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Abstract

Most interfaces for switching between tasks require slow, visual searches of candi-
dates, where each candidate must be scanned in turn. We developed a logging tool
for task switching actions and undertook a log-based study with eleven participants
to empirically characterise task-switching behaviour, finding Zipfian distributions
for window and application switching, and significant differences in interface use
between single and dual monitor users. We then used this data to assist in design-
ing a new interface (Spatially COnsistent Thumbnail Zones or SCOTZ) to allow
rapid task-switching performance by utilising spatial memory. In a formal evalua-
tion against three mainstream interfaces under four workspace conditions, SCOTZ
attained the lowest mean times for all conditions and scaled better with workspace
load, obtaining a significant difference under high workspace load. We conclude with
a recommendation for using SCOTZ at all workspace loads, and suggest it be imple-
mented and tested in a real-world environment.
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1Introduction

This project attempts to gain an empirical understanding of task switching from
which to base future design decisions on. We describe research conducted by oth-
ers relating to task switching in Chapter 2, noting especially the large number of
high-level task-oriented switching interfaces. Chapter 3 reports on the deployment
and results of a log-based study empirically characterising task switching interfaces
with good results. While we did not gather all the data we had intended to due to
large amounts of noise, the data we did manage to gather proved an excellent re-
source to base design decisions on. We used these design decisions while implement-
ing Spatially COnsistent Thumbnails (SCOTZ), an interface to support task switch-
ing through spatial memory, and minimise visual search time in the task switching
process. We then report on the findings of an empirical study pitting SCOTZ against
three mainstream task switching interfaces where we gained favourable results. Fi-
nally, we conclude by giving some avenues for future research for spatially stable task
switching interfaces based on the SCOTZ principle. The following paragraphs give a
brief history into the problem of task switching and where it began.

The ‘window’ desktop paradigm is shared by many different graphical user inter-
faces, most of which share a common set of methods by which to switch windows,
applications and tasks. Many elements to this common set were developed for the Xe-
rox Star and have remained largely unchanged to date — minimise/maximise buttons
and desktop icons for example (Bewley et al. 1983, Harslem & Nelson 1982). While
the original version of the Star managed multiple application windows by simply
tiling them to fit the leftover screen area (Lineback 2006), the Apple Macintosh (circa
1984) allowed windows to overlap and thus gave birth to the problem of switching
between these overlapping windows. This was a non-issue with the original Macin-
tosh, as only a singe true application could be used at one time; however, the advent
of multi-tasking desktop operating environments such as Microsoft Windows and
Macintosh MultiFinder necessitated the widespread introduction of window and ap-
plication switching interfaces.

Looking at multi-tasking from the user’s perspective, we use desktop computers
today for many different purposes, such as sending photos to friends by e-mail, build-
ing and deploying websites, and compiling business reports. Each of these activities
can be defined as a high-level task: a global and very abstract concept that involves
both a goal to accomplish, and a purpose for doing so. Each task also involves a means
(or a number of means) by which to accomplish the task that may involve multiple
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2 CHAPTER 1. INTRODUCTION

different steps (tasks within tasks) — the different steps potentially involving differ-
ent software or hardware available to the user, for example “drawing the sales figures
chart in excel” or “writing the executive summary”. This definition of a task fits well
with the GOMS model explained in Chapter 2.

Unfortunately, while we often maintain high level definitions of tasks in our own
minds, computer systems seldom support them. Interruptions often occur during
workflows, as explained further in Chapter 2, and task switching interfaces current
are burdened by having to support these interruptions whilst attempting to provide
high level grouping. This results in wasted space for additional widgets, unnecessary
clicks or keystrokes, and cluttered interfaces requiring slow visual searches to find
selection targets. A modern 17-inch liquid-crystal display (LCD) with a resolution
of approximately 100 dots per inch (dpi) struggles to display two pages of a book
with legibility while a small book can easily outshine this. Yet most task switching
interfaces do not even attempt to utilise more than a small portion of this very limited
display space. We set out to design SCOTZ to solve this problem and present a
better task switching interface that becomes second nature and does not require visual
searches.



2Related Work

This chapter outlines previous work relating to task switching and task switching in-
terfaces. First we review research investigating what tasks are, how users define them,
and how workflow can be interrupted. We then describe log-based empirical methods
for collecting task switching data and their findings, followed by an overview of cur-
rent mainstream windowing environments together with research systems and their
evaluations. Finally, we briefly investigate the role of spatial memory in navigable
interfaces.

2.1 Tasks and Workflows

2.1.1 Defining Tasks

Based on applied information psychology, the GOMS model by Card et al. (1983)
defines a user’s cognitive structure for an activity as consisting of four elementary
components: a) a set of Goals, b) a set of Operators, c) a set of Methods for achieving
the goals, and d) a set of Selection rules for choosing among competing methods for
goals. These four components form the basis for all tasks and sub-tasks. For example,
the goal ‘Edit Manuscript’ consists of sub-tasks such as ‘Get Next Page’ and
‘Add a Quaver Rest Here’, which further break down into sub sub-tasks called
unit tasks (e.g. ‘Press Quaver Rest Button’) — the exact unit tasks being decided
upon by the user. Indeed, unit tasks are often part of free-form tasks—arbitrarily
assigned on-the-fly by the user—that Iqbal & Bailey (2007) claim are the most common
computing tasks. This model fits well with the simplified model presented in Chapter
1, where the means is formed by operators and methods in GOMS terminology.

Bardram et al. (2006) developed a model they call “Activity-Based Computing”
(ABC). While their study primarily focuses on mobility around office systems, ABC
stands on its own as another complete definition for tasks. In ABC, tasks (activities)
are compositions of services and data related by work. Services map to applications
and data are the documents, files or windows in use. Each service uses a different
set of data, but two may share the same data — in Figure 2.1 the service PDF Viewer
is associated with three pieces of data. Activities in ABC loosely correspond to high-
level goals in GOMS, while services correspond to the selected methods of a GOMS sub-
task at the application level. The ABC model fits more closely with current window
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4 CHAPTER 2. RELATED WORK

Figure 1. The ‘ABC CHI Paper’ activity used as an ex-
ample throughout the paper.

However, many studies have shown that these challenges
also exist in other kinds of work, including so-called ‘infor-
mation work’ taking place in an office environment. Hence,
even though our initial research was rooted in a hospital
environment, we are currently working on a more general
level and is proposing activity-based computing (ABC) as
an approach to computing, which focuses on computational
support for mobile, collaborative, and distributed activities
which are adapted to their usage context. We are arguing that
support for whole activities, rather than individual tasks, is
important in pervasive environments. Figure 1 is a concep-
tual illustration of an activity which is a work-related aggre-
gation of services and data. We have defined activity-based
computing around the following essential principles:

Activity-Centered – A ‘Computational Activity’ collects in
a coherent set a range of services and data needed to sup-
port a user carrying out some kind of (work) activity. This
principle addresses the challenge of application-centered
computing.

Activity Suspend and Resume – A user participates in sev-
eral activities and he or she can alternate between these by
suspending one activity and resuming another. Resuming
an activity will bring forth all the services and data which
are part of the user’s activity. This principle addresses the
lack of support for interruptions.

Activity Roaming – An activity is stored in an infrastruc-
ture (e.g. a server) and can be distributed across a net-
work. Hence, an activity can be suspended on one work-
station and resumed on another in a different place. This
principle addresses the challenge of mobility.

Activity Adaptation – An activity adapts to the resources
available on the device (i.e. computer) on which it is re-
sumed. Such resources are e.g. the network bandwidth,
CPU, or display on a given devices. This principle ad-
dresses the challenge of isolated and homogeneous de-
vices.

Activity Sharing – An activity is shared among collaborat-
ing users. It has a list of participants who can access and
manipulate the activity. Consequently, all participants of
an activity can resume it and continue the work of another
user. Furthermore, if two or more users resume the same
activity at the same time on different devices, they will be

notified and if their devices support it, they will engage in
an on-line, real-time desktop conference. This principle
addresses the challenge of collaboration.

Context-awareness – An activity is context-aware, i.e. it is
able to adapt and adjust itself according to its usage con-
text. Context-awareness can be used for adapting the user
interface according to the user’s current work situation –
or it can be used in a more technical sense, where the
execution of an activity, and its discovery of services, is
adjusted to the resources available in its proximity. This
principle addresses the challenge of context insensitivity.

The focus of this paper is to show how activity-based com-
puting has been incorporated in the Windows XP operating
system. Hence, the paper will focus specifically on the single
user aspects, i.e. support for handling activities, activity sus-
pend/resume, activity roaming, and activity adaptation. Col-
laborative activity sharing and context awareness has been
discussed elsewhere [5, 9].

ABC FOR WINDOWS XP
This section presents the user interface and implementation
of the activity-based computing extension to the Windows
XP operating system. This ABC user interface is part of the
client layer in an overall ABC architecture, where the under-
lying infrastructure layer is responsible for activity distribu-
tion and concurrency control in activity-based collaboration.
This paper, however, exclusively focuses on the client layer
and its implementation as part of Windows XP.

The ABC user interface for Windows XP is shown is fig-
ure 2. In Windows XP, each service is mapped to an applica-
tion window. Thus, an activity can be made up of a range of
windows, including child windows to an application, where
the main window is not part of the activity. In figure 2 the ac-
tivity labeled ‘ABC CHI Paper’ is resumed and contains win-
dows from different applications like Adobe Reader, Fire-
fox, and an open mail in a child window from Thunderbird.
Let us consider the different parts of the ABC user interface
for XP in more details, including some of the implementa-
tion details.

Activity Bar
The main user interface component is the Activity Bar illus-
trated in figure 2. This bar replaces the Windows XP Taskbar
since activities – and not applications – are the main focus in
ABC. In order to facilitate an intuitive understanding of how
the bar works, the activity bar is deliberately designed to re-
semble the Windows Taskbar. The ‘Activities’ button is used
to list the current user’s activities as shown in figure 4. The
action buttons are used to: (i) Create a new activity; (ii) sus-
pend the current activity; (iii) invite other participants; (iv)
save the activity locally; (v) zoom out the activity; (vi) show
the ABC control panel; and (vii) to show the radar view. Fre-
quently used activities are shown in the middle part of the
bar, and the status icons on the left reveal the collaborative
status for the current user: (i) Other online participants; (ii)
tele-pointers on/off; (iii) voice-link on/off; (iv) and server
online status.
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Figure 2.1: Activity-Based Computing Task, “ACM CHI Paper”, composed of three services
each with separate data. Figure taken from Bardram et al. (2006).

management systems which define tasks based on applications and windows, and is
similar to the task representation presented by Card & Henderson Jr (1987) for their
“Rooms” system. Further simplifying this definition, Robertson et al. (2004) define
tasks simply as groups of windows from various applications that are used together.

2.1.2 User Workflow and Workflow Interruptions

Users are susceptible to overload (Adamczyk & Bailey 2004), making user attention
and workflow both delicate and difficult to maintain, especially when interruptions
occur or work is divided across sessions. Yet, Mark et al. (2005) discovered that 57% of
“working spheres” (goal-oriented sessions) are interrupted regularly by activities such
as co-worker conversations, virus scanner pop-ups and instant messages. Mark et al.
also found that related interruptions often prove useful while unrelated interruptions
lead to disruptive shifts in thinking. This echoed findings by Cutrell et al. (2000),
who investigated the effects of instant messaging interruptions and found unrelated
interruptions resulted in much longer overall task completion times. Iqbal & Bailey
(2007) developed models to support interruption management by asking users to an-
notate a task flow animation using three different modal break granularities, gaining
good accuracy with content creation tasks. Czerwinski et al. (2004) summarise the
field by outlining implications for design and suggest designs use lightweight temporal
cues to better assist the user in visualising both forthcoming tasks and tasks in limbo.

Iqbal & Horvitz (2007) reported findings from log analysis that users have an av-
erage of 3.74 interruptions per hour. They also reported that the average time spent
servicing a diversion was 9 minutes, 33 seconds, indicating (by multiplication of both
numbers) that attending to interruptions accounts for close to 60% (or ∼ 35 min-
utes per hour) of measured work time, not including time for mental context shifts.
They also found that prior to servicing a diversion users work rate increased dramat-
ically, supporting their hypothesis that users perform state-stabilizing actions before
switching to the diversion application. Finally, they found higher task switching rates
while servicing a diversion or resuming tasks, and that visibility of windows serves
as a reminder to restore them.

Under the premise that high-level goals remain fairly stable, goal-centric task
switching interfaces such as Bardram et al.’s (2006) implementation of ABC (above),
and GroupBar (Smith et al. 2003, reviewed in Section 2.4) mandate user grouping of
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2.2. LOG-BASED EMPIRICAL METHODS 5

windows and applications as goals (tasks), attempting to allow fast recovery from in-
terruptions by restoring each group as a whole. However, Oulasvirta & Saariluoma
(2006) showed that unless task activity can be encoded into long-term working mem-
ory, high rates of memory loss can occur across sessions (even tiny interruptions).
Scalable Fabric (Robertson et al. 2004) uses long-term spatial stability for task group-
ings which should assist long-term memorability. These interfaces either do not al-
low windows to belong to multiple tasks or have complicated processes for which to
assign task groupings causing cross-goal switching, and add additional management
overhead when switching between intra-task windows.

2.2 Log-based Empirical Methods

Researchers have performed many longitudinal studies using logging tools to collect
data. Mackinlay & Royer (2004) deployed the “Glass Box Analysis environment”
software that captures mouse, keyboard and window events in Microsoft Windows.
They used this tool to collect data for window thrashing (quick successions of move
and resize operations — see Section 2.3.1) and present results as a timeline. This tool is
a heavyweight tool capturing vast amounts of data, some unrelated to task switching.
Renaud & Gray (2004) present research based around the GRUMPS project collecting
low-level usage data such as keystrokes and mouse movements. They present novel
strategies to filter data and identify events of interest, and techniques to deal with
missing actions. The data collected by low-level tools is a much larger superset to data
of interest, and the techniques presented in this paper attempt to provide contexts for
filtering the data and eliminating noise from the relevant subset.

2.3 Task, Application and Window Switching Interfaces

Kumar et al. (2007) group application switching techniques into three categories,
based on the organisation of items within interfaces: Spatial, Temporal and Hybrid.
Each interface also exhibits one or more of the following properties depending on
how it is used: window, keyboard, and external tool. Window refers to using the win-
dow to instigate the switch (e.g. by using minimise and maximise or clicking on the
window itself). Keyboard classifies the use of keys on the keyboard, or a combination
of keys (e.g. Alt+Tab). Finally, external tools are on-screen widgets not including
the window itself, such as the taskbar/window list from Windows/GNOME respec-
tively, or the Mac OS X Dock.

Most modern mainstream window systems have different switching interfaces for
at least two of these categories, with some interfaces (such as Mac OS X’s Exposé1)
spanning more than one category on their own. It is important to note that an in-
terface with one property may be more useful for some tasks than an interface with
another property — it is reasonable, for example, to assume Alt+Tab is useful while
working with text documents because your hands are already near the keyboard.
Likewise, when working with a pair of windows Alt+Tab can be used to instantly
access the other window, bypassing the dialog (providing no interruptions occur).

1Exposé: http://docs.info.apple.com/article.html?artnum=304786

CHAPTER 2. RELATED WORK
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6 CHAPTER 2. RELATED WORK

Figure 2.2: Timeline visualisation of logged window activity showing a single work session,
with time progressing along the x-axis. Each shade represents a different window,
with the small black line at the top of a shade area indicating focus. The circled area
shows a period of heavy window thrashing—identified by rapid changes in window
focus—where the user performs many activate, resize, and move events. Figure
taken from Mackinlay & Royer (2004).

2.3.1 Windows as Widgets

The simplest form of task switching is to use windows themselves as switching tools.
To switch focus to a window, a user can to click on the window (or hover, depen-
dant on window manager); clicking directly on a window is a direct mapping to the
content required and requires no external mechanics to memorise. The difficulties
with this method were touched on in Chapter 1, and first identified by Bannon et al.
(1983): primarily, limited VDU space leading to occluding windows when more than
one or two are open at once. Henderson Jr & Card (1986) quantified this by compar-
ing the size of a number of VDUs to physical workspaces such as desks and tables,
calculating that a dining table has the equivalent work space of close to 30 19-inch
screens (also Card & Henderson Jr (1987)). Furthermore, Grudin (2001) added addi-
tional perspective to this work by identifying that even a large monitor only covers
around 10% of the area we can focus on by moving only our eyes. Other researchers
have struggled to apply ‘messy desk’ methodologies successfully with conventional
VDUs and have been forced to lower expectations or explore alternative paradigms,
often attributing this to display space limitations (MacIntyre et al. 2001, Agarawala
& Balakrishnan 2006).

Henderson Jr & Card first alluded to the phenomenon of ‘window thrashing’
in 1986, describing a quick succession of move and resize operations on a group of
windows to maintain the desired visibility state, and deemed it to be caused by over-
lapping windows and small display workspaces. Mackinlay & Royer (2004) analysed
activity logs to determine the scale of the phenomenon in modern systems and found
frequent occurrences with some thrashing periods nearing minutes in length. Figure
2.2 shows a visualisation from Mackinlay & Royer’s logs of one such thrashing period
in a single user’s window management session. Their findings are likely explained by
Iqbal & Horvitz’s (2007) observation that the diversity of personal computer use,
especially with regard to simultaneous tasks, has grown substantially in the last two
decades while the efficiency of switching interfaces has not. By identifying and tim-
ing long periods of window thrashing, these studies have provided some evidence to
suggest thrashing impedes task switching performance.

In order to combat window thrashing, many research systems (Hutchings et al.
2004, Chapuis & Roussel 2005) have focused on the issue of window visibility, ac-
knowledging that the need to switch windows is a direct corollary of occlusion caused
by limited VDU space. Ideally, all necessary windows would occupy their own
space and be available for view without hiding another, analogous to having un-
limited desk space. This has lead to one of two common recommendations: a)
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larger physical display space (through either larger or additional VDUs) (Mackinlay
& Royer 2004, Hutchings et al. 2004, Hutchings & Stasko 2004a, Robertson et al.
2005), or b) using tiling or zooming window management techniques to avoid the
problem (Kandogan & Shneiderman 1996, Kandogan & Shneiderman 1997, Hutch-
ings & Stasko 2004b, Chapuis & Roussel 2005). However, these techniques are not
without criticism: tiling and zooming techniques do not align well with real-world
desktop abstractions, larger monitors are scarcely affordable even today, and multiple
display use introduces new issues such as gaps formed by screen bezels (Robertson
et al. 2005) and a general lack of application support (Grudin 2001). Nonetheless,
Grudin believes using multiple monitors can yield substantial (though difficult to
quantify) efficiency gains.

An older avenue of research focused on two similar concepts: a) expanding the
working space by using multiple virtual desktops; and b) maintaining a large movable
workspace and using the display as a viewport. The latter was first seen in SketchPad
(Sutherland 1964, Kay 1987), and is commonly used by image editing programs at
close zoom. Virtual desktops, influenced by early developments in Smalltalk project
views (Goldberg & Robson 1983) and Cedar overlays (Teitelman 1984), multiply the
space available by maintaining hidden workspaces as well as the visible one, allowing
the user to control which workspace is visible. Subjective analysis has found gains
in using virtual desktops (Henderson Jr & Card 1986, Card & Henderson Jr 1987),
and interestingly has found some users prefer them over multiple monitors (Ringel
2003). Virtual desktop implementations are widespread in X Windows systems, while
Microsoft provide an unsupported extension2 to Windows to add this functionality.

(a) Dialog after one tab press (b) Same dialog after many tab presses

Figure 2.3: Two states of the same Alt+Tab dialog in Windows XP showing icons for only
some of the open windows at any one time. A title is displayed for only one icon at
any time, and the same icon may appear again for each application window open.

2.3.2 Keyboard Switching Methods

Windows 3.1 introduced the ubiquitous dialog for the key combination Alt+Tab
(Microsoft 2003), which displays a dialog box on the screen when pressed containing a
grid of icons representing all open windows (see Figure 2.3), ordered by a temporally-
based z-order (Chen 2003). Holding the Alt key while pressing Tab multiple times
iterates through the list, and releasing the Alt key brings the window represented by

2Virtual Desktop PowerToy: http://www.microsoft.com/windowsxp/downloads/powertoys/
xppowertoys.mspx
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the selected icon to the front and activates it. The title of the selected window only
is displayed in a text box at the lower bounds of the dialog. In the worst case (all
icons are indistinguishable), Alt+Tab is effectively a serial visual search tool; Quinn
& Cockburn (2008) found serial menus revealing one item at a time (with mouse
movement instead of keystroke selection) are both twice as slow, and twice as error-
prone as all other menu types tested for a Zipfian distribution of selection. The list
is especially volatile if a user uses more than one switching method, as whenever a
window is activated it shifts to the top of the z-order, causing it to swap position in
the list.

Iqbal & Horvitz (2007) found that users tabbed through on average 7.5 applica-
tions before finding their target, indicating long search times. Alt+Tab also falters
when more than 21 (by default) windows are open, where it only shows a partial list.
Figure 2.3 shows two states of the same dialog (i.e. the Alt key had not been released).
Pressing Tab many times scrolls the list to reveal hidden icons (Figure 2.3(b)). Other
window managers use different methods: Mac OS X only shows a single icon for each
open application in its temporal switcher, and shrinks all icons so the list always fits
on-screen. The current release of GNOME increases the size of the displayed dialog
box until it eventually overflows the available screen space.

Windows Vista includes an updated Alt+Tab dialog that displays a small thumb-
nail image of each window instead of an icon (Microsoft 2007), and also allows direct
selection by mouse (similar to the Mac OS X dialog). However, this technique is
not easily discoverable by users familiar with legacy Alt+Tab, and also requires users
to acquire the mouse with their hand. Figure 2.4(b) shows a screenshot of the new
Alt+Tab dialog. Vista also includes a new interface called “Flip3D”, pictured in Fig-
ure 2.4(a), that is mechanically identical to Alt+Tab (except that it uses the Windows
key instead of Alt). Flip3D removes the display of window titles completely and
relies solely on the images to provide adequate information entropy for target selec-
tion. Both these methods suffer from many of the same problems as legacy Alt+Tab
and often require visual searching. Indeed, Ramos et al. (2006) found Tumbler, an
earlier interface very similar to Flip3D for layered image manipulation, was slower
than competing techniques (including a simple z-ordered list) for selection tasks.

While evaluating the “EyeExposé” interface, Kumar et al. (2007) found Alt+Tab
in Windows XP to be fast when the number of open windows was small. However,
they found that its performance scaled worse relative to the other methods evaluated
as the number of open windows increased. While we were not able to find other
research evaluating the relative performance of Alt+Tab to support their findings,
they provide anectodal evidence to support their results: Alt+Tab is most useful
when switching back and forth between two windows but z-ordering works against
the user (especially with interruptions) by shifting older targets further away.

2.3.3 External Tools and Widgets

External widgets form the largest group of task switching interfaces, involving tools
outside the windows themselves to instigate switching. The Taskbar (Windows 95
and subsequent versions) is such an example and belongs to the hybrid category. It
contains a list of buttons representing each window on the system (including min-
imised windows), each containing an icon and truncated piece of the window title.
Clicking on a button activates the corresponding window and brings it to the fore-

2.3. TASK, APPLICATION AND WINDOW SWITCHING INTERFACES



2.3. TASK, APPLICATION AND WINDOW SWITCHING INTERFACES 9

(a) “Flip3D” displays windows in 3D-space with partial z-order occlusion. No titles are displayed,
even for the active selection (frontmost).

(b) Vista Alt+Tab displaying thumbnails. The active selection has a highlight border around its
thumbnail, and a title displayed above the thumbnail list.

Figure 2.4: “Flip3D” and Alt+Tab dialogs in Windows Vista. Note that the desktop is also
displayed as a window to switch to.

ground at its previous co-ordinates. The list is ordered by first open time and retains
absolute spatial stability while all windows on the system remain open. However, if
the window list is full and a new window is opened, each button shrinks uniformly
in width causing all other buttons to shift left to accommodate the new button. The
inverse behaviour occurs when a window is closed: the button is removed, and re-
maining buttons move left and possibly expand in width to fill the leftover space.

Figure 2.5: Ungrouped window buttons (left) vs. grouped application buttons (right)

Many researchers, including Microsoft themselves, have attempted to improve the
Taskbar. Since Windows XP the Taskbar can group by application (Microsoft 2002);
when more than a certain threshold of windows belonging to one particular appli-
cation are open, they collapse into a single application button (see Figure 2.5) that

CHAPTER 2. RELATED WORK
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(a) Exposé showing all open windows with eight
windows open.

(b) Exposé showing all open windows after clos-
ing one Finder window.

Figure 2.6: Mac OS X’s Exposé in all windows mode before and after closing one window.
The positions of all other windows changes when a window is closed or moved.

activates a pop-up menu with a list of windows. Both Smith et al. (2003) and Robert-
son et al. (2004) claim the grouping by application behaviour confuses many users
because application windows may not be related to the same task. Smith et al. pre-
sented GroupBar (Section 2.4: GroupBar) as a solution, which allows arbitrary user-
assigned groups. Robertson et al. implemented Scalable Fabric (Section 2.4: Scalable
Fabric) as a Taskbar replacement for information workers with larger displays.

Mac OS X includes a window switching tool called Exposé that simultaneously
zooms and moves all windows (or all belonging to the active application) to fit with-
out overlapping. The resulting view allows switching to a particular window by
clicking on it. It is unique because it possesses all the properties mentioned: key-
board with the hot-key then Tab, external tool invoked by mouse actions, and finally
window as it adjusts the windows themselves. While we were unable to find specific
research evaluating Exposé, Splatter (Ramos et al. 2006) exhibits similar mechanics to
Exposé and was found to be significantly faster than a standard list for selection tasks
where a user has rough knowledge of location. Modelling the Fitt’s Law time compo-
nent of this interface suggests that it will be faster than a thumbnailed Alt+Tab dialog
because the target size for each window is larger (over 300% for large windows).

2.4 Research Systems and Interfaces

“Rooms” Rooms is an early system that strongly resembles today’s virtual desk-
top systems. Henderson Jr & Card (1986) developed Rooms after identifying nine
properties task switching interfaces should possess. The system uses a workspace
containing a series of interconnected ‘rooms’ (virtual desktops), each representing a
single activity and containing a set of ‘engaged tools‘ (windows). ’Doors’ were used
as switching widgets to other rooms, with back doors to revert to a previous room,
assisting task restoration. Rooms also offered users an overview mode, which showed
a space-filling thumbnail representation of all rooms in alphabetical order.

Data Mountain Data Mountain (Robertson et al. 1998) displays a 3D floor plane
in perspective view and allows users to place thumbnail images of documents at ar-
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bitrary locations with 3D co-ordinates for document management. Against a textual
list, Data Mountain performed better for bookmark retrieval in time, error rate and
subjective satisfaction. Further investigation (Cockburn & McKenzie 2001, Cock-
burn & McKenzie 2002, Cockburn 2004) has shown with 2.5D views that Data
Mountain’s performance was the result of spatial memory and not 3D.

Task Gallery 3D The Task Gallery 3D (Robertson et al. 2000) used the visual anal-
ogy of an art gallery that users could move through, with a main stage (current work
area) and peripheral task displays. Task switching involved swapping the contents of
the stage with that of a peripheral task display. Users moved around the gallery with
a palette of tools (using a Data Mountain with application icons) in a virtual hand.
The Task Gallery 3D was not evaluated against other task switching tools, but users
found it enjoyable to use.

GroupBar GroupBar (Smith et al. 2003) is an extension of the Windows Taskbar
to support arbitrary groupings of windows. It adds widgets and drag-and-drop in-
teractions to form groups of window buttons in the Taskbar. It adds a group tab to
allow automatic arrangement of windows to presets. Task completion times were
faster than the Taskbar, and GroupBar gained significantly better satisfaction ratings
suggesting users liked the ability to group arbitrarily.

Scalable Fabric Robertson et al.’s (2004) Scalable fabric augments a regular workspace
with a periphery area sized by the user. This area stores spatially consistent minimised
windows as thumbnails of the window’s last state. These thumbnails can also be
grouped arbitrarily to form tasks: groups of partially overlapping windows with a
name. Scalable Fabric showed no significant performance difference to the Taskbar,
though several fixable usability issues were identified in the study.

Activity Bar The Activity Bar (Bardram et al. 2006) is the main user interface com-
ponent from Activity-Based Computing (ABC, Section 2.1.1), providing widgets for
each activity. Activity Bar supports CSCW tools, zooming, thumbnail pictures for
activities and arbitrary grouping where each application and window can belong to
more than one activity. Bardram et al. (2006) did not evaluate the Activity Bar against
another interface but they reported some positive subjective measures.

WindowScape WindowScape (Tashman 2006) is a novel system designed to over-
come shortcomings in Groupbar, Scalable Fabric and Kimura (MacIntyre et al. 2001).
WindowScape allows windows to be represented as ‘minatures’: thumbnails existing
alongside regular windows on the desktop. These minatures remain in the same posi-
tion regardless of operations performed on the expanded windows, and all minatures
can be brought to the top of the z-order with a single command. WindowScape also
uses a temporal series of thumbnail screenshots that users can add to a ‘favourites’
panel. This provides an implicit means to assign windows to multiple task groups
(defined by favourite window position and size states). At the time of writing, Tash-
man has not yet published results of formal evaluations.

CHAPTER 2. RELATED WORK
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2.5 Spatial Memory in Navigable Interfaces

Spatial memory is a powerful tool for user interfaces to exploit. We learn spatial po-
sitions very quickly and are able to recall them with great accuracy. Cockburn et al.’s
(2006) Space-Filling Thumbnails interface for document navigation showed vast im-
provements in acquisition time with spatial searches (i.e. the user is able to remember
position). Furthermore, strong relationships have been found between spatial ability
and user performance in multiple different fields including file management and com-
puter gaming. Data Mountain (Robertson et al. (1998) - see Section 2.4: Data Moun-
tain) used 3D spatial layouts to display bookmarks with positive results. Cockburn
& McKenzie (2001) and other related research showed Data Mountain’s performance
would have been high with a 2D interface as well, and was due to spatial memory.
The Task Gallery 3D (Robertson et al. 2000) and its 2D counterpart, Scalable Fabric
(Robertson et al. 2004) both use consistent positioning to target spatial memory with
positive results. Older researchers have even shown a lack of spatial consistency in
menu item positioning greatly impedes performance (Teitelbaum & Granda 1983).
Finally, Cockburn et al. (2007) showed improved spatial learning when interfaces re-
quired more effort.

2.6 Summary

In this chapter we have presented definitions for tasks and given an insight into user
workflow and interruptions. We presented an overview and classification of main-
stream task switching interfaces, and discussed research systems and their approaches
to solve problems with task switching processes. Despite vast amounts of research,
task switching interfaces remain largely unchanged with the exception of Mac OS X’s
Exposé and clone interfaces. Flip3D is a visually-improved version of Alt+Tab, re-
quiring the same serial keystroke mechanics to operate. Vista’s Alt+Tab is a genuine
improvement, but offers no discoverability for much of it’s additional functionality.
Finally, we have discussed spatial memory in relation to navigable interfaces and it’s
proven benefits.

2.5. SPATIAL MEMORY IN NAVIGABLE INTERFACES



3Understanding Task Switching

This chapter provides insight into tasks and computer use. The following sections
detail the design and execution of an empirical study we performed to collect data
from real users explicitly detailing their task switching actions with applications and
windows. We developed an application, TrayLog, to log task switching actions in
Windows XP by means of Windows messages and hooks. Following this we analyse
this data and gain knowledge of how users manage their applications and documents.
Further, we begin to make inferences on how user’s concepts of tasks relate to and
their actions and tools. Finally, we use the understanding gained to help design new
interfaces in order to more efficiently utilise user’s cognitive capabilities.

3.1 Experiment Objectives

The aims of this study are to identify trends observed within the participant group
that can be used alongside data from other studies (Mackinlay & Royer 2004, Renaud
& Gray 2004, and others), and to provide insight into the causality of these trends. We
do not aim to provide an unabridged resource from which to base concrete theories
of task interaction. Objectives are grouped into two sections: a) Quantitative Goals,
concerning quantifiable measurements of user activity, and b) Qualitative Goals, us-
ing log data and subjective responses to help explain and validate our measurements.

3.1.1 Quantitative Goals

We will collect and analyse log data to provide statistical evidence that we can use to
answer the following questions:

1. What is the distribution of applications and window switching?
Are one or two used much more than the rest, or is it uniform?

2. How many applications and windows do users use frequently?
Do users need to switch to a large or a small number of applications or windows?

3. How do users use current mainstream task switching interfaces?
Do users predictably neglect any interfaces or favour others?

13
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3.1.2 Qualitative Goals

We will also collect subjective data from participants by means of a questionnaire to
be used in conjunction with log data to both validate the log data and answer:

• how much time is spent in each application;

• how frequently applications are launched and closed, or instability is triggered
in current interfaces such as the Taskbar;

• how individual work sessions differ;

• what categorisations different users fall into based on their habits;

• what causes these categorisations if they exist; and

• what a reasonable assumption for the number of tasks an interface needs to be
concerned with is.

Our questionnaire contained 5-point Likert scales for rating direct mouse clicks, the
Taskbar, and Alt+Tab, along with space for comments on each. We also included
space for comments on how users would improve task switching interfaces, how
they usually switch tasks, and what their estimated distribution between the three
methods mentioned was.

3.2 Hypothesis

We suspect the distribution for window switches across sessions will follow a power
curve and be Zipfian. We expect that within sessions, window switching distribution
will follow a power curve, but form a flatter distribution than data from across all
sessions. We predict application use will also follow a Zipfian power curve. Finally,
we suspect there will be a difference in the task switching methods used by single and
dual monitor users.

3.3 Participants and Apparatus

11 Participants (9 male, 2 female) aged 18 through 55, participated in this study. 9 Par-
ticipants were computer science postgraduates, the remaining participants were com-
puter science staff or office workers. All participants were using Windows XP with
Service Pack 2 installed. Six participants (all male) used dual monitor systems, the rest
used single monitors. Display resolution ranged between 1280×960 to 1600×1200
for single monitor participants, and 1280×960 to 1680×1050 per monitor for dual
monitor participants. Log files gathered ranged from 3 to 20 megabytes and spanned
between two and ten weeks of use, averaging 6.4 megabytes and 5.25 weeks.

3.2. HYPOTHESIS
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3.4 Experimental Design and Method

3.4.1 Data Available in Microsoft Windows

Microsoft Windows is a message-based operating system: all actions—from mouse
movements to file writing—are performed via the messaging system. Therefore, we
can inspect and log user actions by listening to user interface and window manage-
ment messages which belong to the set prefixed with WM_. These messages can be
inspected through system hooks: chained functions which receieve, process, and pass
on a specified set of messages. A programmer can add a hook by instructing Win-
dows to inject executable code from a dynamic link library (DLL) into each running
process. Hooks of type WH_CBT are executed whenever window actions (activate,
focus, minimise etc.) occur, while WH_KEYBOARD and WH_MOUSE hooks are executed
whenever keyboard or mouse actions (press, release, move etc.) occur.

Some applications, especially multi/tabbed document interface applications such
as Firefox, do not generate correct message streams or window sets and instead use
their own internal systems to operate. However, they still provide data in the form
of window titles and positions. Windows APIs exist for traversing the current tree of
windows (GetForegroundWindow()), inspecting window titles, positions and sizes ,
and getting the last input event (GetLastInputInfo()), all of which are appropriate
here. Finally, data from Windows API functions can also augment hooked data by
supplying window titles, process IDs for applications, and their executable names
(e.g. notepad.exe).

3.4.2 Development of TrayLog

TrayLog uses three hooks along with a polling loop to gather user interaction data.
While all data could be gathered with greater ease by using a polling loop, we use
hooks for efficiency and accuracy. No mouse click can escape a hook message, but
it may complete before the next poll. We use a WH_CBT hook to determine when
windows are switched to and how many windows exist. The CBT hook is activated
on the following events:

• window creation and destruction,

• window activation,

• focus,

• minimising and maximising,

• movement, and. . .

• resizing.

We used activation events to indicate a window switch, then use the window handle
provided by the hook to query for the window title, executable name and process ID.
Unfortunately, the CBT hook does not provide details on how the user performed the
switching event, nor whether or not a task-switching interface was used (the activa-
tion may be the result of closing another window). We determine which switching
interface (if any) invoked the switch by installing both a mouse and keyboard hook,
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flagging relevant keystrokes and mouse actions to deduce the invoker logically. The
following rules are processed in this order to determine the interface used:

1. Alt+Tab: set a flag when the keyboard hook identifies the key combination.
The next switch is marked as KACTIVATE (keyboard activation by Alt+Tab).

2. Taskbar: set a flag when the mouse hook identifies a click. If the click was
within the taskbar region, the next switch is marked TACTIVATE (taskbar acti-
vation).

3. Direct Mouse Click: If the click identified by the mouse hook was outside
the taskbar region, the next switch is marked MACTIVATE for mouse (direct)
activation.

4. No Interface: Finally, if neither hook is triggered, the next switch is marked
OACTIVATE (other).

Prior to the xACTIVATE message, TrayLog also logs ALTTAB and TBCLICK (referred
to henceforth as input entries) for their respective actions so that the noise filter can
accurately repair incorrectly-logged actions (see Data Noise Filtering below).

Many MDI applications fail to produce correct message streams (see Section 3.4.1:
Data Available in Microsoft Windows), although many adjust the title bar of the par-
ent window when the child document’s title changes. TrayLog uses a polling loop ev-
ery 100ms to store the last sampled title text and log a PACTIVATE message whenever
the new sampled text does not match the stored text. The PACTIVATE log message
indicates that the MDI child may have changed and could be a new document.

Each log entry includes a timestamp, an action type (e.g. ACTIVATE), the process
ID and executable name of the application associated with the action, the window ID
(indicated by an integer window “handle”), and the current title of the window. The
following text is a small excerpt from a log file (window titles have been truncated):

[2007-07-17 22:45:04.171] DESTROYED 2492 787804 msnmsgr.exe MSNMSGRAbsCo...
[2007-07-17 22:45:04.375] OACTIVATE 5120 67780 Opera.exe Tom’s Hardware’...
[2007-07-17 22:45:04.375] SETFOCUS 5120 67780 Opera.exe Tom’s Hardware’s...
[2007-07-17 22:45:04.421] PACTIVATE 5120 67780 Opera.exe Tom’s Hardware’...
[2007-07-17 22:45:06.171] MACTIVATE 2492 1574176 msnmsgr.exe Frostastic ...
[2007-07-17 22:45:06.218] PACTIVATE 2492 1574176 msnmsgr.exe Frostastic ...

The above log shows the an MSN Messenger conversation closing, causing Opera
to activate as the topmost window. Opera automatically sets focus when it receives
activation messages and triggers the SETFOCUS log. Next, the polling loop detects the
active title change and triggers a PACTIVATE. Finally, the user activates another MSN
conversaion by direct mouse click, resulting in an MACTIVATE entry followed by the
polled PACTIVATE entry.

3.4.3 Data Noise Filtering

The major challenges after collection were to determine what data constituted noise,
and to filter it from the final processed data set. We filtered noise using a post-hoc
approach, employing PHP script with a set of filter rules. The following paragraphs
explain the criteria used for noise filtering and entry repair.

3.4. EXPERIMENTAL DESIGN AND METHOD
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Erroneous SETFOCUS Some applications (once again, often MDIs) re-focus each of
their UI components upon activation, generating many erroneous SETFOCUS log en-
tries. These entries often have little to no identifying information other than the
window handle number making them extremely difficult to filter without removing
valid data. Ultimately we had to remove SETFOCUS entries from our analysis because
the scope of these UI components is too wide to filter accurately.

Top Level Window Activation Pollution Applications such as Microsoft Outlook
Express use invisible top level windows to control non UI-related routines. In partic-
ular, Outlook Express activates these windows routinely whenever it checks a mail-
box, generating erraneous log entries in the process. Normally this would generate
an OACTIVATE log entry and be ignored. However, if the activation occurs between a
user performing an activation and the window activation message processing, Tray-
Log will flag this event as a user activation and incorrectly classify the actual action.
We did not find an API returning only visible top-level windows that could execute
with acceptable speed.

In contrast to widgets, invisible top-level windows usually retain identifiable win-
dow titles. For example, Outlook Express’ IMAP control windows always use the
title “Outlook Express IMAP CFSM Class” (see Appendix A.1 for the complete ti-
tle listings). Therefore the filter can remove any log entry belonging to Outlook
Express (“msimn.exe”) with such a title, and repair the incorrect entry by using the
preceding input entry. If no input entry is present, the presence of a preceding window
destruction event distinguishes between direct click and non-user activation.

Creation and Destruction Not only do some applications activate invisible top-
level windows often, many applications also create and destroy them at irregular in-
tervals. Unfortunately, unlike activated top level windows the creation and destruc-
tion events can not always be filtered based on window title because the windows
often have null or automatically-refreshing window titles. While the filtering system
always removes entries with null exe names or window titles (indicating windows
that were destroyed before the logger could query for their information), much noise
was still present from create/destroy events and thus analysis pertaining to window
counts is offered with low confidence only. Fortunately, destruction events often
occur in groups, and our basic scenario analysis confirmed our repair function (see
previous paragraph) worked correctly by considering these destruction events as a
group.

Polled Activations PACTIVATE entries occur once for each other xACTIVATE mes-
sage. The final filter stage identified PACTIVATE messages pairing with an existing
activate message with a timestamp gap less than or equal to 100ms (maximum polling
error) and removed them.

Scenario Analysis During the development of the noise filter, we performed a log
scenario with known actions, and compared the filtered data to the known data.
An excerpt from our log scenario before and after filtering can be seen in Appendix
A.2. The final iteration for noise filtering development produced zero errors with the
log scenario. It is unfeasable to develop filter profiles for each application, however,
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although most applications we filter frequently occur in the highest 10 positions in
the application switching distribution in Section 3.5.1, such as Mozilla Firefox and
Thunderbird.

3.4.4 Session-Marking Techniques

We have many mechanisms at our disposal to mark sessions such as idle timers,
explicit start/stop notifications, and window set detection. Despite this, session-
marking techniques are difficult to engineer because we must first know what a ses-
sion consists of before we can utilise marking mechanisms. For example, is a ten
minute coffee break or a walk around the office to stretch the legs constitute the
end of a session, or is this simply an elongated interruption within a session? Are
users’ sessions independent of interruptions within daily routines? Can sessions span
multiple days?

Oulasvirta & Saariluoma (2006) implicitly defining sessions as periods of activ-
ity within a working day by indicating a need for long-term memory encoding of
tasks (Section 2.1.2). Czerwinski et al. (2004) present a near-identical definition of
sessions, although they do not mention sessions explicitly instead calling them ‘sep-
arate activities’. This project uses the same definition for sessions, that is: periods of
work within a day, separated by a long interruption. Because the large majority of
our participants are from a university, we will define long interruption as anything
over one hour, an acceptable time for a lecture or long lunch break. TrayLog marks
this definition by using an idle time tracker in the polling loop, recording each time
the computer has received no input for one hour, logging a message for various idle
periods. We log the messages: IDLE10S, IDLE2M, IDLE10M, and IDLE1H, representing
ten seconds, two minutes, ten minutes and one hour respectively.

Although we can also use window sets to determine where sessions start and end,
our noise filtering showed us that we cannot easily gain high accuracy for window cre-
ation and destruction events crucial to window set monitoring. We therefore decided
to use idle tracking only to avoid potentially implicit assumptions during analysis.

3.5 Results and Findings

3.5.1 Distributions of Window Switching

We analysed three different distributions using filtered data for both applications and
windows, outlined in the three paragraphs below. For all data we analysed only user-
invoked switching log entries (K, M, and TACTIVATE), and ignored P and OACTIVATE.

Application Distribution by Total Number of Switches We measured application
distribution across all sessions and found a Zipfian power law distribution for the
nth frequently targeted application to the total percentage of switches for that appli-
cation, averaged across all participants. We averaged each participant’s first, second,
third etc. application across all their sessions, then averaged all participants’ applica-
tions in frequency order independent of what applications these represented for each
participant. Regression analysis showed little variance between our expected distri-
bution and our findings (R2 > 0.94, y = 70.271x−1.7075). This distribution is shown
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Figure 3.1: Graph illustrating the Zipfian distribution for the percentage of total switches for
the 21 most frequently targeted applications.
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Figure 3.2: Graph illustrating the Zipfian distribution for the percentage of total switches for
the 20 most frequently targeted windows across all sessions.

by the graph in Figure 3.2, and illustrates that users favour a small set of applications
for the majority of their actions. Interestingly, e-mail clients and instant messaging
programs always featured in the top five targeted applications when present.

All-Sessions Unique Window Distribution We found another Zipfian power law
distribution for the nth frequently targeted window to the total percentage of all
switches to that window, averaged across all participants (illustrated by Figure 3.2).
Regression analysis for this distribution showed an even smaller variance than the
application switch distribution (R2 > 0.98, y = 36.145x−1.2391). This result both con-
firms our hypothesis that this distribution follows a power curve, and shows that not
only do users favour a small number of applications, but a small number of windows
in these applications as well.
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Figure 3.3: Graph showing the average window switching distribution of a session; the first
most switched-to window receives far more activations than the second, and so on.

Per-session Unique Window Distribution Using session marking techniques iden-
tified in Section 3.4.4 we analysed window switches on a per-session basis and iden-
tified a third Zipfian distribution (illustrated in Figure 3.3) with very strong results
under regression analysis (R2 > 0.99, y = 39.763x−1.3918). This data shows that not
only do participants use a small set of windows more than others based on a power
curve over the period of a few weeks, they do the same over periods of at most a few
hours. We had not expected this distribution to be as pronounced as it is after the
previous two distributions were less so.

3.5.2 Task Switching Interface Use — Single vs. Dual Monitors

We found a significant difference in the percentage of both direct mouse clicking and
Taskbar clicking to activate windows between single and dual monitor users (Mouse:
F(1,9) = 66.5, p < 0.001, Taskbar: F(1,9) = 6.0, p < 0.05). After removing the sin-
gle outlier, our confidence with the mouse and Taskbar results became even higher
(Mouse: F(1,8) = 80.0, p < 0.001, Taskbar: F(1,8) = 29.741, p < 0.005). This re-
sulted in percentages for single monitor users of 29.7, 65.3, and 5.1 for direct mouse
selection, Taskbar and Alt+Tab respectively, and percentages for dual monitor users
of 72.8, 23.4, and 3.9, graphed in Figure 3.4. We found no significant difference in
Alt+Tab use between the two groups, nor did we find any correlation between screen
resolution and interface use for either group, a result likely explained by the small
range of participant’s screen resolutions.

3.5.3 Questionnaire Results

Of the ten participants who returned questionnaire forms, four reported using be-
tween 6-15 different windows in a session, and four reported using over 15. Only
two users reported using between one and five windows. Our estimate measure from
log data supports this - we determined an average of 27 unclosed windows per ses-
sion. However, these results included non-filterable noise from erroneous log entries
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Figure 3.4: Graph showing the percentage of total switches for each task switching interface
logged for both single and dual monitor users.

as discussed in Section 3.4.3. Eight users reported switching windows once every few
minutes, while two reported switching more than once per minute, consistent with
our log findings.

Comparing participants’ estimated interface use revealed the same single vs. dual
monitor split as the logging data. Single monitor users predicted direct mouse se-
lection for 28.4% of their switches, while dual monitor users predicted direct mouse
selection for 62.6% of their switches on average. Both predictions were within eleven
percent of the measured results (Section 3.5.2). We calculated the mean of partici-
pants’ individual differences between their predicted and measured results, as shown
in the table below:

Mouse Taskbar Alt+Tab
Single Monitor 10.6% 13.4% 6%
Dual Monitor 10% 6.4% 5.6%

Overall 10.3% 9.9 % 5.8%

The maximum difference between expected and measured percentages by any par-
ticipant was 35%, however after contacting the participant we determined TrayLog
was working correctly and logging all methods accurately, and that the participant
had included switching in MDI applications when considering their interface use
percentages. The means presented in the table above show cyclically that both the
participants were well aware of their switching interface use, and that TrayLog mea-
sured accurate results.

All users echoed similar sentiments regarding each task switching interface. All
indicated that direct mouse clicks were only useful when the windows are visible, and
six participants also indicated that they would use this technique more often if win-
dow occlusion were less prominent. Seven participants found that Taskbar buttons
became too small to be useful when high numbers of windows were open. Interest-
ingly, at participants’ screen resolutions it takes at least 24 open windows before less
than five characters are displayed, possibly indicating that while users only switch to
a small number of windows frequently, they may leave a large number of windows
open in their workspace. Additionally, five participants indicated that the Taskbar
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grouping behaviour used by Windows XP solves the problem of reduced text area but
at the same time introduces a second click. Only one participant mentioned func-
tionality to group arbitrarily would be useful. Finally, Alt+Tab ratings were split in
a bipolar fashion between participants: some enjoyed its speed for accessing recent
windows, especially when their hands were already at the keyboard. Others com-
plained of an uncomfortable key combination, requiring acquisition of the correct
keys, and annoying behaviour when interruptions occur within their task flow.

Finally, seven of the ten questionnaire responses wished for better stability in
their task switching interfaces. Some expressed this as annoyance with the juggling
behaviour of Alt+Tab, while others expressed this explicitly stating they became an-
noyed with the Taskbar when items moved and resized.

3.6 Discussions and Conclusion

3.6.1 Problems with Experiment

We found only three problems worth noting throughout the experiment. First, we
encountered a problem with TrayLog and the Virtual Desktop PowerToy (see Chap-
ter 2). Switching virtual desktops in Windows with the PowerToy requires either an
action identified by TrayLog as a Taskbar click, or a key combination not identifiable
by TrayLog data. Only one user reported using the PowerToy, and their switching
data was consistent with other users in the same group. We attribute this to virtual
desktops being used for high level switches in tasks in accordance with their origi-
nal design (Henderson Jr & Card 1986), whereas more familiar methods such as the
Taskbar and Alt+Tab were used for intra-virtual desktop switching in the same task.

The second problem we discovered was with the Taskbar enhancement and re-
placement program ‘UltraMon’. UltraMon can add a second Taskbar to a dual mon-
itor user’s workspace while the Windows API function to determine the Taskbar
position returns only the native Windows Taskbar’s position. This results in Ultra-
Mon Taskbar clicks being registered as OACTIVATE system activations and not user
activations. Two dual monitor participants reported using the UltraMon applica-
tion, although both participants’ measured percentages were within seven percent
of their estimates which we deem an acceptable margin of error. One participant
reported using their second monitor as a peripheral monitor for their e-mail inbox
and instant messaging which may indicate lower use for the UltraMon Taskbar. Both
participants estimated their taskbar use to be low (between 25% to 35%), lowering
the possible effect on our switching distributions.

Finally, our third problem was caused by applications we did not know about
and could not gain access to for manual filter analysis generating erroneous top-level
windows. Manual scrutinising of log data across all participants found in total 320
(of over 30,000 switches) cases where an OACTIVATE entry directly followed another.
No further investigation was undertaken as we deem less than 1% to be an acceptable
error rate for this measure.

3.6. DISCUSSIONS AND CONCLUSION
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3.6.2 Practical Outcomes and Future Work

We found all distributions between percentage of total switches and switch targets
were Zipfian, with a 5% threshold landing somewhere between five and eight targets.
This is useful knowledge in that we can design interfaces to primarily cater for the
small set of applications and windows targeted by 95% of switches. Further investi-
gation could compare the switching distribution to each application and window to
the time spent in each application and window and determine any correlation that
may exist.

When combined with data from the application distribution, the similarities be-
tween our all-sessions and per-session window switching distributions suggest that
users stick to a familiar set of applications. In order to gain high frequency for ei-
ther application or window distributions, the familiar application set needs to be sta-
ble. We found for applications that the five percent threshold lies at approximately
seven applications. From this we can explore designs for task switching interfaces
that utilise spatial memory by assuming a stable set of at least seven applications and
assigning them each spatially stable positions.

Both explicit and implicit questionnaire feedback indicated that participants often
have many more than five to seven windows open at a time. When paired with the
Zipfian distributions, this indicates that seldom-used windows are consuming much
of their Taskbar widget area and necessitating visual searches. Users complained of
not being able to see enough of the title text in the Taskbar — perhaps the space
available for widgets in the Taskbar is inadequate to support user habits. Comparing
different sizes of Taskbar may reveal a correlation between performance and Taskbar
size at high window counts. Participants also appreciated the grouping functionality
of the Taskbar for partitioning space, although they did not like the menu or second
click actions. This indicates that task switching interfaces should support grouping,
but at the same time not require additional visual search steps to acquire targets.

User’s favourable responses an feedback for Alt+Tab further reinforces the argu-
ment that perhaps task switching interfaces are complimentary. Fitting more than
a handful of windows on-screen with participant’s resolutions seems difficult, and
when dual monitor use increases direct clicking with the same per-session window
switching distributions, we can determine a need for interfaces that are fast with
small numbers of recent items. Once again, speed should not come by sacrificing
switching capability for high counts and resorting to slow visual search strategies.

Finally, we found how participants described their task switching habits interest-
ing, especially when only one participant wished for arbitrary grouping of switching
widgets. Most participants indicated that they switch between windows very fre-
quently (all responded less than once every few minutes). Additionally, research on
workflow interruptions has found that up to 60% of working time is spent servic-
ing interruptions (Iqbal & Horvitz 2007). Combining both suggests that arbitrary
grouping would indeed serve to burden users more than help them, especially with
random interruptions. How would one define a group for "random interruptions"?

To conclude, this study analysed task switching data in the hope of finding practi-
cal outcomes and knowledge from real-world usage data. We successfully analysed log
data forming clean distributions. Combined with previous research and qualitative
feedback we provide clear vectors for improving task switching interfaces.

CHAPTER 3. UNDERSTANDING TASK SWITCHING
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4Design and Implementation of a Spatially
Consistent Interface

This chapter first forms design considerations based on empirical data and implicit
assumptions made in Chapter 3. From there, we use these principles to assist in
designing , providing support for decisions made. We present Spatially COnsistent
Thumbnails (SCOTZ) as an alternative to mainstream task switching interfaces to
better utilise spatial memory in task switching.

4.1 Design Considerations

The previous chapter outlined many of the design considerations we need to con-
sider in designing SCOTZ. We can summarise the four main principles derived from
empirical data and qualitative feedback as follows:

1. Users want stable interfaces and dislike targets that move.

2. Interface conditions that require visual search are disliked unanimously.

3. Users want rapid performance with small sets of frequently used items.

4. Users want interfaces to support larger workspaces than their focused set.

While these are a priori principles, they are logical when considering the empirical
findings. Furthermore, they are good principles to evaluate with SCOTZ, and if
found true, will allow interfaces that support users’ requirements more closely. As
you will discover in the following section, SCOTZ supports many of these things by
default, that is we used empirical data primarily to fine-tune.

4.2 Interface Model

Spatially Consistent Thumbnail Zones divides the entire screen space into a grid of
equally-sized zones. Each zone represents a single group of items, and within every
zone is a number of thumbnails belonging only to that zone’s group. Thumbnails are
reduced-size screenshots of a window, and represent the exact window’s contents at
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the time of capture. Importantly, zones are always located in the same space and never
move. This requires groupings based on stable workspace elements or concepts.

Much research has focused on grouping arbitrarily by task. However, we discov-
ered in Chapter 3 that few users immediately wish for such functionality. We also
presented logical reasoning to suggest that adding this functionality may increase
user load and harm performance, especially with interruptions. This initial design
of SCOTZ groups by application. We have already given evidence of high stability
in user’s application sets, with 95% of switches targeting less than seven applications.
Furthermore, current window systems already group explicitly by applications: they
are the next granularity of ‘task’ from windows and documents. Grouping by appli-
cation establishes stable elements and stops moving targets (Consideration #1).

SCOTZ addresses the problem of visual search (Consideration #2) in two ways.
First, it uses spatially stable areas (zones) for groups (applications), allowing users to
remember where their targets are instead of search for their targets. Second, where
target location is unknown, SCOTZ uses a divide-and-conquer visual search strategy,
similar to the Windows grouped Taskbar, to constrain visual searching to a small
subset of all items. Users should have excellent spatial memory for frequently used
items and be able to select them quickly (Section 2.5, Consideration #3). Because
SCOTZ uses the entire screen area for widget display and facilitates fast visual search
strategies where necessary, performance with large window sets should also be high
(Consideration #4).

4.2.1 Grid / Zone Interface

The most important unit in SCOTZ is the zone. Each zone needs to be spatially
stable: it needs to stay in the same position and retain the same size. The most
obvious strategy for accomplishing stability is to use a fixed number of zones. This
decision strays from using a dynamic calculation such as the one used in Space-Filling
Thumbnails (Cockburn et al. 2006) and instead chooses not to accommodate new
entries. We chose a square number, using the square root for row and column counts,
resulting in possible zone counts of 4, 9, 16, 25, 36 and so on — Figure 4.1 illustrates
the possible zone configurations for SCOTZ. Our empirical study suggest any of
four, nine or sixteen zones would suffice for 85% to 97% of task switches, and using
this arrangement also preserves the display’s aspect ratio and avoids looking “out of
place”. The negative side-effect to this is that SCOTZ will not be usable for 100% of
switches, however this can be addressed in many ways that we discuss in Chapter 6.

(a) 2×2 grid (b) 3×3 grid (c) 4×4 grid

Figure 4.1: Square number zone configurations for SCOTZ grid.

4.2. INTERFACE MODEL
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4.2.2 Internal Zone Space

Because windows are much more volatile than applications and are opened and closed
frequently, spacing inside zones must be much more dynamic than the zones them-
selves. We use a hybrid approach between zone sizing and space-filling techniques: a
zone is sized based on the nearest square number to the number of items required.
When resize occurs, the current grid is transposed to the upper left coordinates of the
new grid, the process illustrated in Figure 4.2.

Figure 4.2: Internal zone resizing behaviour moving from a 3×3 zone (left) to a 4×4 zone
(right).

This resizing behaviour allows absolute spatial stability inside zones for longer
than a dynamic approach by only resizing when absolutely necessary, and by having
the new grid condition provide a large number of new slots which must be filled
before the next resize event is triggered. Furthermore, transposing the grid instead
of simply re-assigning items in a left to right, top to bottom fashion keeps relative
spatial stability with the top left of the screen, and with the items themselves

4.2.3 Thumbnails

Thumbnails are the primary means of target identification within the SCOTZ inter-
face. As such, they are resized to fit the divided zone space while preserving their
aspect ratio, i.e. tall thumbnails are resized based on their height, leaving gaps at
either side. This ensures that users are looking for similarly shaped targets to the
windows they are aware of. In order to provide the largest possible target size, these
gaps are maintained as part of the target area for selection. Thumbnails display nor-
mally at an opacity of 75%, quickly fading in to 100% on mouse hover offering the
user hover feedback. A single left mouse click on the target area for a thumbnail
activates the corresponding window.

Cockburn et al. (2006) mention thumbnail quality as an important factor in their
research. SCOTZ has the same reliance on thumbnail quality. Therefore, SCOTZ
uses a high quality bicubic resampling from the .net Graphics library to resize thumb-
nails retaining as much detail as possible. While this is a slow algorithm, we perform
the resize as soon as window image data is available and store it in memory—before
SCOTZ activation—to make the interface highly responsive.

Finally, we overlay the window’s icon on top of the thumbnail image at 50%
opacity and added a truncated window title to the bottom area of the thumbnail.
These provide both additional entropy when using a visual search strategy, and a
means to quickly show the zone’s associated application. We found 50% opacity to be
sufficiently transparent to show both the icon and content underneath with clarity.
Icons scaled automatically with thumbnail size to maintain a 15% area overlay.

CHAPTER 4. DESIGN AND IMPLEMENTATION
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4.3 Implementation Details

The prototype SCOTZ interface is implemented wholly in C# using .net libraries and
makes extensive use of Windows Forms. Our prototype interface requires generated
screenshots for window content (although it still generates thumbnails dynamically),
as we have not yet implemented functionality to capture a system window.

SCOTZ can be activated by any shortcut combination or mouse button allowed
by Windows. Logically, because SCOTZ is a mouse-based switching interface, a
mouse button activation is desired. We chose to overload the middle mouse button to
activate the SCOTZ grid for our prototype simply because three button mice were
readily available. SCOTZ activation would better suit a mouse such as Logitech’s
MX Revolution with dedicated hardware buttons to suit such tasks.

A screenshot of the final SCOTZ interface using a 2×2 grid is presented below.

Figure 4.3: Screenshot of the final SCOTZ interface showing 11 windows open in four differ-
ent applications with a 2×2 grid.

4.3. IMPLEMENTATION DETAILS



5Evaluation of SCOTZ Interface

The following chapter describes an evaluation of the prototype SCOTZ interface
introduced in Chapter 4. Using TrayLog data to provide realistic distributions and
scenarios for task cueing, we measured acquisition speed for various window densities
testing both SCOTZ and three other simulated mainstream interfaces. We found
SCOTZ performed fastest under all conditions and gained the best subjective results.

5.1 Experiment Objectives

This experiment aims to determine how quickly SCOTZ allows users to acquire tar-
get windows, and how the density of windows affects switching time. Because little
published research has been conducted on mainstream interfaces, we also aim to test
an application-grouped Taskbar, an ungrouped Taskbar and a serial Alt+Tab inter-
face under the same conditions. We also wish to investigate any learning effects from
spatial memory when re-acquiring familiar targets. In addition, we are interested in
users’ subjective satisfaction of the SCOTZ prototype.

5.2 Hypothesis

We predict that SCOTZ will perform faster than the other interfaces for both low
and high window density. Further, we predict that SCOTZ will increase in speed
faster than the other interfaces as users gain spatial memory of targets and progress
to an expert condition. Finally, Alt+Tab has been shown to be slower than other
interfaces when the number of windows is high (Kumar et al. 2007) and we predict a
similar outcome.

5.3 Participants and Apparatus

14 participants (2 female and 12 male), aged 19 through 60, participated in this exper-
iment. All participants were familiar with the three mainstream techniques tested.
12 participants indicated they had expert proficiency with computer systems, one
moderate and one high.
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All participants used 2.13GHz Core 2 Duo PCs with 2GB of RAM running Win-
dows XP Professional. We used single Philips 190S LCD panels running at their na-
tive resolution of 1280x1024 with brightness set to 40%. Standard PS/2 keyboards,
and Microsoft Intellimouse optical mice connected via USB at 400dpi using Windows
XP default control-display settings constituted the input devices.

Most participants were familiar with the mainstream interfaces tested which may
influence their performance.

5.4 Tasks and Stimuli

This experiment used a workspace simulator we implemented, including three im-
plemented interfaces using behaviour similar to mainstream task switching UIs. The
workspace simulator displayed PNG screenshots as windows, where users could not
interact directly with them (e.g. clicking to activate, moving or resizing) or by using
auxilary techniques such as Alt+Esc. Instead, the task switching interfaces provided
were the only methods to switch between windows.

Figure 5.1: Screenshot of the workspace simulator showing the task cueing interface with an
ungrouped taskbar and a number of open windows.

The workspace simulator uses a task cueing interface in the form of a black bar
occupying the top 100 pixels of the screen. Figure 5.1 shows a screenshot of the
workspace simulator with a number of windows and an ungrouped taskbar open.
A “fuzzy” (e.g. “Your e-mail to Bob” or “Icons 48 pixel Folder”) description of the
intended target is displayed on the far left hand side of the bar, while the window’s
icon and application name are displayed on the far right hand side. If a participant
makes an incorrect selection, the fuzzy description turns red but allows them to im-
mediately correct their mistake. When a participant selects the correct window, the
fuzzy description turns green, and one second elapses before the next task is issued.

Our Alt+Tab replacement mimics the Alt+Tab dialog in Windows XP with some
differences (see Figure 5.2(c). Firstly, it does not automatically centre the list if it does
not span the full width. Second, it does not automatically resize the height of the
dialog to bring the icon list and window title text closer together. Functionality for

5.4. TASKS AND STIMULI
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both forward (Alt+Tab) and backward (Alt+Shift+Tab) navigation was available.
Releasing Alt activates the selected window.

Both Taskbars we implemented did not utilise the areas normally consumed by
Start menu, quick launch and the system notification area (“system tray”) to pro-
vide as close as possible target area to a real Taskbar. The grouping Taskbar (Figure
5.2(b)) used similar functionality to the Windows-style grouping Taskbar. However,
we forced a menu to appear even when only one or two windows were open for that
application, and always presented windows inside a menu. This was done to isolate
the two mechanical Taskbar conditions and determine how suitable they are at dif-
ferent window densities. The ungrouped Taskbar (Figure 5.2(a)) emulated Windows’
behaviour, including scroll widgets when the list outgrew the widget area (32 window
density condition only).

(a) Ungrouped Taskbar (b) Grouped Taskbar (c) Alt+Tab Dialog

Figure 5.2: Emulated mainstream task switching interfaces.

5.5 Experimental Design and Method

5.5.1 Interface Familiarisation

All participants were presented with a short three minute demonstration of all inter-
faces before using any themselves to familiarise them with each interface. Following
this presentation, participants were allowed an unlimited number of untimed prac-
tice trials with each interface using a dummy set of windows not included in the final
evaluation. The training tasks were designed to eliminate learning effects in controls
of each interface.

5.5.2 Task Selection

We distributed windows to applications based on the Zipfian distributions deter-
mined from the empirical study outlined in Chapter 3 using percentages from the
table below. We also used the same percentage set for trial selection (e.g. one window
appears in 32% of all trials for one condition).

App/Window # 1 2 3 4 5 6 7 8 9
% Total 32% 21% 16% 10% 6% 6% 3% 3% 3%

The cueing mechanism was implemented by storing 32 references in a collection to
the first object, 21 to the second and so on, then using a random number generator to
select an index. If the index chosen by the generator contained the current active win-
dow, we continued to select windows until this was not the case. Participants were
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not explicitly told the distribution. The four window and eight window density con-
ditions used a 2×2 SCOTZ grid with four applications, while the 16 and 32 window
density conditions used a 3×3 grid with nine applications. These figures were based
on the 85% to 97% thresholds reported in Chapter 3.

5.5.3 Experimental Procedure and Design

Participants completed 32 trials for each condition grouped by window density. They
were instructed to perform selections as fast as they could, and in the event of an
error, immediately try to recover. The first few selections in a workspace for each
interface required a visual search as the user had no prior knowledge of the placement
of switching widgets for the workspace. Likewise, the fuzzy descriptions for each
window had to be processed and window associations determined before switches
could be made. We did not record times for the first three trials purposefully to avoid
including timing data from initial visual searches. All window density conditions
were presented in the same order (8, 4, 32, 16) to avoid maximum fatigue at the 32
window level, and within window density trials we used a latin square configuration
for the interface type factor to counter workspace learning effects.

The experimental design is a 4×4 repeated measures analysis of variance (ANOVA)
with two factors: interface type (SCOTZ, Grouped Taskbar, Ungrouped Taskbar, and
Alt+Tab) and window density (4, 8, 16, and 32 windows) and one primary dependent
variable (acquisition time).

5.6 Qualitative Evaluation

We asked each participant to complete a questionnaire at the end of the experiment in
which they rated each of the four techniques using a NASA-TLX scale, ranked each
interface relative to one another, and provided comments about all techniques.

5.7 Results

5.7.1 Empirical Results

Figure 5.3 shows the acquisition time results from our quantitative evaluation. A
repeated measures ANOVA for interface type and window density showed a sig-
nificant effect for interface type (F(3,39)=39.459, p < 0.01), for window density
(F(1,13)=212.852, p < 0.01), and interactions between interface type and window
density (F(9,117)=19.889, p < 0.01). With 14 participants we were unable to find
a significant difference between SCOTZ and the ungrouped Taskbar in any of 4, 8
or 16 window densities. However, the mean time for SCOTZ is always lowest —
no interface was able to beat SCOTZ’s mean time for any condition. We found no
measurable learning effect across trials, indicating that users learnt spatial positioning
extremely quickly — perhaps in the first three untimed tasks.

Regression analysis showed a linear relationship between workspace density and
selection time for SCOTZ (R2 > 0.97) and near-linear for the grouped Taskbar (R2 >
0.92). However, the two non-grouping interfaces exhibited explonential relationships

5.6. QUALITATIVE EVALUATION
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Figure 5.3: Average acquisition times for each interface under each window density condition
(n=14) showing SCOTZ performing the fastest in all conditions and scaling much
better at 32 windows. ATASK is the Grouped Taskbar, WTASK is the Ungrouped
Taskbar.

(R2 > 0.93 for Alt+Tab, R2 > 0.92 for ungrouped Taskbar). This behaviour can
be attributed to the grouping behaviour providing a better strategy for search and
selection at high densities.

5.7.2 Subjective Results

Figure 5.4 summarises the results of the NASA-TLX subjetive workload assessment
present in the questionnaire. SCOTZ is the clear winner in all categories other than
physical load, where it still obtains the highest mean score. Participants unanimously
ranked SCOTZ the best of the four interfaces, and had very positive comments en-
joying the spatial positioning and stability, speed of the interface, appearance, and
ease of use. Users generally ranked thumbnails to be very useful (mean=4.65 out of
a maximum of 5), though some users complained the text used with thumbnails was
too small and difficult to read. Users also mentioned that in the 32 window density
condition, thumbnails of similar windows are difficult to distinguish between.

5.8 Discussion and Conclusions

This section briefly discusses some experimental concerns and biases, and summarises
the findings of the prototype evaluation.

5.8.1 Experimental Concerns

We identified three factors which may have introduced bias towards Taskbar inter-
faces during the experiment. Firstly, a real workspace has dynamic properties: win-
dows are closed and opened frequently. This causes Taskbar buttons to disappear,
resize and move. We did not emulate this functionality, and as such Taskbar buttons

CHAPTER 5. EVALUATION OF SCOTZ INTERFACE



34 CHAPTER 5. EVALUATION OF SCOTZ INTERFACE

0

1

2

3

4

5

Mental Load Physical Load Temporal Load Performance Effort Enjoyment

NASA TLX Measure

A
v
e
r
a
g

e
 R

a
ti

n
g

 (
/

5
)

SCOTZ Grouped Taskbar Ungrouped Taskbar Alt+Tab

Figure 5.4: NASA-TLX subjective workload assessment results (+/-SE).

gain absolute spatial stability when they otherwise would not. Secondly, because the
cueing interface generated windows in their distribution order, the most frequently
used windows were always found toward the left. This allowed users to hover in the
region and avoid lateral mouse movement time in selections. Finally, users were able
to hover their mouse near the Taskbar at all times, waiting for the next task.

Because the SCOTZ interface utilises the full display area, it occluded the task
cueing interface when open. While most users appeared to quickly grasp the fuzzy de-
scriptions and had no obvious trouble mapping them to windows and applications in
each workspace, one user mentioned forgetting the selection target and being forced
to make an unwanted error to see the cueing interface.

The four and eight window conditions may also be reaching the limits of human
motor abilities. The Keystroke Level Model (Card et al. 1983) indicates that pointing
time for a target is between 0.9 and 1.1 seconds, and the time to perform two clicks is
0.4 seconds. Interestingly, the mean time for SCOTZ in the four window condition
was 1.15 seconds, the action requiring two clicks and a pointing task. According to
KLM, the minimum selection time for this interface should be approximately 1.3
seconds. Likewise, the 8 window condition is also approaching the 1.3 second mean
time (SCOTZ 8W mean = 1.58s). We can therefore stress the importance of even
a small difference in mean value at this level, even if not statistically significant; the
performance of SCOTZ is certainly impressive.

Our emulated Alt+Tab dialog did not scroll when more than 21 windows were
open, as the standard Windows dialog does. This should not cause a significant perfor-
mance decrease because the serial nature of the Alt+Tab interface necessitates serial
visual searches.

5.8.2 Discussions

We found data to support our hypothesis that SCOTZ is faster than other interfaces
for all conditions. Although the difference is not significant at the 4, 8 and 16 window
densities, SCOTZ wins by a large margin at the 32 window condition. This result

5.8. DISCUSSION AND CONCLUSIONS



5.8. DISCUSSION AND CONCLUSIONS 35

supports both design considerations #3 and #4 outlined in Section 4.1, allowing both
rapid performance with small sets of frequently used items (SCOTZ performs at
least as fast as all other interfaces tested), and support for larger workspaces without
sacrificing switching speed for small sets. In addition, subjective analysis showed users
unanimously prefer this functionality when compared to other methods.

Interestingly, while SCOTZ requires two mouse click events to activate a win-
dow, its nearest competitor (the ungrouped Taskbar) only requires one. Yet, SCOTZ
still maintains a lower mean time for selection throughout all conditions. Further-
more, the grouped Taskbar (which also requires two clicks to switch) performed
slowly in all except the 32 window condition.

Comparing the results gained for Alt+Tab and the ungrouped Taskbar to those
of Kumar et al. (2007) shows similar trends. For both the four and eight window
conditions, they report mean times within 200ms of our results. We also found
Alt+Tab scales similarly to their findings, with means of approximately 2500ms when
approaching 16 window conditions. We report mean times faster on average than Ku-
mar et al., which can be attributed to both using a single monitor for both cueing and
selection tasks, and allowing users to hover over the Taskbar. Kumar et al. imple-
mented a mandatory movement and selection task for the Taskbar only to stop users
hovering directly over the Taskbar at all times (an action not likely to occur in real
switching operations). This mandatory post-task selection is one method we could
have used to remove the hover bias mentioned in the previous subsection.

To our surprise, no interface exhibited measurable learning effects in our experi-
ment. We take this to indicate that learning occurred extremely quickly, i.e. within
the first three trials for each condition. Unfortunately we did not record times for
these initial trials, and cannot analyse data from them. If learning did indeed occur
quickly, SCOTZ supports the second design consideration in Section 4.1.

5.8.3 Summary

To summarise, we evaluated SCOTZ against four mainstream task switching inter-
faces and found it to fastest in all conditions measured. SCOTZ also outperformed
other interfaces when scaling with workspace size, and received highly favourable
NASA-TLX ratings. Finally, SCOTZ received unanimous approval from participants
who all ranked it as the best interface of all tested.
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6Discussions and Conclusions

6.1 Implications for Design

Our SCOTZ prototype evaluation supported all four design considerations outlined
in Chapter 4. We can now suggest that interfaces utilising stable workspace elements
(e.g. applications) in a spatially consistent manner perform well and are preferred by
users.

We can also suggest that utilising the distributions discovered in Chapter 3 is a
useful metric from which to base task switching interface design on. Our evaluation
used distributions from our empirical study for testing with good results, but more
importantly used thresholds found to configure the SCOTZ interface with a good
number of zones.

6.2 Future Work

SCOTZ can be improved in many different ways: at the moment there are no pro-
visions for supporting an arbitrarily large number of applications. Nor did we cover
any strategies better utilise zoning space - some applications, especially those with a
small number of switchable windows (e.g. MDI applications), do not require such
large target space in the SCOTZ grid. The following section outlines some strate-
gies we have considered for the improvement of SCOTZ, and suggest that they be
implemented and tested for performance against the original SCOTZ design, both in
formal empirical evaluations and long-term user studies with real systems.

6.2.1 Frequency-based SCOTZ

SCOTZ could benefit greatly by using data collected by an application such as Tray-
Log to enhance the positioning and sizing of zones and thumbnails. Frequency-based
SCOTZ could apply a space division principle such as TreeMaps to resize thumbnail
slots according to their use frequency. This way, target sizes could be increased for
frequently switched windows or applications, while maintaining relative spatial sta-
bility of thumbnails and absolute spatial stability of zones. Further, SCOTZ could
continue to use a fixed zone count, and determine which applications to place in

37



38 CHAPTER 6. DISCUSSIONS AND CONCLUSIONS

which zones based on a frequency metric. This would likely require a technique
to catch all windows that did not belong to a zoned application, such as Catchall
SCOTZ outlined in the next paragraph.

6.2.2 Catchall SCOTZ

The major obstacle preventing SCOTZ from being a stanalone task switching solu-
tion is that to maintain a usable interface, the number of zones will likely be less
than the number of applications on a user’s system. Catchall SCOTZ assigns a single
zone as a ‘catch all’ zone, where windows who do not belong to a zoned application
will be placed. This allows SCOTZ to provide large spatially stable target areas for
over 95% of application switches, but also scale to support an unlimited number of
possible applications.

6.2.3 Workspace SCOTZ

Workspace SCOTZ is a technique whereby SCOTZ becomes a ‘frame’ to a workspace
as opposed to a layer above. Zones can be distributed evenly around the outside of
a workspace, leaving the central area as a working area with large windows, similar
to Scalable Fabric (Robertson et al. 2004). However, automatic grouping based on
application could remove the burden of managing higher-level tasks from users and
place it on the system itself. It would be interesting to compare Workspace SCOTZ
to Scalable Fabric in a formal evaluation.

6.2.4 Abstract SCOTZ

Abstract SCOTZ is essentially user-managed SCOTZ. Zones now become templates
in which users can place either applications or windows. Abstract SCOTZ could al-
low users to define a set of rules to automatically assign applications and windows to
zones, so that Inbox windows always move to one zone while Instant Messenger win-
dows always move to another. Spatial memory has been shown to be improved when
users have to use additional effort to acquire positioning tasks (Cockburn et al. 2007),
and this technique could apply when allowing users to group their own windows.
This could allow users to more efficiently serve interruptions, especially if paired
with an interruption analysis system similar to those Iqbal & Horvitz (2007) men-
tion.

6.3 Conclusions

We have successfully implemented and conduced an empirical study to characterise
some of users’ task switching habits, and found very clean distributions for window
and applications. We also found a bipolar split between single and dual monitor
users, which is another field that needs much observation. SCOTZ, a new inter-
face designed to better support task switching, successfully utilised data from our
empirical study and performed favourably in a formal evaluation against three other
mainstream task switching interfaces. Not only did it perform favourably in terms

6.3. CONCLUSIONS



6.3. CONCLUSIONS 39

of selection time, but it was ranked unanimously by participants as the best inter-
face in the experiment and received many favourable comments with little criticism.
Hopefully, more researchers will explore the direction we have taken by using cur-
rent constructs of applications and windows as a starting point, and utilising spatial
memory to minimise visual searches.
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AAPPENDIX

A.1 TrayLog Noise Filter Source Code

Listing A.1: PHP Filter() function used to remove noisy window data before processing. �
<?php
// TrayLog no i s e f i l t e r f u n c t i o n − Ke i th Humm COSC460
funct ion F i l t e r ( $datum )
{

$exename = trim ( s t r to lower ( $datum[ ’ exe ’ ] ) ) ;
$ t i t l e = trim ( s t r to lower ( $datum[ ’ t i t l e ’ ] ) ) ;
$a c t ion = $datum[ ’ a c t i o n ’ ] ;

switch ( $exename ) {
// remove any t r a y l o g e n t r i e s − don ’ t need any
c a s e " t r a y l o g . exe " : return true ; break ;
c a s e " t ray log_v1 . 6 _ i n s t a l l e r . exe " : return true ; break ;

// ZoneAlarm i s a lmost neve r a c t i v a t e d by a u s e r
c a s e " z l c l i e n t . exe " : return true ; break ;

// e x p l o r e r . exe has some s t r a ng e top− l e v e l hWnds ( i n winXP)
// tha t appear w i th the t i t l e Fo lde rV iew .
c a s e " e x p l o r e r . exe " :

switch ( $ t i t l e ) {
c a s e " f o l d e r v i e w " : return true ; break ;
c a s e " o l echanne lwnd " : return true ; break ;
c a s e " a c t i v emov i e ␣window" : return true ; break ;
c a s e " d e f a u l t ␣ ime" : return true ; break ;
} break ;

// p e r i o d i c a l l y , ou t l ook e x p r e s s s ync s w i th imap u s i ng a number
// o f top l e v e l windows .
c a s e "msimn . exe " : // ou t l ook e x p r e s s

switch ( $ t i t l e ) {
c a s e " ou t l ook ␣ e x p r e s s ␣ f o l d e r s y n c ␣window␣ c l a s s " : return true ; break ;
c a s e " ou t l ook ␣ e x p r e s s ␣ imap␣cfsm␣ c l a s s " : return true ; break ;
c a s e " tho r connwndc l a s s " : return true ; break ;
c a s e " c i c e r ou iwnd f r ame " : return true ; break ;
c a s e " d i r e c t d bno t i f ywndp r o c " : return true ; break ;
} break ;

// I n t e r n e t e x p l o r e r 6 u s e s heaps o f random windows . . .
c a s e " i e x p l o r e . exe " :
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switch ( $ t i t l e ) {
c a s e " c i cma r sha lwndae j " : return true ; break ;
c a s e "dde␣ s e r v e r ␣window" : return true ; break ;
c a s e " c i c e r ou iwnd f r ame " : return true ; break ;
c a s e " o l echanne lwnd " : return true ; break ;
c a s e " s y s f a d e r " : return true ; break ;
c a s e " ac roba t ␣ i e h e l p e r " : return true ; break ;
c a s e " olemainthreadwndname" : return true ; break ;
} break ;

// u l t r a e d i t does a few s t r a ng e t h i n g s wi th d i a l o g boxes . . .
c a s e " ued i t 32 . exe " :

switch ( $ t i t l e ) {
c a s e "&yes " : return true ; break ;
c a s e " f i l e ␣ changed , ␣ r e l o a d ␣ f i l e ?" : return true ; break ;
} break ;

// opera does some we i rd s t u f f w i th DummyWindowless
c a s e " opera . exe " :

switch ( $ t i t l e ) {
c a s e "dummywindowless" : return true ; break ;
c a s e " c icmarsha lwndmfhb " : return true ; break ;
} break ;

// MSN messenger has an UnnamedWindow , don ’ t know why !
c a s e "msnmsgr . exe " :

switch ( $ t i t l e ) {
c a s e "msnunnamedwindow" : return true ; break ;
c a s e "msnmsgrabsconnwindow" : return true ; break ;
} break ;

// v i s u a l s t u d i o 2005 g en e r a t e s LOTS o f e r r on eou s FOCUS
c a s e " devenv . exe " :

i f ( $a c t ion == "SETFOCUS" ) return true ; break ;

// ac roba t r e a d e r does a l l s o r t s o f we i rd s t u f f
c a s e " a c r o r d 3 2 i n f o . exe " :

switch ( $ t i t l e ) {
c a s e "dde␣ s e r v e r ␣window" : return true ; break ;
c a s e " olemainthreadwndname" : return true ; break ;
} break ;

// php has e r roneous , even as apache module
c a s e "php . exe " :

switch ( $ t i t l e ) {
c a s e " olemainthreadwndname" : return true ; break ;
c a s e " zend␣ t imeout ␣window" : return true ; break ;
c a s e " d e f a u l t ␣ ime" : return true ; break ;
} break ;

// winamp the popu l a r music p l a y e r . . .
c a s e "winamp . exe " :

switch ( $ t i t l e ) {
c a s e " dshow_not i f " : return true ; break ;
c a s e " a c t i v emov i e ␣window" : return true ; break ;
c a s e " o l echanne lwnd " : return true ; break ;
c a s e " cicmarshalwndmhg" : return true ; break ;
} break ;

}
return f a l s e ;
}

?>

A.1. TRAYLOG NOISE FILTER SOURCE CODE



A.2. SCENARIO ANALYSIS LOG 47

A.2 Scenario Analysis Log

Listing A.2: Before and after filtering log file excerpts from scenario analysis log used to verify
noise filter system. �

−−− BEFORE: −−−
[ 2 0 0 7 − . . . 3 : 2 8 : 0 2 . 9 7 6 ] ALT+TAB
[ 2 0 0 7 − . . . 3 : 2 8 : 0 3 . 2 0 2 ] ALT+TAB
[ 2 0 0 7 − . . . 3 : 2 8 : 0 3 : 2 2 2 ] KACTIVATE 5235 2394045 msimn . exe Outlook Ex . . .
[ 2 0 0 7 − . . . 3 : 2 8 : 0 3 . 2 3 9 ] 0ACTIVATE 5780 4262772 u e d i t 3 2 . exe C: \Docum . . .
[ 2 0 0 7 − . . . 3 : 2 8 : 0 3 . 2 3 9 ] SETFOCUS 5780 4262772 u e d i t 3 2 . exe C: \Docum . . .
[ 2 0 0 7 − . . . 3 : 2 8 : 0 4 . 1 2 5 ] MAXIMISED 5780 4262772 u e d i t 3 2 . exe C: \Docum . . .
[ 2 0 0 7 − . . . 3 : 2 8 : 0 4 . 1 2 5 ] SETFOCUS 5780 4262772 u e d i t 3 2 . exe C: \Docum . . .
[ 2 0 0 7 − . . . 3 : 2 8 : 0 4 . 1 8 7 ] PACTIVATE 5780 3671212 u e d i t 3 2 . exe Ul t r aEd i . . .
[ 2 0 0 7 − . . . 3 : 2 8 : 0 6 . 9 6 8 ] DESTROYED 5968 199574 AcroRd32Info . exe DDE . . .
[ 2 0 0 7 − . . . 3 : 2 8 : 0 6 . 9 6 8 ] DESTROYED 5968 2165314 AcroRd32Info . exe Ole . . .
[ 2 0 0 7 − . . . 3 : 2 8 : 0 7 . 7 8 1 ] TBCLICK
[ 2 0 0 7 − . . . 3 : 2 8 : 0 7 . 7 8 1 ] TACTIVATE 5235 2394045 msimn . exe Outlook Ex . . .
[ 2 0 0 7 − . . . 3 : 2 8 : 0 7 . 7 8 1 ] OACTIVATE 2272 8324854 Exp lore r .EXE TrayLog
[ 2 0 0 7 − . . . 3 : 2 8 : 0 7 . 7 9 6 ] SETFOCUS 2272 10160764 Exp lore r .EXE FolderView
[ 2 0 0 7 − . . . 3 : 2 8 : 0 7 . 8 5 9 ] PACTIVATE 2272 8324854 Exp lore r .EXE TrayLog
[ 2 0 0 7 − . . . 3 : 2 8 : 1 0 . 5 6 2 ] OACTIVATE 5780 3671212 u e d i t 3 2 . exe Ul t r aEd i . . .
[ 2 0 0 7 − . . . 3 : 2 8 : 1 0 . 5 6 2 ] SETFOCUS 5780 3671212 u e d i t 3 2 . exe Ul t r aEd i . . .
[ 2 0 0 7 − . . . 3 : 2 8 : 1 0 . 5 6 2 ] SETFOCUS 5780 4262772 u e d i t 3 2 . exe C: \Docum . . .
[ 2 0 0 7 − . . . 3 : 2 8 : 1 0 . 5 9 3 ] PACTIVATE 5780 3671212 u e d i t 3 2 . exe Ul t r aEd i . . .
[ 2 0 0 7 − . . . 3 : 2 8 : 1 0 . 5 9 3 ] OACTIVATE 5780 5704022 u e d i t 3 2 . exe F i l e cha . . .
[ 2 0 0 7 − . . . 3 : 2 8 : 1 0 . 6 7 1 ] PACTIVATE 5780 5704022 u e d i t 3 2 . exe F i l e cha . . .
[ 2 0 0 7 − . . . 3 : 2 8 : 1 1 . 5 1 5 ] SETFOCUS 5780 5704022 u e d i t 3 2 . exe F i l e cha . . .
[ 2 0 0 7 − . . . 3 : 2 8 : 1 1 . 5 1 5 ] OACTIVATE 5780 3671212 u e d i t 3 2 . exe Ul t r aEd i . . .
[ 2 0 0 7 − . . . 3 : 2 8 : 1 1 . 5 1 5 ] SETFOCUS 5780 3671212 u e d i t 3 2 . exe Ul t r aEd i . . .
[ 2 0 0 7 − . . . 3 : 2 8 : 1 1 . 5 1 5 ] SETFOCUS 5780 4262772 u e d i t 3 2 . exe C: \Docum . . .
[ 2 0 0 7 − . . . 3 : 2 8 : 1 1 . 5 3 1 ] PACTIVATE 5780 3671212 u e d i t 3 2 . exe Ul t r aEd i . . .
[ 2 0 0 7 − . . . 3 : 2 8 : 3 3 . 8 7 8 ] MACTIVATE 5235 2394421 msimn . exe Outlook Ex . . .
[ 2 0 0 7 − . . . 3 : 2 8 : 3 3 . 8 9 0 ] OACTIVATE 4488 1508380 MySQLQueryBrowser . ex . . .
[ 2 0 0 7 − . . . 3 : 2 8 : 3 3 . 9 5 3 ] PACTIVATE 4488 1508380 MySQLQueryBrowser . ex . . .
[ 2 0 0 7 − . . . 3 : 2 8 : 4 1 . 5 3 1 ] PACTIVATE 4208 1902174 cmd . exe / c y g d r i v e / f / . . .
[ 2 0 0 7 − . . . 3 : 2 8 : 5 1 . 9 2 1 ] IDLE 10 S
[ 2 0 0 7 − . . . 3 : 2 9 : 0 6 . 2 6 5 ] DESTROYED 4672 7604806 php . exe OleMainThrea . . .
[ 2 0 0 7 − . . . 3 : 2 9 : 0 6 . 2 6 5 ] DESTROYED 4672 2229994 php . exe Zend Timeout . . .
[ 2 0 0 7 − . . . 3 : 2 9 : 0 6 . 2 6 5 ] DESTROYED 4672 2361152 php . exe D e f a u l t IME
[ 2 0 0 7 − . . . 3 : 2 9 : 0 7 . 9 6 8 ] OACTIVATE 4488 1508380 MySQLQueryBrowser . ex . . .
[ 2 0 0 7 − . . . 3 : 2 9 : 0 8 . 0 1 5 ] PACTIVATE 4488 1508380 MySQLQueryBrowser . ex . . .

−−− AFTER: −−−
[ 2 0 0 7 − . . . 3 : 2 8 : 0 2 . 9 7 6 ] ALT+TAB
[ 2 0 0 7 − . . . 3 : 2 8 : 0 3 . 2 0 2 ] ALT+TAB
[ 2 0 0 7 − . . . 3 : 2 8 : 0 3 . 2 3 9 ] KACTIVATE 5780 4262772 u e d i t 3 2 . exe C: \Docum . . .
[ 2 0 0 7 − . . . 3 : 2 8 : 0 3 . 2 3 9 ] SETFOCUS 5780 4262772 u e d i t 3 2 . exe C: \Docum . . .
[ 2 0 0 7 − . . . 3 : 2 8 : 0 4 . 1 2 5 ] MAXIMISED 5780 4262772 u e d i t 3 2 . exe C: \Docum . . .
[ 2 0 0 7 − . . . 3 : 2 8 : 0 4 . 1 8 7 ] PACTIVATE 5780 3671212 u e d i t 3 2 . exe Ul t r aEd i . . .
[ 2 0 0 7 − . . . 3 : 2 8 : 0 7 . 7 8 1 ] TBCLICK
[ 2 0 0 7 − . . . 3 : 2 8 : 0 7 . 7 8 1 ] TACTIVATE 2272 8324854 Exp lore r .EXE TrayLog
[ 2 0 0 7 − . . . 3 : 2 8 : 1 0 . 5 6 2 ] OACTIVATE 5780 3671212 u e d i t 3 2 . exe Ul t r aEd i . . .
[ 2 0 0 7 − . . . 3 : 2 8 : 1 0 . 5 9 3 ] PACTIVATE 5780 3671212 u e d i t 3 2 . exe Ul t r aEd i . . .
[ 2 0 0 7 − . . . 3 : 2 8 : 1 0 . 5 9 3 ] OACTIVATE 5780 5704022 u e d i t 3 2 . exe F i l e cha . . .
[ 2 0 0 7 − . . . 3 : 2 8 : 1 1 . 5 1 5 ] OACTIVATE 5780 3671212 u e d i t 3 2 . exe Ul t r aEd i . . .
[ 2 0 0 7 − . . . 3 : 2 8 : 1 1 . 5 3 1 ] PACTIVATE 5780 3671212 u e d i t 3 2 . exe Ul t r aEd i . . .
[ 2 0 0 7 − . . . 3 : 2 8 : 3 3 . 8 9 0 ] MACTIVATE 4488 1508380 MySQLQueryBrowser . ex . . .
[ 2 0 0 7 − . . . 3 : 2 8 : 4 1 . 5 3 1 ] PACTIVATE 4208 1902174 cmd . exe / c y g d r i v e / f / . . .
[ 2 0 0 7 − . . . 3 : 2 8 : 5 1 . 9 2 1 ] IDLE 10 S
[ 2 0 0 7 − . . . 3 : 2 9 : 0 7 . 9 6 8 ] OACTIVATE 4488 1508380 MySQLQueryBrowser . ex . . .
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