecture..17

3.3.2 Gestures ...17

3.3.3 Pedagogical behaviour space...18

3.3.4 Rules for presenting behaviours ..19

3.4 Implementation ...20

3.4.1 Adele..20

3.4.2 Character..21

3.4.3 Gestures ...22

3.4.4 Architecture..23

Contents ii

4 Evaluation study 25
4.1 Experiment design ...25

4.2 Results and analysis ...26

4.2.1 System/agent assessment...27

4.2.2 Problem-solving logs ..28

4.2.3 Pre- and post-tests...30

4.2.4 Summary of results ...32

4.3 Discussion ...32

5 Conclusions 33

Acknowledgements 34

Bibliography 35

Appendices
A Pre- and Post-tests

B Questionnaire

C Results of Questionnaire

D Results of problem-solving logs

E Results of Pre- and Post-tests

Abstract

Animated pedagogical agents are animated characters that inhabit interactive learning
environments. In addition to providing problem-solving advice in response to a student’s
actions, they are also able to play a powerful motivational role. This project develops an
animated pedagogical agent for the computer based teaching system, SQL-Tutor. The
introduction of a pedagogical agent to SQL-Tutor enables it to provide higher
motivational support to the students and enhances their quality of learning.

An evaluation of the impact of the agent on the student’s learning experience was
carried out with second year Computer Science students from the University of
Canterbury. The study revealed that the presence of an animated character with an
interesting personality has a strong positive effect on student’s perception of the learning
experience. The study also demonstrated that students were more motivated to interact
with the system equipped with the agent compared with the SQL-Tutor with no agent.

Chapter 1

Introduction

Intelligent Tutoring Systems (ITS) are an attempt to automate personal tutors. They have
understanding of the subject domain to offer individualised problem-solving advice to the
students. Animated pedagogical agents deliver such advice with a strong visual appeal.
This research project introduces an animated pedagogical agent for an ITS.

Animated pedagogical agents inhabit interactive computer based learning
environments and provide customised feedback to the students. Their lifelike and
captivating presence motivates students to interact longer with educational software. A
significant improvement in the quality of learning results.

SQL-Tutor is a computer based teaching system developed to assist students in
learning Structured Query Language (SQL). It offers a problem-solving environment
focussing on individualising problem-solving advice to a particular student. The feedback
from the system is displayed as text messages that may appear monotonous.

SQL-Tutor was improved to provide more support for the student, increase their
learning rate and enhance the quality of learning by the introduction of an animated
pedagogical agent.

1.1 Project aims

The two main objectives of this research project are:

(a) Development of an animated agent for SQL-Tutor;
(b) Evaluation of the effectiveness of the developed animated agent.

An animated pedagogical agent namedSmart-eggwas developed to present feedback
from SQL-Tutor.Smart-egg is a two-dimensional cartoon figure capable of performing
an array of gestures. The gesture space is exploited and combined into complex
behaviours to express emotions. The main role of the agent is to present feedback
messages to the students in an interesting and enjoyable manner, to increase their
motivation and subsequently, the effectiveness of their learning.

To fulfil the second objective, an evaluation study was carried out with second year
Computer Science students at the University of Canterbury. Each of them interacted with
either the original version of SQL-Tutor or SQL-Tutor withSmart-egg. During the
interactions, the learning environment logged all the student’s problem-solving activities,

3 Introduction

and the students sat a pre- and post-tests. They were also asked to complete a system
assessment questionnaire. The results from the evaluation are very promising, revealing
that students perceived SQL-Tutor withSmart-eggas being more helpful and enjoyable
in comparison to the original version.

1.2 Report Structure

The following chapter describes the background for this project, outlining Intelligent
Tutoring Systems, SQL-Tutor and animated pedagogical agents.

Chapter 3 describes the development ofSmart-egg, an animated pedagogical agent
for SQL-Tutor. It outlines the drawbacks of the original version of SQL-Tutor and the
benefits of introducing an animated pedagogical agent. These sections are followed by an
account of the design and implantation details ofSmart-egg.

Chapter 4 is focuses on the evaluation study. This chapter includes an outline of the
experiment and a detailed account of the results and analyses.

The final chapter presents the conclusions.

Chapter 2

Background

Animated pedagogical agents are autonomous agents that support human learning in
interactive learning environments. They extend and improve Intelligent Tutoring Systems
(ITS) in a number of ways. This research project focuses on the areas of ITSs and
animated pedagogical agents. The following sections outline ITSs, Web-based ITSs, and
SQL-Tutor, an ITS developed to assist students in learning the Structured Query
Language. It also includes a description of animated pedagogical agents and some
examples of pedagogical agents that inhabit ITSs.

2.1 Intelligent Tutoring Systems

Empirical studies have demonstrated that effective individual tutoring is the most
powerful mode of teaching. However, individual human tutoring for each and every
student is logically and financially impossible. The creation of Intelligent Tutoring
Systems attempts to bring the personal tutoring experience to a broader audience.

The architecture of a typical standalone ITS (illustrated in Figure 1), at a birds eye
view of abstraction, consists of a tutorial component, a student model for keeping track of
student progress over time, a cognitive simulation of an expert problem solver and the
code underlying the interface [Alpe99].

Figure 1: Architecture of an ITS [Alpe99]

Expert Module Student Model

Tutorial Module

User Interface

5 Background

The expert module accommodates a cognitive model of an ideal student problem
solver. The tutorial module consults the expert module when determining the correctness
of an answer and providing hints to a student. Moreover it consults the student model
when generating pedagogical actions such as feedback from the system and selecting
problems for a student. The tutorial module also requires communication knowledge for
effective communication with students. The user interacts with the user interface (UI) in
problem solving and getting feedback from the system. The user interface should be
carefully modelled so that it makes learning an enjoyable experience rather than a
gruelling and frustrating encounter.

2.2 Web-based ITS

ITSs over the World Wide Web (WWW)offer great prospects in moving closer to the
goal of providing personal tutoring experiences to a broader audience. They tend to trim
down the limitations and complications encountered in trying to distribute the system to a
very large audience. Users could have access to individual tutoring from a standard Web
browser.

A Web-based ITS can be deployed according to a number of architectures. The
common solutions include Java-only, HTML-CGI and distributed Client-Server
[Alpe99]. A Java-only solution would be to create the Tutor as an applet and allow
students to download it from a specific URL. The users would interact with HTML entry
forms in a Web browser in an HTML-CGI architecture. This consists of a server that
possesses total functionality. A client-server model, on the other hand, distributes
functionality between a client and a server. This would consist of a downloadable applet
that delivers the user interaction module and communicates directly with a server
application.

A number of ITSs that are based on the Web have been developed in the last few
years. These ITSs cover a variety of pedagogical areas, e.g. Mathematics, Computer
Science and Medicine, and are intended for a wide range of ages.

Algebrain [Alpe99] is an environment for practising algebraic skills. The standalone
version of the Algebrain’s equation-solving tutor was developed according to the
architecture depicted in Figure 1. Due to the limitations and complications of trying to
make the system available for a large audience, it was enhanced to function as a Web-
based ITS.

The Web-based version of Algebrain uses a client-server architecture, as illustrated in
Figure 2. The UI of the enhanced version is implemented as a Java Applet that can be
executed on a Web browser, as this creates a more interactive user experience than
HTML alone could afford. For high efficiency, the applet communicates with the central
server using a socket that enables direct communication between the client and server
code [Alpe99].

2.2 Web-based ITS 6

Figure 2: Architecture for the Web-based Algebrain System [Alpe99]

Advanced Distance Education (ADE) is also an ITS, developed to deliver continuing
medical education courses over the Web. ADE is mainly aimed at medical professionals
in the United States who are periodically required to take continuing education courses in
order to maintain their licence to practice. By recording student’s actions, the courseware
adapts its feedback based on their achievements.

Similarly, SQL-Tutor (Web version) is an ITS that was developed to deliver SQL
over the Web, as discussed in the following section.

2.3 SQL-Tutor

SQL-Tutor is an ITS for assisting students in learning the database query language, SQL.
The system is aimed at upper-level undergraduates. It is developed as a guided discovery
learning environment that provides facilities to verify student’s solutions and assist them
in solving problems, if required. The system attempts to tailor instructional actions to
his/her needs [Mitr98a, Mitr99]. Several aspects of the SQL-Tutor are discussed in the
following sub sections.

2.3.1 Domain

SQL is a comprehensive database language consisting of data and view definition
statements as well as data manipulation statements. The American National Standards
Institute (ANSI) and the International Standards Organisation (ISO) developed the first
standard for SQL called SQL1 in 1986. A revised and expanded version of the original
standard was adopted in 1992 as a new standard, namely SQL2, which is used in many
commercial databases today. Even though there is a movement towards graphical query
interfaces, SQL is extremely important in the database world. SQL3, the latest standard,
further extends SQL with object-oriented and other recent database concepts [Elma94,
Mitr98a].

Expert Solver Student Model

Tutorial Module

UI Proxy / Socket Communicator

UI / Web Browser + Java Applet

Internet

7 Background

Students are known to experience problems in learning SQL despite its simplicity and
structured nature. Some of these problems come from the burden of having to memorise
the database schemas. Students are also known to have difficulty in comprehending
concepts such as grouping and restricting grouping. Join conditions and understanding
the difference between aggregate and scalar functions are other areas that students
struggle with in SQL [Mitr98a].

SQL is usually taught in a classroom environment, complemented by lab exercises.
However, students find it difficult to learn SQL by directly working with a DBMS, as the
error messages are limited only to syntax errors and typically are not very helpful. SQL-
Tutor, on the other hand, is capable of generating better feedback for syntax errors as well
as semantic errors [Mitr98a].

SQL-Tutor currently covers only the SELECT statement of SQL. However, this does
not prove to be a limitation, as queries are known to cause the most misconceptions for
students. Additionally, many concepts covered by SELECT statements are relevant to
other SQL statements as well as to relational databases in general [Mitr98a, Mitr99].

2.3.2 Learning environment

SQL-Tutor consists of a user interface, pedagogical module and a student modeller
[Mitr98a], as illustrated in Figure 3. The interface for the Web version is given in Figure
4. The main page of SQL-Tutor is divided into four frames. The upper frame displays the
problem, allowing the student to easily remind him/herself of the elements requested in
the query. The middle left frame consists of the clauses of the SQL SELECT statement,
thus eliminating the burden of remembering the keywords and the relative order of the
clauses. The lowest part displays the schema for the chosen database, with a link to a
description of the currently chosen database and the table descriptions. The table
descriptions are shown by their names and attribute names. The primary key is underlined
for easy identification. The visualisation of the structure of the tables is important for
reducing the working-memory load of the students.

Figure 3: The architecture of the stand-alone version of SQL-Tutor [Mitr98a]

Student Models

Databases,
Problems,
Solutions

Constraints
CBM

Pedagogical
module

Interface

Student

2.3 SQL-Tutor 8

Figure 4: User Interface of SQL-Tutor (Web version)

The pedagogical module (PM) selects problems for the student and generates
appropriate feedback. When a solution to a problem is submitted, PM sends it to the
student modeller. The student modeller checks whether the solution is correct or incorrect
and updates the student model. The feedback is generated and is displayed in the middle
right frame of the SQL-Tutor interface.

2.3.3 Diagnosis and Feedback

SQL-Tutor is based on a student modelling approach, called Constraint-Based Modelling
(CBM) that focuses on student errors [Mitr98b]. The domain knowledge in CBM is
represented as constraints and is used to identify errors. Identification of errors is
extremely important for students who are unable to detect errors themselves. The basic
assumption of CBM is that the diagnostic information is not in the sequence of student
actions, but is in the final state. Thus only the final submitted answer is evaluated for
correctness although CBM can also be used in a step-by-step manner [Mitr98b]. This
feature increases the efficiency of the system, thus reducing the amount of
communication over the Web. The amount of data transfer between the server and the
client can be a crucial factor in congested networks.

9 Background

The student solutions are evaluated by matching them to constraints. The constraints
can be categorised into two groups. One group deals with the syntax of the language and
the other with the semantics of problems. The semantics are checked by the comparison
of the student’s solution to the ideal solution. The constraints that are violated are
processed by the PM, resulting in the generation of appropriate feedback [Mitr98b].

The level of feedback determines the amount of information provided to the student.
The system provides six levels of feedback:positive/negative, error flag , hint , partial
solution, all errors and complete solution [Mitr99]. The lowest level of feedback,
positive/negative, provides only information on whether the solution is correct or
incorrect. It also provides the number of errors in incorrect answers. Anerror flag
message informs the user about the clause in which the error had occurred (the
pedagogical module selects one when the submitted solution consists of more than one
error).Hint level messages provide more information about the type of the error.Partial
solution displays the correct content of the clause that contains the error. Hints about all
errors in the submitted answer are listed in a message atall errors level. The ideal
solution is displayed in thecomplete solutionlevel. The system does not provide general
help on the syntax of SQL. This could be a drawback of the system, as it does not attempt
to help students with the syntax and the concepts of SQL keywords.

When the process of solving a problem is completed, the system consults the student
model in choosing a new problem for the user.

2.4 Animated Pedagogical Agents

Pedagogical Agents [Andr97, John98, Lest97a, Pies98, Schö98] are autonomous agents
that facilitate human learning by interacting with students in learning environments. They
have sufficient understanding of the learning context and subject matter to allow them to
perform useful roles in computer-based learning environments. They should also manage
their own behaviour in a consistent manner, responding to a variety of environmental
stimuli. They must exhibit robust behaviour in rich, unpredictable environments. The
environment of an agent includes both the student environment and the learning
environment in which the agent resides.

Animated pedagogical agents appear to the student as animated characters. They can
engage in a continuous dialogue with the student, and emulate aspects of dialogue
between a human teacher and student in instructional settings. They should give the user
an impression of being lifelike and believable, producing behaviour that appears to the
user as natural and appropriate to the role of a virtual instructor or guide. It is useful to
give our agents behaviours that make them appear knowledgeable, attentive, helpful,
concerned, etc [John98, Lest97b, Lest99].

A large-scale empirical study of the affective impact of animated pedagogical agents
on a student’s learning experience was conducted by the North Carolina State
University’s Multimedia Laboratory [Lest97b, Lest97d]. This study involved one
hundred middle school students interacting withHerman the Bug (discussed in 2.4.2),
an animated pedagogical agent that inhabits theDesign-a-Plant learning environment.
Design-a-Plant is a design-centred microworld that provides students with the
opportunity to explore physiological and environmental considerations that govern a
plant’s survival. The study revealed thepersona effect, which is that the presence of a
lifelike character in an interactive learning environment can have a strong positive effect
on a student’s apprehension of their learning experience [Lest97b]. It also demonstrated

2.4 Animated Pedagogical Agents 10

the interesting effect of multiple types of explanatory behaviours on both learning
performance and affective understanding. Students appreciated the agent as being helpful,
credible and entertaining.

2.4.1 Desirable characteristics

Empirical studies [Lest 97b, Lest 97d] have shown that animated pedagogical agents can
enhance the student’s quality of learning. There are a number of characteristics that an
effective pedagogical agent should display.

Good teachers are often good motivators. As motivation is a key ingredient in
learning, pedagogical agents should encourage students to spend more time interacting
with the ITS and attempt more problems. Moreover, they should also congratulate users
when they successfully solve problems.

Emotions also play an important role in motivation. Therefore pedagogical agents will
become more efficient teachers if they appear to ‘understand’ emotions and respond
accordingly. Pedagogical agents should also show that they care about students and their
progress [Elli99, Town98a]. This can foster a feeling that the student is not deserted in
the learning process and can encourage the student to care about his/her own progress,
and the agent’s opinion of him/her. Hermann Maurer proposes the use of the
“Tamagotchi craze” for teaching purposes. He proposes VR-Friends (virtual friends) who
are kept happy if their owners answer questions correctly [Maur98].

The agent should be sensitive to the student’s emotions. Whenever the student feels
frustrated, the agent should intervene with assistance before the student loses interest.
The pedagogical agent should also convey enthusiasm for the subject matter, in order to
foster similar enthusiasm in the student [Lest97d].

An agent should also possess a rich and interesting personality, so that it can simply
make learning more fun. A student who enjoys interacting with a pedagogical agent will
have an increased positive view of the whole learning experience. A student who enjoys a
learning environment would undoubtedly spend more time there, which is likely to
increase learning [Lest97b].

Animated personas can cause the students to feel that the educational material is less
difficult. Pedagogical agents should be visually expressive to clearly communicate
problem-solving advice and simultaneously have a strong motivational effect on students.
Most importantly, they make it possible to model dialogues and interactions that occur
during individual tutoring. Factors such as eye contact, body language and emotional
expressions should be modelled and exploited for instructional purposes. An effective
agent should posses the ability to increase the student’s attention to learning [Lest97d].

2.4.2 Examples

Animated characters in the interface of pedagogical systems have become increasingly
popular in the recent years. These characters are based on either cartoon-style drawings,
real video or geometric 3D-models [Andr97]. They may either inhabit a virtual world, or
a constrained environment that consists solely of the agent. There are many examples of
pedagogical agents constructed in research laboratories around the world.

USC/Information Sciences Institute’s Centre for Advanced Research in Technology
of Education (CARTE) has developed two agents:Steve (Soar Training Expert for
Virtual Environments) andAdele (Agent for Distance Learning – Light Edition).

11 Background

Steve[Elli99] is designed to interact with students in networked immersive virtual
environments. It has been applied to naval training tasks such as operating engines aboard
US Navy surface ships. Students can see the agent in stereoscopic 3D and hear him
speak. The agent monitor the student’s position and orientation in the environment.Steve
software is combined with 3D display and interaction software, simulation authoring
software, speech recognition and generation software to produce a rich virtual
environment in which students and agents can interact.Adele [John98], on the other
hand, was designed to run on desktop platforms with conventional interfaces. The
motivation behind the design of Adele was to broaden the applicability of pedagogical
agent technology.Adele is created to integrate into Web-based learning material and runs
on a student’s Web browser in a separate window. CARTE is developing Adele-based
course material for medical education in family medicine and graduate level geriatric
dentistry.

North Carolina State University’s Multimedia Laboratory has also developed two
pedagogical agents:Herman the Bug and Cosmo. Both agents were developed to
inhabit virtual environments.Herman the Bug [Elli99, Lest97a, Lest99] is a 2D cartoon
figure that inhabitsDesign-a-Plant, a design-centred learning environment to help
middle school students understand botanical anatomy and physiology (Figure 5). This
antenna-bearing creature advises students as they design plants to survive in various
hypothetical environments. In the process of explaining, he performs a broad range of
activities including walking, flying, swimming, shrinking and bungee jumping. .Cosmo
[Lest97c, Town98a, Town98b], in contrast, is a 3D character that occupies the Internet
Advisor, a learning environment for the domain of Internet packet routing. The agent
assists students to solve problems such as finding a route avoiding high-traffic to transmit
packets between network hosts.Cosmo has been used to investigate how to combine
various agent behaviours in order to enhance deictic believability [Lest97c, Town98a].
Deictic believability is the ability to refer to objects in their environment through
judicious combinations of speech, locomotion and gesture, in a manner similar to
humans.Herman the Bug has been used to investigate managing mixed initiative
dialogues [Lest99]. It was also used in large-scale empirical evaluation studies that have
demonstrated the effectiveness of pedagogical agents in facilitating learning [Lest97b,
Lest97d].

Figure 5:Herman the Bug inhabitsDesign-a-plantenvironment [Lest97e]

2.4 Animated Pedagogical Agents 12

André, Rist and Müller at the German Research Centre for Artificial Intelligence
(DFKI) have developed an animated pedagogical agent for interactive WWW
presentations, calledPPP Persona [Andr97]. The persona appears in many forms.
Currently there are two cartoon figures and three 3D models. The persona guides the
learner through Web-based material using presentation acts (e.g. pointing) to draw
attention to elements of the Web pages, and provide commentary via synthesised speech.
The PPP system generates multimedia presentation plans for the persona to deliver.PPP
persona executes this plan adaptively, modifying it in real-time based on user actions
such as repositioning the agent on the screen or asking questions.

IBM T.J. Watson Research Centre has developed the Algebrain equation solver
[Alpe99] to solve equations for a particular variable. Unlike other mathematical software,
Algebrain is not only concerned with the final answer, but supports student’s problem
solving activities to enhance their problem solving skills. At each step of the solution
process the user can ask for hints by clicking on the animated agent. The agent is a
dancing 2D cartoon figure. The feedback is given as text combined with animated
behaviours of the agent such as applauding.

2.4.3 Types of interactions

Pedagogical agents interact with students in a number of different ways by performing
useful pedagogical activities. The behaviour space of an agent should be exploited in a
manner that fulfils the objectives of a pedagogical agent.

Figure 6: Steve demonstrates how to operate equipment US Navy ship [Steve]

When students are first introduced to a certain topic, it is often necessary to provide a
demonstration of how to solve a problem or perform a certain task [John]. Pedagogical
agents are well suited for demonstrations, although these alone are not very effective
unless the student understands what is being done. The agent should also explain its
actions to the student. For example,Steve performs demonstrations of how to operate
important equipment aboard US Navy ships, and provides explanations in association

13 Background

with his demonstrations (Figure 6).Stevealso allows the student to move around in the
environment, allowing the student to view the demonstrations from various perspectives
[Elli99].

Pedagogical agents should assist students by means of hints to can guide the student
struggling with a problem. Implementations such asAdele, Steve, Herman the Bug and
Cosmoprovide such hints [John, John98, Lest97d, Town98a].

Opportunistic instruction (providing instruction when situations arise where it is
appropriate) is another type of interaction that pedagogical agents should possess. This
feature is important since these instructions provide information that can be used
immediately.Herman the Bugmakes use of opportunistic instructions. When the learner
works on specifying the characteristics of a leaf,Herman intervenes and provides
instructions on the leaf’s morphology [Lest97d, Lest99].

Pedagogical agents should be able to generate explanations as required.Herman and
Cosmo do this if the student makes a mistake or seems to have problems [Lest97b,
Lest99, Town98a].

Emotive behaviours of agents can help to engage and motivate the learner. They
could also relieve student’s frustrations by appearing to commiserate with them.Cosmo
possesses a large emotive behaviour space. Behaviours such as applause are used with
congratulatory speech acts.Cosmo also uses behaviours such as head scratching, and
shrugging when posing rhetorical questions [Town98b] (see Figure 7).

Other capabilities, such as student modelling, that are important for intelligent
tutoring systems, are potentially useful for pedagogical agents as well [John].

Figure 7: Cosmo explaining the task [Lest97f]

2.4.4 Architectures

The architecture of a pedagogical agent depends on the range of capabilities that it
intends to provide. The current implementations of agents can be categorised into three
architectures; behaviour sequence approach, layered generative approach and state
machine compilations approach [John].

2.4 Animated Pedagogical Agents 14

In behaviour sequencing, behaviours are assembled from a collection of prerecorded
primitive animations, sounds and speech elements. These elements are organised in a
behaviour space. Useful pedagogical behaviours are generated by a behaviour sequencing
engine that composes media elements in real-time. Assembling behaviours from
prerecorded segments saves time in creating animations. This approach is well suited for
graphics where the camera is fixed. As it does not provide real-time adaptation of
behaviour, if the student performs an action during the execution of a sequence, the
behaviour sequence will have to be recomputed.Herman the Bug was designed
according to the behaviour sequencing approach [Lest97a, Lest99].

The layered generative approach generates animations in real-time. The architecture
consists of a cognitive decision making layer and a perceptual motor layer that is
responsible for monitoring the environment and generating animations. The cognitive
layer continually evaluates the state of the environment and makes decisions about the
agent’s actions. The perceptual motor layer carries out these actions.Steve’s architecture
is an instance of the layered generative approach [Elli 99].

The state machine compilation approach addresses the issue of real-time adaptation of
the agent’s behaviour, while limiting real-time animations. This approach is also based on
behaviour space in a similar manner to the behaviour sequencing approach. However,
these behaviours are executed by a state machine that can adapt at run time to student
actions. This approach is exemplified inPPP Persona[Andr97].

Chapter 3

Development of the agent

Although shown to be effective [Mitr98a, Mitr99], the original SQL-Tutor can be further
improved in order to provide more support for the student, increase their learning rate and
enhance the quality of learning. This can be achieved by introducing an animated
pedagogical agent to SQL-Tutor.

The following sections outline the deficiencies in the original version of the system
and the expected advantages of introducing a pedagogical agent. The design procedure
and proposals are detailed in the third section and finally an account of the
implementation procedure is included.

3.1 Deficiencies in the original SQL-Tutor

The feedback from the original SQL-Tutor is presented as simple text messages, which
appear conforming and monotonous. If students feel that the feedback is dull, they may
be discouraged from spending time trying to grasp the concepts behind the messages.
Ultimately they may even lose interest in SQL-Tutor, resulting in a decline of the system
interaction time. An ITS is ineffective, irrespective of the quality of feedback, if the
system is unappealing to the users. Therefore the feedback should be presented in an
interesting and lively manner.

Motivation is a key ingredient in effective learning. SQL-Tutor attempts to motivate
users by displaying text messages such as “Well done!”, “Almost there”, etc. However,
the system does not offer a great variety of motivational messages and the possibilities of
motivating the users with pure text messages are limited, as these have very little impact
on most humans. Visual messages have been shown to have a much greater effect on
learning [Lest97b, Lest97d].

Another aspect of the system that can be improved is its support for self-explanation,
which is the process of generating explanations and justifications to oneself when
studying an example. Studies have shown that students who self-explain learn more.
Moreover, when students are prompted to self-explain, most students will do so and thus
increase their learning [Cona99]. Therefore, it is highly desirable for ITSs to encourage
self-explanation. The original implementation of SQL-Tutor provides no explicit support
for its users to compare their solutions with the hints offered by the system, and justify
them.

3.2 Expected benefits of introducing an agent 16

3.2 Expected benefits of introducing an agent

The introduction of an animated pedagogical agent to SQL-Tutor is expected to assist
students in learning SQL in a number of ways. Animated pedagogical agents are known
to play an important role in motivation. In SQL-Tutor, a lifelike figure that appears in the
background can encourage the user to double check before submitting an answer. The
agent could motivate the users to perform at their best and encourage them to spend more
time with the system.

The agent’s behaviours could show an understanding of the student’s emotions,
making the users feel that they are not alone in the learning process and that they are ‘in
things together’ with the agent. It could also make the student feel obliged to perform at
his/her best so the agent would have a high opinion of them.

The agent should display great enthusiasm for SQL to encourage the student to be
similarly enthusiastic. Students with high enthusiasm are likely to spend more time with
the ITS. Their eagerness may also drive them to learn and master a greater number of
concepts using SQL-Tutor.

One of the most important requirements in teaching is that the students should not
become frustrated. Once frustration creeps into the student’s mind, overcoming it takes a
major effort on both parties (teacher and student). An animated pedagogical agent that
appears to monitor every action of the user can reduce the risk of users feeling frustrated
by the system. The agent should intervene by offering assistance before the student loses
interest.

The formal and monotonous image of SQL-Tutor will be changed by the introduction
of an animated character, whose rich and interesting personality should make learning
more interesting and fun.

The animated character can be used to model dialogues; the interactions that arise
during individual human teaching of SQL. To increase the student’s attention during the
learning process, the agent’s visual behaviours can be utilised to clearly communicate
advice from the system to the user. An agent that possesses the ability to hold a high
proportion of the user’s attention, and delivers clear advice, could even make the student
feel that SQL is less difficult.

3.3 Design

The design process of the pedagogical agent for SQL-Tutor consists of a number of steps:

1. Identifying types of interactions between the pedagogical agent and the student
and designing the agent’s architecture

2. Defining the gesture space
3. Defining how gestures are combined to form behaviours
4. Defining a set of rules for presenting behaviours depending on the interactions

17 Development of the agent

3.3.1 Architecture

The agent will present all messages from SQL-Tutor to the user. This requires a more
interesting manner of presenting the text outputted from the system. To fulfil this
objective, the agent is designed to perform illustrative gestures while speaking or
explaining. As the system only produces text messages depending on the actions of the
user, building an agent with an interesting personality is challenging. This was achieved
by utilising the gesture space of the pedagogical agent.

SQL-Tutor stores student actions in the form of student models and logs and produces
feedback depending on them. Thus, the agent is not required to maintain a history of the
student’s actions. However, the designed agent records its own past actions, so that it can
be used to compose future actions and to ensure that the agent’s behaviours do not appear
monotonous.

The agent does not produce the text of a feedback message, relying on SQL-Tutor
server to produce individualised messages to each user. Thus, the agent should create and
maintain a communication link between the central server and itself. Moreover, the agent
is also required to get information about the actions performed. This communication link
is very important and should be consistent with the user’s actions, as the agent relies
solely on the messages to synchronise itself with the problem-solving environment of
SQL-Tutor. The agent is not required to send any messages to the server because it does
not alter the problem-solving environment.

3.3.2 Gestures

One of the initial phases in developing an animated pedagogical agent for an ITS includes
identifying interactions between the user and the agent, as these determine the gestures
that the agent should perform. Gestures are atomic behaviours that define the capabilities
of the animated character. These gestures are combined to compose behaviours that
determine the interactions between the agent and the user.

It would be most desirable to have an animated character for SQL-Tutor with a rich
and interesting personality. This is achieved by designing an agent that possesses a vast
array of gestures, offering greater flexibility in composing behaviours; the basis of an
interesting personality. The agent’s gesture space also comprises amusing gestures that
make the learning experience more fun.

The agent’s collection of gestures includes believability enhancing gestures such as
blinking and breathing. This group of gestures makes the agent more lifelike, which
makes the user feel that an ‘alive individual’ on the desktop is aware of each action they
perform. The users may feel obliged to perform at their best so that the pedagogical agent
approves of them.

One of the greatest advantages in introducing an agent is the possibility of improving
student performance in response to the agent’s display of emotions such as happy, sad or
even acting surprised and confused. Gestures such as acting happy or laughing can be
used to improve the effectiveness of a congratulatory behaviour. Mixing emotions with
feedback messages can create the illusion of a human tutor being present.

The agent’s repertoire of gestures also includes those that enable it to clearly
communicate advice to the user, e.g. pointing and looking. These gestures can be used
quite effectively to focus the student’s attention to a certain area in the interface. The
agent for SQL-Tutor can employ these behaviours to introduce the user interface of the

3.3 Design 18

system to a new user and even point out the errors made in a submission. It may also
present hints verbally to the student.

3.3.3 Pedagogical behaviour space

The pedagogical agent for SQL-Tutor should display a vast array of behaviours that offer
useful instruction to the student. Each behaviour is a believable sequence of gestures, e.g.
explain and point, smile and speak. These behaviours of the agent should present
feedback from the system in a more appealing manner. Its behaviours should be
synchronised with SQL-Tutor and should depend on the actions of the user. Moreover,
when composing gestures, the duration of each has to be optimised for the students to
achieve high problem solving efficiency.

The pedagogical behaviour space of the agent consists of three main categories:
introductory , explanatory andcongratulatory (see Figure 8).

Introductory

•••• Introduce SQL-Tutor
•••• Introduce the agent
•••• Welcome users
•••• Introduce system's user interface
•••• Introduce feedback options
•••• Introduce problems

Behaviour space Explanatory

•••• Point out the erroneous clause
•••• Give hints to the user
•••• Display the partial solution
•••• Explain all errors
•••• Give SQL-specific advice
•••• Display the complete solution

Congratulator y

•••• Congratulate user
•••• Encourage user to try
•••• Encourage user to attempt more problems

Figure 8: Behaviour space of the pedagogical agent for SQL-Tutor

The introductory behaviours mainly focuses on new users, e.g. introducing the user
interface of SQL-Tutor and describing the levels of feedback, etc. Gestures such as
pointing are used as visual aids in presenting introductory messages. The agent also
displays behaviours that welcome the user to the system to grab the user’s attention at the
start of a session. Introductory behaviours are also used to introduce new problems.

19 Development of the agent

Although the introductory behaviours of the agent for SQL-Tutor are predefined, this
feature is unlikely to result in an agent with a dull personality because the behaviours are
presented to the student only once in a session. However, introduction of problems
should have an adaptive behaviour. As the problems are self-explanatory, the agent only
looks at the text of the problem to attract the attention of the student to it. This simple
behaviour avoids distracting the user.

Explanatory behaviours incorporate hints from SQL-Tutor. The agent adapts its
behaviour depending on the feedback from system. The challenging task is to present
hints from SQL-Tutor in an interesting manner. General information and help with SQL
keywords such as join and nested selects, which are known to pose problems for most
students, should also be provided. Another useful area of explanatory feedback is to offer
the student general guidelines on generating queries, particularly for novices. The agent
also presents different levels of feedback, e.g. hints, partial solutions and complete
solutions. Each level has a particular set of gestures in order to distinguish between the
levels of feedback. The variety of levels increases the effectiveness of the
instruction/hint, and results in a more interesting personality for the agent.

Explanatory behaviours are the most important, because SQL-Tutor is a problem-
solving environment. As the agent will have to repeatedly perform behaviours such as
presenting hints to the students, it also needs variety between consecutive presentations to
maintain interest. The designed agent is equipped with at least three distinct predefined
behaviours for each feedback level. Behaviour is selected from the available set to
present the respective messages from SQL-Tutor. The duration of these behaviours
depends on the length of the text message.

An important aspect of teaching is motivation. Studies [Lest97b, Lest97d] have
shown that animated pedagogical agents can be effectively used to motivate students in
problem solving environments. The agent for SQL-Tutor should displaycongratulatory
behaviour on a correct submission to try to make the user feel delighted about getting the
problem correct. The agent attempts to obtain maximum effectiveness from these
behaviours by performing one of the three defined congratulatory behaviours. On the
other hand, the agent displays disappointment with an incorrect submission to motivate
users to try harder in the next attempt. The motivational behaviours should be configured
in such a way that they make learning more fun, so that a user’s interest in the system
would grow and the system would have a better opportunity to improve the student’s
problem solving ability.

3.3.4 Rules for presenting behaviours

The designed agent follows a predefined set of rules in choosing a behaviour from its
behaviour space. The selection procedure is primarily based on the student’s interactions
with SQL-Tutor. The interactions of a student during a problem solving session consists
of three distinct stages. Firstly, the student logs on to SQL-Tutor. He/she then solves
problems supplied by the system. Finally, the student logs out from the system at the end
of the session. The behaviours of the agent are triggered depending on the user’s actions.

The behaviour of the agent at login depends on whether the student is a new user to
the system or has been previously exposed to it. The agent performs behaviours that
introduces SQL-Tutor and its user interface, etc. for new users. On the other hand, the
agent only performs a short greeting behaviour for users who have had previous exposure
to the system.

3.3 Design 20

Most of the behaviours performed by the agent during problem solving incorporate
the feedback messages from SQL-Tutor. The agent possesses a number of behaviours for
each level of feedback, which can be used to present the respective messages. It relies on
a set of behaviour selection rules to pick the ideal behaviour from its behaviour space.
The selection is purely based on the level of feedback (see Section 2.3.3 for details on
feedback levels). This selection results in a random choice of three candidate behaviours.

The agent also attempts to intervene if the user is experiencing problems with the user
interface. Thus, if the user is supplied repeatedly with the same feedback message, the
agent intervenes and offers advice on how to get different levels of feedback from the
system. Moreover, the agent presents a set of guidelines that can be followed to solve
queries for users who repeatedly request the complete solution of a problem. These
behaviours are activated by the behaviour selection rules during the selection procedure,
when the recently received message is compared with previously presented messages.

Logging out from the system triggers the agent to present a logout behaviour. The
main goal of this behaviour is to encourage the user to interact with the system again in
the future.

3.4 Implementation

Adele [John98] is an animated pedagogical agent, which was designed to support
students working through problem-solving exercises that are integrated into instructional
materials delivered over the Web. The animated persona of Adele was chosen to facilitate
the implementation of the animated pedagogical agent for SQL-Tutor.

The steps in the implementation of the agent were as follows. An appropriate
character was selected, then the gestures were implemented by creating the respective
frames and modifying the applet persona. The required behaviours and the behaviour
presentation rules were implemented. Finally, the applet persona was incorporated with
SQL-Tutor.

3.4.1 Adele

Adele’s system consists of two main components: the pedagogical agent and the
simulation. The pedagogical agent consists further of two sub-components, the reasoning
engine and the animated persona. Adele has been adopted for a case-based clinical
diagnosis application, where this is used to highlight interesting aspects of the case, and
monitor and give feedback as the student works through a case (see Figure 9).

The animated persona is simply a Java applet that runs on a Web browser. As SQL-
Tutor also runs on a Web browser, this component of Adele can be incorporated with
SQL-Tutor, and developed into an animated pedagogical agent for it. An added
advantage is that the animated persona and the SQL-Tutor user interface can coexist on
the same desktop in two separate windows1.

The agent that was developed for the case-based medical education system is capable
of performing a number of gestures. Adele’s gestures are produced using two-
dimensional drawings and her original gesture space consists of a total of sixteen

1 We wish to acknowledge the Centre for Advanced Research in Technology for
Education for providing the source code for the applet persona of Adele.

21 Development of the agent

gestures. These vary from simple believability enhancing gestures such as blinking, to
emotive gestures such as smiling, acting confused, acting surprised, etc. The agent also
possesses gestures that can be used in presenting advice and explanations, such as look,
point and speak. The agent could also be used to simulate congratulatory behaviours by
smiling, nodding, and an animation that checks off items on a clipboard. Other gestures
of Adele involve casual advice gestures such as speaking.

Figure 9: Adele introducing herself

3.4.2 Character

The foremost design task was to choose an appropriate character as the pedagogical agent
for SQL-Tutor. As no obvious SQL character could be found, a wise, elderly figure was
considered (see Figure 10), who would be able to display a vast knowledge of SQL.

Figure 10: Wise-person character

3.4 Implementation 22

However, one of the main objectives of introducing an agent is to make learning more
fun, and the option of a wise figure appears slightly grim, clearly limiting the user’s
enjoyment. The option also has an immensely complicated face. As a fully expressive
agent requires a large number of frames, sketching the frames would take an artist and
would be a huge task.

Hence, Figure 10 is not an ideal choice, so a simpler and more humorous approach
was taken. The new character was namedSmart-egg2 (see Figure 11). To build a fully
functional agent approximately fifty frames had to be sketched. The applet persona of
Adele swaps frames and uses techniques such as morphing to perform animations. Each
gesture uses about three to six frames to perform the relevant animation.

(a) Default (b) Explaining

(c) Looking down (d) Surprised

Figure 11: Frames of theSmart-eggcharacter

3.4.3 Gestures

The host of animated gestures offered by Adele’s applet persona is not sufficient for
Smart-egg. Accordingly, a gesture that displays sadness was created and added to the
repertoire ofSmart-egg’s gestures. This gesture is composed of three frames and is used
to displaySmart-egg’s emotions in situations such as logout.

2 We wish to thank Nenad Govedarovic for providing the initial drawing of the character.

23 Development of the agent

As Adele was developed for the medical domain, some of her gestures are not
applicable for the domain of SQL-Tutor. For example Adele carries a clipboard,
appropriate for a doctor character, but not be ideal in this case. These gestures were not
adopted forSmart-egg.

The gesture space ofSmart-eggis detailed in Figure 12.

Gesture space of Smart-egg

• Default
• Smile
• One hand back
• Both hands back
• Show left palm
• Speak
• Explain
• Nod
• Disapprove
• Surprised
• Confused
• Sad
• Look
• Point

Figure 12: Gesture space ofSmart-egg

3.4.4 Architecture

The Web version of SQL-Tutor was developed using a Common Lisp (CL) HTTP server.
The user interacts with the server by performing an action on the Web page. After an
action is performed, the user’s Web browser sends a corresponding message to the CL
HTTP server. The server then evaluates the state and creates a new page that results from
the user’s action. This page is then sent to the user’s Web browser where it is displayed.
This process is performed whenever the user carries out actions which result in a change
in environment, such as submission of an answer or choosing a new problem or database.

The pedagogical agent’s Java applet and the server are required to exchange messages
in order for the agent to receive messages and know the actions of the user. This was
achieved by implementing a Java socket connection between the server and the applet.
The developed agent consists of a dedicated thread of execution that waits to receive
messages from the server. Whenever this thread receives a message, it processes it by
first selecting the appropriate behaviour of the agent by using the behaviour selection
rules. It then orders the animated persona to carry out the chosen behaviour.

The architecture of the system that includes SQL-Tutor and the pedagogical agent is
depicted in Figure 13.

3.4 Implementation 24

Figure 13: Architecture of SQL-Tutor with pedagogical agent

The Smart-eggagent inhabits a separate window beside SQL-Tutor. Some examples
of the agent’s behaviours are featured in Figure 14.

(a) introduction ofSmart-egg (b) congratulating a user

Figure 14: Behaviours of the pedagogical agent,Smart-egg

SQL-Tutor
(CL HTTP server)

Pedagogical
agent (applet)

SQL-Tutor
user

interface
page

Internet

Socket Communicator

User’s Web browser

Chapter 4

Evaluation study

It is important to assess the contribution thatSmart-egg makes to SQL-Tutor. Thus an
experiment was carried out with second year Computer Science students to evaluate the
contribution Smart-egg makes to learning. Answers were sought to the following
questions:

• Can the persona effect be observed? (i.e. does the presence ofSmart-egg,
have a strong positive effect on a student’s perception of their learning
experience?)

• Can Smart-egg increase the student’s learning effectiveness and/or quality
of learning?

• By creating the illusion of life, can the captivating presence ofSmart-egg
motivate students to solve more problems and/or with fewer errors?

• CanSmart-eggcontribute to the student’s problem solving abilities or does
its activities interfere with problem solving?

• How do the students perceiveSmart-egg’sproblem-solving advice?
• To what extent do the students find the feedback helpful and clear?
• Would students prefer to be assisted bySmart-eggor to be left alone?

The following section outlines the design of the experiment. The chapter also includes
the results and their analysis, and discusses the evaluation study.

4.1 Experiment design

An experiment was designed in which students interacted with two versions of SQL-
Tutor. Participants in the evaluation were students who were enrolled in the second year
Software & Database Design (COSC 205) course in the Computer Science department of
the University of Canterbury. Students were randomly assigned to interact with two
versions of SQL-Tutor: withSmart-egg (agent group), and withoutSmart-egg (as the
control group). The study was conducted in the computer laboratories of the department.
Participation was anonymous. There were 26 students in the two groups.

Data was collected over three days during normal lab times and the students chose
workstations at random. Each data collection session proceeded in four distinct phases:
pre-testing, system interaction, post-testing and system assessment (illustrated in Figure

4.1 Experiment design 26

15). To assess the student’s knowledge of SQL before and after interacting with SQL-
Tutor, students were asked to take pre- and post-tests on a Web page. These consisted of
three multiple-choice questions, with corresponding questions of each test being of
similar difficulty (copies of the pre- and post-tests are given in Appendix A). Each
question was carefully constructed to evaluate the student’s knowledge of SQL. Students
were asked how confident they were of their answer after each question to get a measure
of their confidence in SQL. Out of the students who participated in the study, 23 students
submitted answers to the pre-test; the remaining three submitted empty tests.

When the student had submitted the pre-test, he or she was left to interact with a
version of SQL-Tutor. The students used the system in a two-hour session. However, the
system interaction times varied depending on student preferences. They were free to
choose problems and determine the path of their learning experience. Each action of the
student was recorded automatically by the system in the form of student logs. Following
the end of the session, they completed the post-test. Only four students completed and
submitted post-tests. The remainder of the students had quit the system without logging
out.

Finally, the students were asked to complete a system/agent assessment questionnaire,
which is given in Appendix B. To reduce biased responses, students were strongly
encouraged to record all their responses, because the researchers wanted to use these to
improve the system. Students were also given complete privacy as they completed the
questionnaire. Each questionnaire consisted of sixteen questions, where most relevant to
this study3. These questions contained five response categories (1 to 5) and asked them to
record free-form responses. Out of the total of 26 who participated in the study, 22
students completed questionnaires.

Figure 15: Experiment outline

3 This study was a subset of the study carried out to evaluate SQL-Tutor and its other
improvements.

4.2 Results and analysis

Data from the evaluation study were collected from three sources: system/agent
assessment (questionnaire), problem-solving logs, and pre- and post-tests. The data from
these sources were subjected to subjective, objective and performance comparison
analyses respectively.

Students
N = 26

Pre test
N = 23

Post test
N = 4

SQL-Tutor
without agent

N = 16

SQL-Tutor with
Smart-egg

N = 10 System/Agent
Assessment

N = 22

27 Evaluation study

4.2.1 System/agent assessment

The analysis of the responses to the user questionnaires revealed that the students liked
Smart-egg. When asked to rate how much they enjoyed the system on a scale of1 (not
enjoyable) to5 (very enjoyable), the average rating from the students who used the agent
was 4.5, compared with the control group rating of3.83 (Table 1). The range for the
group using the agent varied from3 to 5, and the control group range varied from2 to 5.
The majority (60%) who used the agent chose option5, whereas only33% of the control
group chose option5 (detailed results of the questionnaire are in Appendix C).

Both groups were equally comfortable with the interface. Of the students who were
using the agent,60% reported that they needed less than five minutes to learn the system
interface. Similarly,54% of the students in the control group had spent less than five
minutes learning the functionality of the interface. When asked to rate the ease of using
the interface on a scale of1 (very hard) to5 (very easy), the agent group averaged4.1,
whereas the control group averaged3.73. The responses of the agent group varied from3
to 5, and the control group varied from2 to 5. Only 20% of the students who used the
agent chose option3 for ease of using the interface, whereas42% of the students in the
control group chose option3 or less. It can be concluded from these results that students
who used the agent found it easier to use the interface.

The students were also asked to rate the amount learnt from the system on a scale of1
(nothing) to5 (a lot). Both groups chose similar values; the average rating for the group
with the agent was3.8 and for the control group was3.92.

Agent
group

Control
group

Enjoyment rating 4.50 3.83

Time to learn interface (min) 11.00 10.83

Ease of using the interface 4.10 3.73

Amount learnt 3.80 3.92

Usefulness of feedback 4.80 4.09

Table 1: Mean responses for the two groups

When asked to rate the usefulness of feedback on a scale of1 (useless) to5 (very
useful), the average response for the agent group was4.8 and for the control group was
4.09. The majority (80%) of the students who used the agent rated the system as very
useful (option5), and only42% of the control group chose the same option. As both
versions of the system presented the same problem-based messages, it is clear from these
findings that the students who used the agent found it easier to comprehend the feedback
from the system.

In order to find the statistical significance of the differences in the mean ratings, a
hypothesis test was then carried out to find the confidence levels of stating whether the
agent group ratings were higher than the control group or vice versa (Table 2). It can be
stated, with93% confidence, that students using the agent rated the system as more
enjoyable and, with97% confidence, that they rated feedback as more useful. Moreover,
students who used the agent found it easier to use the interface (with68% confidence).
The differences of other categories are statistically insignificant.

4.2 Results and analysis 28

Students in the group who used the agent had written positive comments about the
agent. The positive comments specific toSmart-eggwere:

• “I liked the Smart egg.”
• “The Smart-egg is great.”
• “I enjoyed the maniacal smile of the egg.”

Other students had general comments on the system:

• “Good problem practice with feedback.”
• “Liked hints and feedback in particular.”
• “Very helpful in learning SQL.”
• “Interactive.”
• “Great getting feedback.”
• “Feedback was excellent.”
• “Very easy to use.”
• “Informative.”

However, one student did say, “I didn’t like the egg”. This comment may have been
influenced by the fact that he had experienced three system crashes during a half an hour
session. In short, the majority of the students liked interacting withSmart-egg.

Enjoyment Time to
learn

Interface

Ease of
using the
interface

Amount
learnt

Usefulness
of feedback

Agent group
Mean 4.50 11.00 4.10 3.80 4.80
Standard deviation 0.71 10.22 0.74 0.79 0.42

Control group
Mean 3.83 10.83 3.73 3.92 4.09
Standard deviation 1.03 9.25 1.01 0.67 1.04

Z 1.79 0.04 1.00 -0.37 2.15
Confidence level that
hypothesis is correct

93% 3% 68% 29% 97%

Table 2: Confidence levels of stating the agent group ratings were better than the control
group ratings or vice versa

4.2.2 Problem-solving logs

As explained earlier, each action performed by a student during interaction was recorded
in a log, along with a time-stamp. This was used to analyse each student’s learning.
Appendix D gives detailed results of the various kinds of analyses performed on student
logs, while Table 3 presents a summary.

The first thing to be analysed was the effect of the agent on the overall interaction
time. The students who used the pedagogical agent spent55.9 minutes on average

29 Evaluation study

interacting with the system, and the control group spent49.6 minutes on average. It is
evident from the results that the students who used the agent were more willing to spend
time interacting with the system. Thus, the agent motivated the students to interact with
the system for a longer period.

As the group using the agent spent more time with the system, they attempted and
solved more problems. Out of the average14 problems attempted by the students who
used the agent, they managed to successfully solve an average of11.6 problems. The
control group only attempted11.56 problems on average and solved an average of10.94
problems correctly. Students who used the agent attempted2.44 more problems on
average and solved an average of0.66 more problems (see Appendix D for details).
Taking only the number of practice problems attempted and solved, it can be assumed
that students who used the agent learnt more compared with the control group.

Moreover, the group who used the agent took fewer attempts on average to solve
problems, compared with the control group. The group with the agent required30.90
attempts on average, whereas the control group required32.56 attempts. This was slightly
reflected in the average number of attempts taken to solve a single problem. The group
with the agent required2.87 attempts on average to solve a problem, and the control
group required2.78 attempts per problem. These results suggest that the students who
used the agent understood the feedback more than the control group, although these
results may be affected by the knowledge of the students in the group. However, the
problems that were solved in the first attempt are similar for both the groups (an average
of 5.1 for the group with the agent and4.56 for the control group), and as the students did
not get any direct help from the system in solving these problems, this observation
suggests that students in both groups have a similar knowledge of SQL. Moreover,
students in both groups required a similar number of attempts to solve problems that
could not be solved on the first attempt (the system gave problem-specific hints for these
problems).

Mean Standard deviation

Agent
group

Control
group

Agent
group

Control
group

Total interaction time (mins) 55.90 49.63 17.30 26.70
No. of attempted problems 14.00 11.56 5.27 6.49
No. of solved problems 11.60 10.94 4.35 6.36
Total no. of attempts taken to solve the problems 30.90 32.56 14.13 23.97
Problems solved on the first attempt 5.10 4.56 2.60 2.73
Problems solved per time (prb/min) 0.22 0.27 0.07 0.21
Attempts per solved problem 2.78 2.87 1.23 1.33
Attempts to solve problems that could not be 2.90 2.91 1.61 1.34
solved on the first attempt (attempts/prb)

Table 3: Mean interaction details

The average number of attempts taken to solve problems that could not be solved on
the first attempt was very similar. The agent group required on average2.90 attempts and
the control group2.91 attempts. This dimension is a good measure of the usefulness of
the feedback content in problem solving. As both versions of the system (with or without

4.2 Results and analysis 30

the agent), were offering the same feedback content, it is obvious why students of both
groups required the same number of attempts.

The interaction times of the agent group varied from32 to 80 minutes, with a standard
deviation of17.3. On the other hand, student interaction times of the control group varied
from 4 to 90 minutes, with a standard deviation of26.7. Similarly the standard deviations
of the control group was higher than the agent group for all but one dimension (attempts
to solve problems that could not be solved on the first attempt). As the students were
randomly assigned to these groups, it can be seen from the results that the agent affects a
wider audience, and does not target a specific group of students.

In order to establish the effect of the agent on the student’s learning over time, we
plotted the average number of attempts taken to solve the nth problem for each group
(illustrated in Appendix D). To reduce individual bias, the problems solved by less than
50% of the participating population were discarded (Figure 16). Although no trends for
each group can be seen, the students who used the agent required, on average,0.2 fewer
attempts to solve each problem compared with the control group.

Figure 16: Mean number of attempts taken to solve the nth problem

The number of problems successfully solved per unit oftime was similar for both
groups. Students who used the agent recorded on average0.27 correct answers per
minute and the control group managed0.22.

According to the hypothesis test, it can be stated with53% confidence level that the
total interaction time of the group with the agent was higher than the control group
(Appendix D). Moreover, they attempted more problems than the control group (with
71% confidence level). Nonetheless, students who used the agent solved fewer problems
per minute in comparison with the control group (with a confidence of63%).

0

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8 9 10

nth Problem

A
tte

m
pt

s

Agent
group

Agent
group
mean

Control
group

Control
group
mean

2.74

2.98

31 Evaluation study

4.2.3 Pre- and post tests

Most students involved in the study participated in the pre-test. Nine students out of ten
from the group who used the agent and fourteen out of sixteen in the control group
submitted valid pre-tests. These students scored equally well on average in the pre-test.
The first, second and third questions of both tests were allocated 1, 5 and 1 marks
respectively. The students in the agent group scored higher on questions one and two but
scored lower on the final question in comparison to the control group (see Appendix E
for details). They had a mean total score of3.56 and the control group had3.36 (Table 4).
As the difference between the scores is low, it is statistically insignificant (only41%
confidence).

When asked to rate their confidence level of their answer, on a scale of0 (not
confident) to2 (very confident), students of both groups has similar ratings. The students
who were assigned to use the agent were less confident about their answers for questions
one and two but were more confident about the final question in comparison to the
control group. The mean total rating of students who were later assigned to the agent
group was3.00 and the mean total rating of students who were assigned to the control
group was3.25.

Agent
group

Control
group

Scores
Q1 0.33 0.14

Q2 2.56 2.50

Q3 0.67 0.71

Total 3.56 3.36

Confidence level
Q1 1.22 1.38

Q2 0.67 0.79

Q3 1.11 1.08

Total 3.00 3.25

Table 4: Mean scores for the pre-test

Although there was high participation for the pre-test, only four students from both
groups sat the post-test. Three of these students had used the agent. A definite increase in
their performance and their confidence can be seen (see Appendix E for details). Students
in the agent group have scored higher in the first two questions in comparison to the
control group. Students in both groups had scored zero for the final question. The mean
total score of the agent group was4.33 and the control group was2. Mean total
confidence ratings for the agent group was4.33 and the control group was4.

However, as there was only one student in the control group who sat the post-test,
unbiased comparisons on the mean performances can not be made.

4.2 Results and analysis 32

4.2.4 Summary of results

The study demonstrates that animated pedagogical agents can yield important educational
benefits. Students in the agent group enjoyed interacting with SQL-Tutor more than the
control group did and perceived that the feedback from the agent was more useful.
Students also found it easier to use the SQL-Tutor interface when the agent was present.

The motivational effect of the agent was also evident from the problem-solving logs.
Students who used the agent spent more time interacting with the system compared with
the control group. Moreover, they attempted and solved more problems on average.
However, students using the agent solved fewer problems per unit time. Another
significant finding was that standard deviations were higher in almost all analyses in the
case of the control group, thus exhibiting thatSmart-egg affects a wider audience and
does not target a specific group of students.

It is evident from the pre-test results that the student population had similar
knowledge of SQL and were equally confident. No conclusions can be drawn from the
post-test scores, as the participation was very poor.

4.3 Discussion

The findings of the study are encouraging. The ratings for the group who used the agent
were significantly higher than the control group. They established that the presence of an
animated pedagogical agent has a strong effect on the student’s perception of the learning
environment (referred to as persona effect in [Lest97b]). It was further evident from the
problem-solving logs that the students were better motivated by the agent.

The positive ratings for the agent are not likely to have been caused by biased
responses as the students were randomly assigned to each group and the anonymity of
participants was preserved. Moreover, the students were encouraged to provide their
honest opinions in order to improve the agent, and privacy was granted during data
collection. However, it should be noted that the numbers involved in the study were
small.

The fact that the students who used the agent were solving fewer problems per unit of
time may be a consequence of the system running on old computers. SQL-Tutor with the
agent requires more processing and memory compared to the system for the control
group.

A further study should not be held in the last week of lectures, as many students chose
not to participate.

Participation for the post-test could be improved by requesting students to explicitly
log out from the system as they leave. Moreover, in the event of a system crash, students
were automatically logged out and they were not given the post-test afterwards. This can
easily be amended by checking the student’s log when giving a post-test.

The length of the evaluation study is insufficient to make solid claims of an
improvement in student performance. This study should be extended over a number of
weeks, so that a better measure of the student’s performance could be monitored.

However, as the initial results are very promising, the pedagogical agent can be
extended from simply presenting feedback to supporting the student when learning by
self-explanation. This support can be in terms of dialogues with the student, where the
agent prompts questions to guide the students. The ultimate pedagogical agent should be
able to answer all the questions, within the subject domain, posed by the students.

Chapter 5

Conclusions

Animated pedagogical agents are lifelike creatures used in Intelligent Tutoring Systems
to increase student’s motivation and enhance their quality of learning. They provide
timely, customised advice to support student’s problem solving. Their strong visual
presence can also increase the student’s enjoyment of their learning experiences.

This project developed an animated pedagogical agent,Smart-egg, to improve the
feedback presentation of SQL-Tutor.Smart-egg is a cartoon character that performs
animations using two-dimensional frames. It combines its gestures to form complex
behaviours that present feedback messages.Smart-egg’s main role is to motivate
students and subsequently increase their learning effectiveness.

DesigningSmart-egginvolved identifying the types of interactions between the agent
and the student and designing the agent’s architecture.Smart-egg’s gestures space,
behaviours space and a set of rules for presenting these behaviours were defined and
implemented. The implementation ofSmart-eggwas facilitated by the animated persona
of Adele [John98]. Finally,Smart-eggwas incorporated with the Web version of SQL-
Tutor by implementing a Java socket connection between the agent applet and the server.

The evaluation study, carried out with second year students to investigate the
effectiveness ofSmart-egg, produced very promising results. It revealed that students
who used the agent perceived SQL-Tutor as more enjoyable and helpful in comparison to
the version of SQL-Tutor with no agent. The study also revealed thatSmart-egg
motivated students to spend more time interacting with the system and to attempt more
problems. Moreover, the study showed thatSmart-eggdoes not target a specific group of
students.

This work is a promising first step towards developing an effective pedagogical agent
for SQL-Tutor. The pedagogical agent can be improved by guiding self-explanation
while the student is learning from examples. This can be implemented in terms of
dialogues between students andSmart-egg. The pedagogical agent can be further
improved by enabling the agent to process natural language. Consequently, students may
query the agent whenever they incur problems.

Acknowledgements

Thanks to Antonija Mitrovic for all her support as a supervisor, Jane McKenzie for her
helps with technical writing and Kurt J Hausler for help with the implementation of SQL-
Tutor. Special thanks to Centre for Advanced Research in Technology for Education for
providing the source code for the applet persona of Adele and Nenad Govedarovic for
providing the initial drawing of Smart-egg.

Bibliography

[Alpe99] Sherman R. Alpert, Mark K. Singley and Peter G. Fairweather. Deploying
Intelligent Tutors on the Web: An Architecture and an Example.International
Journal of Artificial Intelligence in Education,pp. 183-197, 1999

[Andr97] André Elisabeth, Rist Thomas and Müller Jochen. WebPersona: A Life-Like
Presentation Agent for Educational Applications on the World Wide Web.
Proceedings of the workshop “Intelligent Educational Systems on the World Wide
Web”, 8th World Conference of the AIED Society, Kobe, Japan, 1997

[Cona99] Conati Cristina and VanLehn Kurt. Teaching meta-cognitive skills:
implementation and evaluation of a tutoring system to guide self-explanation while
learning from examples.Artificial intelligence in Education. S.P. Lajoie and M.
Vivet (Eds). IOS Press, pp. 297-304, 1999

[Elli99] Elliot Clark, Rickel Jeff and Lester James C. Lifelike Pedagogical Agents
and Affective Computing: An Exploratory Synthesis.Artificial Intelligence Today,
Lecture Notes In Artificial Intelligence (Subseries of Lecture Notes in Computer
Science), Special Volume 1600, M. Wooldridge & M. Veloso (Eds.), pp. 195-212,
Springer-Verlag, Berlin, 1999

[Elma94] Elmasri Ramez and Navathe Shamkant.Fundamentals of database Systems
(2nd ed.)Benjamin/Cummings, Redwood, CA, 1994

[John] Johnson W. Lewis. Pedagogical Agents.
http://www.isi.edu/isd/carte/ped_agents/pedagogical_agents.html

[John97] Johnson W. Lewis and Shaw Erin. Using Agents to Overcome Deficiencies
in Web-based courseware.Proceedings of 8th World Conference of AIED,Japan,
August 97

[John98] Johnson W. Lewis, Shaw Erin and Ganeshan Rajaram. Pedagogical Agents
on the Web.Workshop on WWW-based Tutoring, ITS ’98,San Antonio, Texas,
1998

[Lest97a] Lester James and Stone Brian. Increasing Believability in Animated
Pedagogical Agents.Proceedings of the First International Conference on
Autonomous Agents, pp. 16-21, California, February 1997

[Lest97b] Lester James, Converse Sharolyn, Kahler Susan, Barlow Todd, Stone Brian,
and Bhogal Ravinder. The Persona Effect: Affective Impact of Animated
Pedagogical Agents.Proceedings of CHI '97, pp. 359-366, Atlanta, March 1997

Bibliography 36

[Lest97c] Lester James, Voerman Jennifer, Towns Stuart and Callaway Charles.
Cosmo: A Life-like Animated Pedagogical Agent with Deictic Believability.
Working Notes of the IJCAI '97 Workshop on Animated Interface Agents: Making
them Intelligent, pp. 61-69, Japan, August 1997

[Lest97d] Lester James C., Converse Sharolyn A., Stone Brain A., Kahler Susan E. and
Barlow Todd S. Animated Pedagogical Agents and Problem-Solving Effectiveness:
A Large-Scale Empirical Evaluation.Proceedings of the Eighth World Conference
of AIED,pp. 23-30, Japan, August 1997

[Lest97e] The IntelliMedia Initiative Projects: Design-A-Plant,
http://www.csc.ncsu.edu/eos/users/l/lester/www/imedia/DAP.html, November 1997

[Lest97f] The IntelliMedia Initiative Projects: Internet Advisor
http://www.csc.ncsu.edu/eos/users/l/lester/www/imedia/IPA.html, November 1997

[Lest99] Lester James C., Strone Brian A. and Stelling Gary D. Lifelike Pedagogical
Agents for Mixed-Initiative Problem Solving in Constructivist Learning
Environments. User Modeling and User-Adapted Interaction, 9(1-2), pp. 1-44, 1999

[Math98] Mathé Nathalie, Chen James R. and Wolfe Shawn R. Organizing and Sharing
Information on the World-Wide Web using a Multiagent System, proc.ED-MEDIA
‘98

[Maur98] Maurer Hermann. On Two Aspects of Improving Web-Based Training.
Proceedings of ED-MEDIA ’98,pp. 973-977, 1998

[Mitr98a] Mitrovic Antonija. Learning SQL with a Computerised Tutor.Proceedings
of the 29th SIGCSE Tech. Symp,pp. 307-311, 1998

[Mitr98b] Mitrovic Antonija. Experiences in Implementing Constraint-Based Modeling
in SQL-Tutor.Proceedings of ITS ’98, pp 313-423, August 1998

[Mitr99] Mitrovic Antonija and Stellan Ohlsson. Evaluation of a Constraint-Based
Tutor for a Database Language,International journal on AIED, 10, 3-4, 1999

[Pies98] Piesk J. and Trogemann G. Presenting Educational Contents in Nonlinear
Narrative Structures by Conventional Virtual Actors.Proceedings of ED-MEDIA
’98, pp. 1885-1888, 1998

[Schö98] Schöch Volker, Specht Marcus and Weber Gerhard. “ADI”- An Empirical
Evaluation of a Tutoring Agent,Proceedings of ED-MEDIA ‘98,pp. 1271-1282,
1998

[Steve] Steve in Action,http://www.isi.edu/isd/carte/carte-demos.htm

[Town98a] Towns Stuart, Callaway Charles, Voerman Jennifer and Lester James C.
Coherent Gestures, Locomotion, and Speech in Life-Like Pedagogical Agents.
Proceedings of the Fourth International Conference on Intelligent User Interfaces,
pp. 13-20, San Francisco, January 1998

[Town98b] Towns Stuart G., FitzGerald Patrick J. and Lester James C. Visual Emotive
Communication in Lifelike Pedagogical Agents.Proceedings of the Fourth
International Conference on Intelligent Tutoring Systems, San Antonio, Texas,
pp. 474-483, August 1998

Appendix A

Pre- and post-tests

Appendix B

Questionnaire

Appendix C

Results of Questionnaire

The agent group

Enjoyment Time to
learn

Interface

Ease of
using the
interface

Amount
learnt

Usefulness
of feedback

1 3 10 3 4 4
2 4 10 4 2 4
3 5 5 4 4 5
4 4 5 4 4 5
5 5 5 4 4 5
6 5 5 4 3 5
7 5 5 3 4 5
8 5 5 5 4 5
9 4 30 5 4 5

10 5 30 5 5 5

Mean 4.5 11 4.1 3.8 4.8
Standard
Deviation 0.71 10.22 0.74 0.79 0.42

The control group

Enjoyment Time to
learn

Interface

ease of
using the
interface

Amount
learnt

Usefulness
of feedback

1 4 10 5 4 5
2 3 30 3 4 2
3 5 5 4 4 4
4 2 5 2 3 3
5 5 10 4 4 4
6 3 10 3
7 5 5 4 4 4
8 3 5 3 3 5
9 4 5 5 4 5

10 5 5 5 5 5
11 3 30 3 5 3
12 4 10 3 4 5

Mean 3.83 10.83 3.73 3.92 4.09

Standard
Deviation 1.03 9.25 1.01 0.67 1.04

Appendix D

Results of problem-solving logs

Agent group

Total
interaction

time
(min)

No of
attempted
problems

No of
solved

problems

Total no of
attempts

taken to solve
the problems

Problems
solved on

the first
attempt

Problems
solved

per time
(prb/min)

Attempts
per solved

problem

Attempts to solve
problems that could
not be solved on the

first attempt
(attempts/prb)

1 32 8 6 16 2 0.19 2.67 2.50

2 55 18 11 18 6 0.20 1.64 1.40

3 73 15 14 34 7 0.19 2.43 2.86

4 61 19 18 39 9 0.30 2.17 2.33

5 27 9 9 13 6 0.33 1.44 1.33

6 58 8 8 39 3 0.14 4.88 6.20

7 80 13 9 44 2 0.11 4.89 5.00

8 67 21 15 27 7 0.22 1.80 1.50

9 42 9 8 22 2 0.19 2.75 2.33

10 64 20 18 57 7 0.28 3.17 3.55

Mean 55.90 14.00 11.60 30.90 5.10 0.22 2.78 2.90
Standard
deviation 17.30 5.27 4.35 14.13 2.60 0.07 1.23 1.61

Control group

Total
interaction

time
(min)

No of
attempted
problems

No of
solved

problems

Total no of
attempts

taken to solve
the problems

Problems
solved on

the first
attempt

Problems
solved

per time
(prb/min)

Attempts
per solved

problem

Attempts to solve
problems that could
not be solved on the

first attempt
(attempts/prb)

1 32 11 10 21 6 0.31 2.10 2.75
2 52 20 18 51 8 0.35 2.83 3.30
3 43 5 4 26 0 0.09 6.50 5.50
4 73 19 19 47 9 0.26 2.47 2.80
5 90 22 21 60 8 0.23 2.86 3.00
6 23 5 4 9 1 0.17 2.25 1.67
7 72 7 6 14 3 0.08 2.33 2.67
8 61 10 10 41 3 0.16 4.10 4.43
9 67 10 10 26 5 0.15 2.60 3.20

10 4 1 1 2 0 0.25 2.00 1.00
11 72 18 18 72 6 0.25 4.00 4.50
12 20 6 5 6 4 0.25 1.20 1.00
13 8 8 8 10 6 1.00 1.25 1.00
14 59 16 15 36 6 0.25 2.40 2.33
15 36 8 8 20 4 0.22 2.50 3.00
16 82 19 18 80 4 0.22 4.44 4.43

Mean 49.63 11.56 10.94 32.56 4.56 0.27 2.87 2.91
Standard
deviation 26.70 6.49 6.36 23.97 2.73 0.21 1.33 1.34

Confidence levels

Total
interaction

time
(min)

No of
attempted
problems

No of
solved

problems

Total no of
attempts
taken to

solve the
problems

Problems
solved in

first
attempt

Problems
solved

per time
(prb/min)

Attempts
per solved

problem

Attempts to
solve problems

that could not be
solved in first

attempt
(attempts/prb)

With agent
Average 55.90 14.00 11.60 30.90 5.10 0.22 2.78 2.90

Standard deviation 17.30 5.27 4.35 14.13 2.60 0.07 1.23 1.61

No agent
Average 49.63 11.56 10.94 32.56 4.56 0.27 2.87 2.91
Standard deviation 26.70 6.49 6.36 23.97 2.73 0.21 1.33 1.34

Z 0.73 1.05 0.32 -0.22 0.50 -0.90 -0.16 -0.02
Confidence level that
hypothesis is correct

53% 71% 25% 18% 38% 63% 13% 1%

Mean number of attempts taken to solve nth problem

0

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

nth Problem

A
tte

m
pt

s

Agent
group

Agent
group
mean

Control
group

Control
group
mean

2.25

3.56

Appendix E

Results of Pre- and Post-tests

Pre-test

Agent group

Scores Confidence level

Q1 Q2 Q3 Total Q1 Q2 Q3 Total
abp18.log 1 4 1 6 2 1 2 5
Alan.log 0 4 1 5 1 1 0 2
dah70.log 0 3 0 3 0 0 0 0
ejd32.log 0 4 1 5 2 1 2 5
Michae_~1.log 0 2 1 3 2 1 2 5
mpj18.log 0 1 1 2 1 1 1 3
ndm17.log 1 1 0 2 1 1 0 2
sgb39.log 1 2 0 3 1 0 1 2
sph37.log 0 2 1 3 1 0 2 3

Mean 0.33 2.56 0.67 3.56 1.22 0.67 1.11 3

Control group

Scores Confidence level

Q1 Q2 Q3 Total Q1 Q2 Q3 Total
bgh27.log 0 1 0 1 1 1 2
bgr30.log 0 4 1 5 1 1 1 3
bjh74.log 0 3 1 4 0 0 1 1
bmf25.log 0 3 1 4 2 1 1 4
bruce.log 0 3 0 3 2 0 0 2
cgc30.log 0 1 0 1 2 1 2 5
hlh16.log 1 3 1 5 1 1 1 3
jls68.log 0 4 1 5 2 2 2 6
Luke.log 0 4 1 5 2 0 2 4
Mike.log 0 2 1 3 2 0 2 4
mjp86.log 1 1 1 3 1 1 1 3
pjc82.log 0 2 0 2 1 1 0 2
pta19.log 0 2 1 3 1 1 0 2
t.log 0 2 1 3 1 1 2

Mean 0.14 2.50 0.71 3.36 1.38 0.79 1.08 3.25

Post-test

Agent group

Scores Confidence level

Q1 Q2 Q3 Total Q1 Q2 Q3 Total

Alan.log 1 4 0 5 2 1 2 5
Dah70.log 1 4 0 5 2 1 1 4
Sgb39.log 0 3 0 3 2 1 1 4

Mean 0.67 3.67 0 4.33 2 1 1.33 4.33

Control group

Scores Confidence level

Q1 Q2 Q3 Total Q1 Q2 Q3 Total
t.log 0 2 0 2 2 1 1 4

